I.I. Guseinov. Department of Physics, Faculty of Arts and Sciences, Onsekiz Mart University, Çanakkale, Turkey

Σχετικά έγγραφα
( ) ( t) ( 0) ( ) dw w. = = β. Then the solution of (1.1) is easily found to. wt = t+ t. We generalize this to the following nonlinear differential

= e 6t. = t 1 = t. 5 t 8L 1[ 1 = 3L 1 [ 1. L 1 [ π. = 3 π. = L 1 3s = L. = 3L 1 s t. = 3 cos(5t) sin(5t).

Fractional Calculus. Student: Manal AL-Ali Dr. Abdalla Obeidat

Approximation of the Lerch zeta-function

Representation of Five Dimensional Lie Algebra and Generating Relations for the Generalized Hypergeometric Functions

GENERAL FRACTIONAL CALCULUS OPERATORS CONTAINING THE GENERALIZED MITTAG-LEFFLER FUNCTIONS APPLIED TO ANOMALOUS RELAXATION

Appendix. The solution begins with Eq. (2.15) from the text, which we repeat here for 1, (A.1)

Global Attractor for a Class of Nonlinear Generalized Kirchhoff-Boussinesq Model

Lecture 12 Modulation and Sampling

α ]0,1[ of Trigonometric Fourier Series and its Conjugate

Every set of first-order formulas is equivalent to an independent set

4.6 Autoregressive Moving Average Model ARMA(1,1)

EE512: Error Control Coding

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

University of Washington Department of Chemistry Chemistry 553 Spring Quarter 2010 Homework Assignment 3 Due 04/26/10

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

r t te 2t i t Find the derivative of the vector function. 19. r t e t cos t i e t sin t j ln t k Evaluate the integral.

Approximation of distance between locations on earth given by latitude and longitude

APPENDIX A DERIVATION OF JOINT FAILURE DENSITIES

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

Riemann Hypothesis: a GGC representation

Asymptotic behavior of solutions of mixed type impulsive neutral differential equations

Xiaoquan (Michael) Zhang

Section 8.3 Trigonometric Equations

DuPont Suva 95 Refrigerant

ECE145a / 218a Tuned Amplifier Design -basic gain relationships

The Euler Equations! λ 1. λ 2. λ 3. ρ ρu. E = e + u 2 /2. E + p ρ. = de /dt. = dh / dt; h = h( T ); c p. / c v. ; γ = c p. p = ( γ 1)ρe. c v.

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

DuPont Suva 95 Refrigerant

ω = radians per sec, t = 3 sec

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation

DuPont Suva. DuPont. Thermodynamic Properties of. Refrigerant (R-410A) Technical Information. refrigerants T-410A ENG

Technical Information T-9100 SI. Suva. refrigerants. Thermodynamic Properties of. Suva Refrigerant [R-410A (50/50)]

derivation of the Laplacian from rectangular to spherical coordinates

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006

Appendix A. Stability of the logistic semi-discrete model.

TP A.20 The effect of spin, speed, and cut angle on draw shots

Vidyalankar. Vidyalankar S.E. Sem. III [BIOM] Applied Mathematics - III Prelim Question Paper Solution. 1 e = 1 1. f(t) =

Section 7.6 Double and Half Angle Formulas

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

DIRECT PRODUCT AND WREATH PRODUCT OF TRANSFORMATION SEMIGROUPS

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Solutions to the Schrodinger equation atomic orbitals. Ψ 1 s Ψ 2 s Ψ 2 px Ψ 2 py Ψ 2 pz

9.1 Introduction 9.2 Lags in the Error Term: Autocorrelation 9.3 Estimating an AR(1) Error Model 9.4 Testing for Autocorrelation 9.

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

( P) det. constitute the cofactor matrix, or the matrix of the cofactors: com P = c. ( 1) det

2 Composition. Invertible Mappings

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

Homework 8 Model Solution Section

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

6.003: Signals and Systems

Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α

6.003: Signals and Systems. Modulation

Χρονοσειρές Μάθημα 3

On Strong Product of Two Fuzzy Graphs

ΕΡΓΑΣΙΑ ΜΑΘΗΜΑΤΟΣ: ΘΕΩΡΙΑ ΒΕΛΤΙΣΤΟΥ ΕΛΕΓΧΟΥ ΦΙΛΤΡΟ KALMAN ΜΩΥΣΗΣ ΛΑΖΑΡΟΣ

Second Order Partial Differential Equations

Math221: HW# 1 solutions

Partial Trace and Partial Transpose

CE 530 Molecular Simulation

RG Tutorial xlc3.doc 1/10. To apply the R-G method, the differential equation must be represented in the form:

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

P4 Stress and Strain Dr. A.B. Zavatsky HT08 Lecture 5 Plane Stress Transformation Equations

On the Galois Group of Linear Difference-Differential Equations

Commutative Monoids in Intuitionistic Fuzzy Sets

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

Electronic Companion to Supply Chain Dynamics and Channel Efficiency in Durable Product Pricing and Distribution

ΜΟΝΑΔΕΣ ΑΡΙΣΤΕΙΑΣ ΑΝΟΙΧΤΟΥ ΛΟΓΙΣΜΙΚΟΥ

12. Radon-Nikodym Theorem

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

ΤΟ ΜΟΝΤΕΛΟ Οι Υποθέσεις Η Απλή Περίπτωση για λi = μi 25 = Η Γενική Περίπτωση για λi μi..35

CHAPTER 10. Hence, the circuit in the frequency domain is as shown below. 4 Ω V 1 V 2. 3Vx 10 = + 2 Ω. j4 Ω. V x. At node 1, (1) At node 2, where V

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

CRASH COURSE IN PRECALCULUS

Nonlinear Analysis: Modelling and Control, 2013, Vol. 18, No. 4,

C.S. 430 Assignment 6, Sample Solutions

The Simply Typed Lambda Calculus

ST5224: Advanced Statistical Theory II

Study of In-vehicle Sound Field Creation by Simultaneous Equation Method

Feasible Regions Defined by Stability Constraints Based on the Argument Principle

Poularikas A. D. Distributions, Delta Function The Handbook of Formulas and Tables for Signal Processing. Ed. Alexander D. Poularikas Boca Raton: CRC

The Student s t and F Distributions Page 1

Solutions to Exercise Sheet 5

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

Hartree-Fock Theory. Solving electronic structure problem on computers

What Price Index Should Central Banks Target? An Open Economy Analysis

(As on April 16, 2002 no changes since Dec 24.)

( y) Partial Differential Equations

d dt S = (t)si d dt R = (t)i d dt I = (t)si (t)i

Congruence Classes of Invertible Matrices of Order 3 over F 2

Fractional Colorings and Zykov Products of graphs

Oscillation criteria for two-dimensional system of non-linear ordinary differential equations

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Ξενόγλωσση Τεχνική Ορολογία

Linear singular perturbations of hyperbolic-parabolic type

6.3 Forecasting ARMA processes

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

Problem Set 3: Solutions

Overview. Transition Semantics. Configurations and the transition relation. Executions and computation

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Transcript:

Epanion and one-range addiion heore for coplee orhonoral e of pinor wave funcion and Slaer pinor orbial of arbirary half-inegral pin in poiion oenu and four-dienional pace I.I. Gueinov Deparen of Phyic Faculy of Ar and Science Oneiz Mar Univeriy Çanaale Turey Abrac The analyical relaion in poiion oenu and four-dienional pace are eablihed for he epanion and one-range addiion heore of relaiviic coplee orhonoral e of eponenial ype pinor wave funcion and Slaer pinor orbial of arbirary half-inegral pin. Thee heore are epreed hrough he correponding nonrelaiviic epanion and one-range addiion heore of he pin-0 paricle inroduced by he auhor. The epanion and one-range addiion heore derived are epecially ueful for he copuaion of ulicener inegral over eponenial ype pinor orbial ariing in he generalized relaiviic Dirac-Harree-Foc-Roohaan heory when he poiion oenu and fourdienional pace are eployed. ey word: Eponenial ype pinor orbial Slaer ype pinor orbial Addiion heore Relaiviic Dirac-Harree-Foc-Roohaan heory 1. Inroducion The oluion of he Dirac equaion for hydrogen-lie ye play a ignifican role in heory and applicaion o relaiviic quanu echanic of ao olecule and nuclei. However he relaiviic hydrogen-lie poiion orbial and heir eenion o oenu and four-dienional pace canno be ued a bai e becaue hey are no coplee unle he coninuu i included [1-4]. In Ref. [5] we have conruced in poiion oenu and four-dienional pace he coplee orhonoral e of wo- and four-coponen relaiviic pinor wave funcion baed on he ue of coplee ohonoral e of nonrelaiviic orbial. By he ue of hi ehod in a previou wor [6] we inroduced he new coplee orhonoral e of relaiviic ETSO) and Ψ -eponenial ype pinor orbial ( Ψ - Χ -Slaer ype pinor orbial ( Χ -STSO) for paricle wih arbirary half-inegral pin in poiion oenu and four-dienional pace hrough he correponding

nonrelaiviic ψ -eponenial ype orbial ( ψ -ETO) [7] and χ -Slaer ype orbial (χ - STO). The elaboraion of algorih for he oluion of generalized Dirac equaion [8] in linear cobinaion of aoic pinor orbial (LCASO) approach neceiae progre in he developen of heory for one-range addiion heore of pinor orbial of uliple order. Addiion heore play a ore and ore iporan role in nonrelaiviic and relaiviic aoic and olecular elecronic rucure calculaion [9]. Two fundaenally differen ype of addiion heore occur in he lieraure. The fir ype of he addiion heore ha he wo-range for of Laplace epanion for he Coulob poenial. There i econd cla of addiion heore which can be conruced by epanding a funcion locaed a a cener a in er of a coplee orhonoral e locaed a a cener b. The ue of onerange addiion heore in elecronic rucure calculaion would be highly deirable ince hey are capable of producing uch beer approiaion han he wo-range addiion heore. In Ref.[10-13] we have developed he ehod for conrucing in poiion oenu and four-dienional pace he one-range addiion heore of coplee orhonoral e of nonrelaiviic ψ -ETO and χ -STO. The ai of hi wor i o derive he relevan epanion and one-range addiion heore of coplee orhonoral e of relaiviic Ψ -ETSO and Χ -STSO in poiion oenu and four-dienional pace hrough he correponding heore for nonrelaiviic orbial ψ -ETO and χ -STO. Thee heore igh be ueful for he calculaion of ulicener inegral which appear in relaiviic MO LCASO heory of arbirary half-inegral pin paricle when he pinor orbial bai e in poiion oenu and four-dienional pace are eployed. 2. Definiion and baic forula In order o derive he epanion and one-range addiion heore for 2(2+- coponen pinor orbial in poiion oenu and four-dienional pace we ue he following definiion: Coplee orhonoral e of nonrelaiviic orbial ( ζ ) ψ ( ζ ) φ ( ζ ) nl nl r nl z nl( ζ ω ) ( ( ζ ) ψ ( ζ r) φ ( ζ ) z ( ζ ω ) (2) nl nl nl nl

Slaer ype nonrelaiviic pinor orbial ( ζ ) χ ( ζ r) u ( ζ ) v ( ζ ω ) (3) nl nl nl nl Coplee orhonoral e of 2(2+-coponen relaiviic pinor orbial ( ζ ) Ψ ( ζ r) Φ ( ζ ) Z ( ζ ω ) (4a) nl nl nl nl ( ζ ) Ψ ( ζ r) Φ ( ζ ) Z ( ζ ω ) (4b) nl nl nl nl ( ζ ) Ψ ( ζ r) Φ ( ζ ) Z ( ζ ω ) (5a) nl nl nl nl ( ζ ) Ψ ( ζ r) Φ ( ζ ) Z ( ζ ω ) (5b) nl nl nl nl Slaer ype 2(2+-coponen relaiviic pinor orbial ( ζ ) Χ ( ζ r) U ( ζ ) V ( ζ ω ) (6a) nl nl nl nl ( ζ ) Χ ( ζ r) U ( ζ ) V ( ζ ω ) (6b) nl nl nl nl where r ω and ω βθϕ. See Ref.[6] and [14-15] for he eac definiion of quaniie occurring in Eq (-(6). We hall alo ue he following forula for 2(2+-coponen pinor orbial hrough he independen e of wo-coponen pinor defined a a produc of coplee orhonoral e of radial par of nonrelaiviic calar ψ -ETO and odified Clebch-Gordan coefficien appearing in wo-coponen enor pherical haronic (ee Ref.[6] and [14-15]): for ETSO 0 nl 2 nl ( ζ ) ( ζ ) ( ζ ) 2 1 nl nl ( ζ ) = nl 2 1 ( ζ nl ) 2 nl 0 nl ( ζ ) ( ζ ) (7a)

η a ( λ) ( ζ ) = η ( λ ( ζ ) a l λ nl ( ζ ) nl l + nl (7b) l ( ) λ λ ζ nl ( ζ ) = nl (7c) l (2 ( λ + ) ( ζ ) nl for ETSO 0 nl 2 nl ( ζ ) ( ζ ) ( ζ ) 2 1 nl nl ( ζ ) = nl 2 1 ( ζ nl ) 2 nl 0 nl ( ζ ) ( ζ ) η a ( λ) ( ζ ) = η ( λ ( ζ ) a l λ nl ( ζ ) nl l + nl (8a) (8b) l ( ) λ λ ζ nl ( ζ ) = nl (8c) l (2 ( λ + ) ( ζ ) nl for STSO 0 nl 2 nl ( ζ ) ( ζ ) ( ζ ) 2 1 nl nl ( ζ ) = nl 2 1 ( ζ nl ) 2 nl 0 nl ( ζ ) ( ζ ) (9a)

η a ( λ) ( ζ ) = η ( λ ( ζ ) a l λ nl ( ζ ) nl l + nl (9b) l ( ) λ λ ζ nl ( ζ ) = nl (9c) l (2 ( λ + ) ( ζ ) nl where λ= 0 2... 2 1. 2. Epanion and one-range addiion heore for ETSO and STSO Wih he derivaion of epanion and one-range addiion heore for 2(2+-coponen pinor orbial in poiion oenu and four-dienional pace we ue he ehod e ou in previou paper [16-17] decribed for he nonrelaiviic cae. Then uing Eq. (7)-(9) and carrying hrough calculaion analogou o hoe for he nonrelaiviic bai e we obain he following relaion in er of nonrelaiviic cae: EXPANSION THEOREMS: for ETSO ( ζ ) ( ζ ) = F ( ζ ζ ; ) + F ( ζ ζ ; ) (10a) 2 1 + ' λ λ nl n l λ= 0 nl n l nl n l ; F a ( ) a ( ) ( ) ( ) ( ) λ l l ζ ζ = ηη λ λ ζ ζ nl nl n l n l l l + a ( ζ ) ( ζ ) a nl n l ; a (2 ) a (2 ) ( ) ( ) ( ) λ l l F ζ ζ = λ λ ζ ζ nl n l nl n l + a (2 ) a (2 ) ( ζ ) ( ζ ) l l nl n l (10b) (10c) for STSO λ λ ( ζ ) ( ζ ) = F ( ζ ζ ; ) + F ( ζ ζ ; ) (11a) 2 1 + ' nl n l λ= 0 nl n l nl n l F ζ ζ ; ηη a ( λ) a ( λ) ( ζ ) ( ζ ) ( ) = λ l l nl nl n l n l + λ+ λ+ ζ ζ l l a ( a ( ( ) ( ) nl n l (11b)

F ζ ζ ; a (2 λ) a (2 λ) ( ζ ) ( ζ ) l l ( ) = λ nl ( λ) nl n l n l + a + a + l l (2 (2 ( ζ ) ( ζ ). nl n l (11c) ONE-RANGE ADDITION THEOREMS: for ETSO η a ( λ) ( ζ y) η ( λ + ( ζ ) a y l λ nl ( ζ ) = nl l nl y (12a) l ( ) λ λ ζ nl y ( ζ ) = nl y (12b) l (2 ( λ + ) ( ζ ) nl y for STSO η a ( λ) ( ζ y) η ( λ + ( ζ ) a y l λ nl ( ζ ) = nl l nl y (13a) l ( ) λ λ ζ nl y ( ζ ) = nl y (13b) l (2 ( λ + ) ( ζ ) nl y where r ω and y R p ω. p The forula for he epanion and one-range addiion heore for quaniie ( ( ζ ) ( ζ nl n l ) nl( ζ )) y and( ( ζ ) ( ζ nl n l ) nl( ζ y )) occurring on he righ hand ide of hee equaion have been eablihed in previou wor [16 17] and [18 19] repecively. A can be een fro he forula of hi wor all of he epanion an one-range addiion heore of 2(2+-coponen ETSO and STSO defined in poiion oenu and fourdienional pace are epreed hrough he correponding nonrelaiviic epanion and one-range addiion heore. Thu he relaion of nonrelaiviic epanion and one-range addiion heore derived in previou paper [16-19] can be alo ued in he cae of 2(2+-coponen pinor orbial in poiion oenu and four-dienional pace.

Reference 1. I.P. Gran Relaiviic Quanu Theory of Ao and Molecule Springer 2006. 2..G. Dyall.Fægri Inroducion o Relaiviic Quanu Cheiry Oford Univeriy Pre 2007. 3. I.P. Gran H.M. Quiney Adv. A. Mol. Phy. 23 (1998) 37. 4. R. Szyowi J. Phy. A: Mah. Gen. 31 (1998) 4963. 5. I.I. Gueinov J. Mah. Che. 47 (2010) 391. 6. I.I. Gueinov Copu. Phy. Coun.(ubied). 7. I.I. Gueinov In. J. Quanu Che. 90 (2002) 114. 8. I.I. Gueinov arxiv: 0805.1856v4. 9. I.N. Levine Quanu Cheiry 5 h ed. Prenice Hall New Jerey 2000. 10. I.I. Gueinov J. Mol. Model. 9 (2003) 135 11. I.I. Gueinov J. Mol. Model. 9 (2003) 190. 12. I.I. Gueinov J. Mol. Model. 11 (2005) 124. 13. I.I. Gueinov J. Mol. Model. 12 (2006) 757. 14. I.I. Gueinov Phy. Le. A 372 (2007) 44. 15. I.I. Gueinov Phy. Le. A 373 (2009) 2178. 16. I.I. Gueinov J. Mah. Che. 42 (2007) 991. 17. I.I. Gueinov J. Mah. Che. 43(2008) 1024. 18. I. I. Gueinov J. Theor. Copu. Che.7(2008) 257. 19. I. I. Gueinov Chin. Phy. Le. 25 (2008) 4240