Handbook of Electrochemical Impedance Spectroscopy

Σχετικά έγγραφα
Handbook of Electrochemical Impedance Spectroscopy

Handbook of Electrochemical Impedance Spectroscopy

EE101: Resonance in RLC circuits

38 Te(OH) 6 2NH 4 H 2 PO 4 (NH 4 ) 2 HPO 4

Study on Re-adhesion control by monitoring excessive angular momentum in electric railway traction

Hydrologic Process in Wetland

B37631 K K 0 60

Potential Dividers. 46 minutes. 46 marks. Page 1 of 11

Quartz Crystal Test Report

is like multiplying by the conversion factor of. Dividing by 2π gives you the

Design and Fabrication of Water Heater with Electromagnetic Induction Heating

6.003: Signals and Systems. Modulation

AT Surface Mount Package SOT-363 (SC-70) I I Y. Pin Connections B 1 C 1 E 1 E 2 C 2 B , 7:56 PM

ITU-R BT ITU-R BT ( ) ITU-T J.61 (

A summation formula ramified with hypergeometric function and involving recurrence relation

NTC Thermistor:SCK Series


Second Order RLC Filters

Capacitors - Capacitance, Charge and Potential Difference

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

Experimental Study of Dielectric Properties on Human Lung Tissue

X-Y COUPLING GENERATION WITH AC/PULSED SKEW QUADRUPOLE AND ITS APPLICATION

IXBH42N170 IXBT42N170

Macromechanics of a Laminate. Textbook: Mechanics of Composite Materials Author: Autar Kaw

= 0.927rad, t = 1.16ms

Figure 3 Three observations (Vp, Vs and density isosurfaces) intersecting in the PLF space. Solutions exist at the two indicated points.

Te chnical Data Catalog

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ

An Advanced Manipulation for Space Redundant Macro-Micro Manipulator System

Studies on the Binding Mechanism of Several Antibiotics and Human Serum Albumin

Te chnical Data Catalog

MMCX SERIES Microminiature Coaxial Connectors

ALUMINUM ELECTROLYTIC CAPACITORS LKG

YAGEO CORPORATION SMD INDUCTOR / BEADS. CLH Series. Lead-free / For High Frequency Applications. CLH1005-H series CLH1608-H series ~1.4 0.

SMC SERIES Subminiature Coaxial Connectors

DETERMINATION OF DYNAMIC CHARACTERISTICS OF A 2DOF SYSTEM. by Zoran VARGA, Ms.C.E.

Review of Single-Phase AC Circuits

SMC SERIES Subminiature Coaxial Connectors

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET

Manuscript submitted to the Journal of the American Society for Mass Spectrometry, September 2011.

Evolution of Novel Studies on Thermofluid Dynamics with Combustion

Vol. 31,No JOURNAL OF CHINA UNIVERSITY OF SCIENCE AND TECHNOLOGY Feb

Ηλεκτρονική ΙΙΙ Παύλος - Πέτρος Σωτηριάδης. Επανάληψη μέρος 2 ο. Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών - Μηχανικών Υπολογιστών

Impedance Matching. RF Electronics Spring, 2018 Robert R. Krchnavek Rowan University

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

Monolithic Crystal Filters (M.C.F.)

Single Stage Amplifiers

RC series Thick Film Chip Resistor

Magnetically Coupled Circuits

Ηλεκτρονικοί Υπολογιστές IV

SOFT FERRITE CORE FOR EMI/EMC SUPPRESSION. AVERTEC Co., Ltd.

Ηλεκτρονική ΙΙΙ Παύλος - Πέτρος Σωτηριάδης. Αντιστάθμιση. Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών - Μηχανικών Υπολογιστών

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

GenX3 TM 300V IGBT IXGA42N30C3 IXGH42N30C3 IXGP42N30C3 V CES = 300V I C110. = 42A V CE(sat) 1.85V t fi typ. = 65ns

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C

Table of Contents 1 Supplementary Data MCD

4.6 Autoregressive Moving Average Model ARMA(1,1)

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is

NTC Thermistor:TSM type

Detection and Recognition of Traffic Signal Using Machine Learning

Oscillatory Gap Damping

Math 6 SL Probability Distributions Practice Test Mark Scheme

! " # $ &,-" " (.* & -" " ( /* 0 (1 1* 0 - (* 0 #! - (#* 2 3( 4* 2 (* 2 5!! 3 ( * (7 4* 2 #8 (# * 9 : (* 9

Base Metal + Alloying Elements

CMPTER SMA CONNECTORS. ... A Vital Part of Connection World

Tunable Diode Lasers. Turning Laser Diodes into Diode Lasers. Mode selection. Laser diodes

Chapter 5. Exercise Solutions. Microelectronics: Circuit Analysis and Design, 4 th edition Chapter 5 EX5.1 = 1 I. = βi EX EX5.3 = = I V EX5.

Visual Systems Division Technical Bulletin MultiSync MT820/MT1020 Installation Data Desk Top and Ceiling Mount

Soil Temperature Change and Heat of Wetting during Infiltration into Dry soils

Bulletin 1489 UL489 Circuit Breakers

NTC Thermistor:SCK Series

WIRE WOUND CHIP INDUCTORS

Correction of chromatic aberration for human eyes with diffractive-refractive hybrid elements

PLATEAU METEOROLOGY. X 6 min. 6 min Vol. 34 No. 4 August doi /j. issn X X / cosθcosφ P412.

SMB SERIES Subminiature Coaxial Connectors

Reaction of a Platinum Electrode for the Measurement of Redox Potential of Paddy Soil


2016 IEEE/ACM International Conference on Mobile Software Engineering and Systems

Fundamentals of Signals, Systems and Filtering

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

Spectrum Representation (5A) Young Won Lim 11/3/16

MALMÖ UNIVERSITY HEALTH AND SOCIETY DISSERTATION 2014:3 ANTON FAGERSTRÖM EFFECTS OF SURFACTANT ADJUVANTS ON PLANT LEAF CUTICLE BARRIER PROPERTIES

Current Sensing Chip Resistor SMDL Series Size: 0201/0402/0603/0805/1206/1010/2010/2512/1225/3720/7520. official distributor of

HIS series. Signal Inductor Multilayer Ceramic Type FEATURE PART NUMBERING SYSTEM DIMENSIONS HIS R12 (1) (2) (3) (4)

PhysicsAndMathsTutor.com 1

Lifting Entry (continued)

MOTROL. COMMISSION OF MOTORIZATION AND ENERGETICS IN AGRICULTURE 2014, Vol. 16, No. 5,

± 20% ± 5% ± 10% RENCO ELECTRONICS, INC.

Τελικό Project Εργαστηρίου Ηλεκτρονικών Φίλτρων Χειµερινό Εξάµηνο

WORKING P A P E R. Learning your Child s Price. Evidence from Data on Projected Dowry in Rural India A. V. CHARI AND ANNEMIE MAERTENS WR-899

H ΚΛΕΙΔΑΡΙΑ ΣΤΟ MAXIMUM

Fourier transform, STFT 5. Continuous wavelet transform, CWT STFT STFT STFT STFT [1] CWT CWT CWT STFT [2 5] CWT STFT STFT CWT CWT. Griffin [8] CWT CWT

CSK series. Current Sensing Chip Resistor. Features. Applications. Construction FAITHFUL LINK

Multilayer Chip Inductor

High Frequency Chip Inductor / CF TYPE

NMBTC.COM /

Section 7.6 Double and Half Angle Formulas

CorV CVAC. CorV TU317. 1

the total number of electrons passing through the lamp.

ECE 308 SIGNALS AND SYSTEMS FALL 2017 Answers to selected problems on prior years examinations

Transcript:

Handbook of Electrochemical Impedance Spectroscopy A B D Im Y * Im Y * Im Y * Im Y * e Y * e Y * e Y * e Y * IUITS made of ESISTOS, INDUTOS and APAITOS E@SE/EPMI J.-P. Diard, B. e Gorrec,. Montella Hosted by Bio-ogic @ www.bio-logic.info August 3, 2

2

ontents ircuits made of, and 5. +/ circuit.......................... 5.. ircuit............................. 5..2 Impedance.......................... 5..3 educed impedance..................... 5.2 ++/ circuit....................... 6.2. Impedance.......................... 7.2.2 educed impedance..................... 7.3 +/ circuit.......................... 7.3. ircuit............................. 7.3.2 Impedance.......................... 7.3.3 educed impedance..................... 8.4 /+/ circuit......................... 9.4. Impedance.......................... 9.4.2 educed impedance......................4.3 Nyquist impedance diagrams.................4.4 Inductive and capacitive Nyquist diagrams.........4.5 ρ = / 2 =........................ 2.4.6 Array of Nyquist impedance diagrams........... 2.5 parallel circuit......................... 2.5. ircuit............................. 2.5.2 Admittance.......................... 3.5.3 educed admittance..................... 4.5.4 Impedance.......................... 4.5.5 educed impedance..................... 4.6 serie circuit........................... 4.6. ircuit............................. 4.6.2 Impedance.......................... 5.6.3 educed impedance..................... 5.6.4 Admittance.......................... 5.6.5 educed admittance..................... 6.7 + parallel circuit...................... 6.7. ircuit............................. 6.7.2 Impedance.......................... 6.8 Transformation formulae / + / 2 r + parallel 7 3

4 ONTENTS 2 Quartz resonator 9 2. BVD equivalent circuit........................ 9 2.2 Admittance.............................. 9 2.3 educed admittance......................... 9 2.3. haracteristic frequencies.................. 2

hapter ircuits made of, and. +/ circuit.. ircuit Fig... Figure.: ircuit +/...2 Impedance e Zω = Zω = i ω + + i ω 2 2 ω 2, Im Zω = ω +..3 educed impedance 2 2 2 ω 2 + Z u = Zu = i T u + + i u, u = ω, T = e Z u = u 2 +, Im Z u = u T u 2 + educed characteristic angular frequency u c = with: T < : e Zu c = /2, Im Zu c = T /2 5 2.

6 HAPTE. IUITS MADE OF, AND u Im Z= = T T, e Zu Im Z= = T. reduced angular frequency at the apex : u a = 2T + 8T + 2 T with: e Zu a = 4 8T + + Im Zu a = T 8T + 3 2T + 8T + 2 8T + u c u a u Im Z.5.5 Figure.2: Nyquist diagram of the reduced impedance for the +/ circuit Fig.., Eq..2 plotted for T =.2 left and T =.,.2,.5,,.5 right. The line thickness increases with increasing T. Dots: reduced characteristic angular frequency u c = right..2 ++/ circuit Fig..3. Figure.3: ircuit ++/.

.3. +/ IUIT 7.2. Impedance e Zω = +.2.2 educed impedance Zω = + i ω + + i ω 2 2 ω 2, Im Zω = ω + 2 2 2 ω 2 + Z u = Zu = ρ + i T u + + i u, u = ω, ρ =, T = e Z u = ρ + u 2 +, Im Z u = u educed characteristic angular frequency u c = with: T < : u Im Z= = T u 2 + e Zu c = ρ + /2, Im Zu c = T /2 T T, e Zu Im Z= = ρ + T. reduced angular frequency at the apex : u a = 2T + 8T + 2 T 2.2 with: e Zu a = ρ + 4 8T + + Im Zu a = T 8T + 3 2T + 8T + 2 8T +.3 +/ circuit.3. ircuit Fig..5..3.2 Impedance Zω = i ω + i ω + i ω e Zω = 2 ω 2 2 ω 2, Im Zω = 2 ω + 2 2 ω 2 + 2 ω

8 HAPTE. IUITS MADE OF, AND u c u a u Im Z Ρ Ρ 2 Ρ Ρ Ρ 2 Ρ Figure.4: Nyquist diagram of the reduced impedance for the ++/ circuit Fig.., Eq..2 plotted ρ =.2 and T =.2 left and T =.,.2,.5,,.5 right. The line thickness increases with increasing T. Dots: reduced characteristic angular frequency u c = right. Figure.5: ircuit +/..3.3 educed impedance Z u = Zu = i T u + i u + i u, u = ω, T = 2 e Z u = u2 u 2 +, Im Z u = u u 2 + T u educed characteristic angular frequency u c = with:.3 T > : u Im Z= = e Zu c = /2, Im Zu c = /2 /T T, e Zu Im Z= = T. reduced angular frequency at the apex : u a = 2 T + T + 8 T + 2 T

.4. /+/ IUIT 9 u Im Z u c ua.5.5 Figure.6: Nyquist diagram of the reduced impedance for the +/ circuit Fig..5, Eq..3 plotted for T = 5 left and T =.66,, 2, 5, right. The line thickness increases with increasing T. Dots: reduced characteristic angular frequency u c = right. with: Im Zu a = T e Zu a = + 4 T T +8 T 2T + T + 8 3 T + T + T + 8 T +8 T +2 T.4 /+/ circuit Fig..7. 2 2 Figure.7: ircuit /+/..4. Impedance Zω = i ω 2 + i ω + 2 2 i ω + = τ i ω + τ i ω + 2 + τ 2 i ω, τ =, τ 2 = 2 2.4

HAPTE. IUITS MADE OF, AND e Zω = τ 2 + ω2 + lim Zω = 2, ω.4.2 educed impedance Z u = Zω 2 e Z u = = ρ 2 τ2 2, Im Zω = ω2 + lim ω Zω = τ ω τ 2 ω2 + i u + i u + + T i u, u = ω τ, ρ =, T = τ 2 2 τ u2 ρ u 2 + + T 2 u 2 +, Im Z u =.4.3 Nyquist impedance diagrams T >, Fig..8. uρ u 2 + T u T 2 u 2 + 2τ 2 ω τ 2 2 ω2 + T Ρ T Ρ Ρ Ρ Figure.8: T >. Nyquist diagrams of the impedance for the /+/ circuit Fig..7, Eq..4 plotted for : top : ρ < ρ =.5, bottom : ρ > ρ =.5. T T = 2 left and increasing values of T right. The line thickness increases with increasing T. T <, Fig..9. T =, Fig... T = Z u = + ρ i u + i u

.4. /+/ IUIT T Ρ T Ρ Ρ Ρ Figure.9: T <. Nyquist diagrams of the impedance for the /+/ circuit Fig..7, Eq..4 plotted for : top : ρ < ρ =.5, bottom : ρ > ρ =.5. T T = 2 left and increasing values of T right. The line thickness increases with increasing T. Ρ Ρ Ρ Figure.: T =. Nyquist diagrams of the impedance for the /+/ circuit. eft: ρ <, middle: ρ =, right: ρ >..4.4 Inductive and capacitive Nyquist diagrams T > and T < ρ < T or T < and T < ρ < T T ρ u Im= =, e Im = = + ρ T T ρ + T Fig...

2 HAPTE. IUITS MADE OF, AND T T u Im u Im Ρ Ρ T Ρ Ρ T Figure.: Inductive and capacitive Nyquist diagrams. eft : T > and T < ρ < T, right : T < and T < ρ < T..4.5 ρ = / 2 = Fig..2. Z u = i u + i u + + T i u T T u u 2 T 2 T Figure.2: ρ = / 2 =. Nyquist diagram: full circle. eft: T >, right T <..4.6 Array of Nyquist impedance diagrams Fig..3..5 parallel circuit.5. ircuit Fig..4.

.5. PAAE IUIT 3 logρ log T Figure.3: Array of Nyquist impedance diagrams for the /+/ circuit. T = ρ = Z u =, u. Figure.4: ircuit //..5.2 Admittance Y ω = i ω + i ω + i ω + + i ω2 = i ω e Y ω =, Im Y ω = ω + ω e Y ω is constant, lim ω Im Y ω =, lim ω Im Y ω = Nyquist diagram of Y ω is a vertical straight line.

4 HAPTE. IUITS MADE OF, AND.5.3 educed admittance i u + i u Y u = Y u = + Λ, u = ω, Λ = e Y u =, Im Y u = Λ u u u c3 Im Y u c2 u c e Y Figure.5: Nyquist diagram of the // circuit reduced admittance. u c = + + 4 Λ 2 /2 Λ, u c2 =, u c3 = + + 4 Λ 2 /2 Λ..5.4 Impedance Zω = Y ω = i ω + i ω + 2 ω 2 e Zω = 2 ω 2 + ω 2 = i ω i ω + + i ω 2 2 ω ω 2 2, Im Zω = 2 ω 2 + 2 + ω 2 2 The Nyquist diagram of Y ω is a vertical straight line the Nyquist diagram of Zω is a full circle..5.5 educed impedance Z u = Zu = i u Λ + i u + Λ i u 2, u = ω, Λ = e Z u = u 2 u 2 + Λ 2 u 2 2, Im Λ u u 2 Z u = u 2 + Λ 2 u 2 2.6 serie circuit.6. ircuit Fig..7.

.6. SEIE IUIT 5.5 u c3 u u c2.5 u c Figure.6: Nyquist diagram of the // circuit reduced impedance. u c = + + 4 Λ 2 /2 Λ, u c2 = u r =, u c3 = + + 4 Λ 2 /2 Λ u c3 u c = Λ. Figure.7: ircuit ++..6.2 Impedance Zω = + i ω + + i ω + i ω2 = i ω i ω e Zω =, Im Zω = ω + ω e Zω is constant, lim ω Im Zω =, lim ω Im Zω = Nyquist diagram of Zω is a vertical straight line..6.3 educed impedance Z u = Zu = + Λ i u + i u e Z u =, Im Z u = Λ, u = ω, Λ = u u.6.4 Admittance Y ω = Zω = i ω + i ω + i ω 2 2 ω 2 ω ω 2 e Y ω = 2 2 ω 2 + + ω 2 2, Im Y ω = + ω 2 2 + 2 + ω 2 The Nyquist diagram of Zω is a vertical straight line the Nyquist diagram of Y ω is a full circle.

6 HAPTE. IUITS MADE OF, AND u c u c2 u c3 Figure.8: Nyquist diagram of the ++ circuit reduced impedance. u c = Λ + 4 + Λ 2 /2, u c2 =, u c3 = Λ + 4 + Λ 2 /2..6.5 educed admittance Y Λ i u u = Y u = + Λ i u + i u 2, u = ω, Λ = e Y u = u 2 Λ 2 + u 4 + u 2 2 + Λ 2, Im Y u Λ u 2 u = + u 4 + u 2 2 + Λ 2.5 u c Im Y u u c2.5 u c3 e Y Figure.9: Nyquist diagram of the ++ circuit reduced admittance. u c = Λ + 4 + Λ 2 /2, u c2 = u r =, u c3 = Λ + 4 + Λ 2 /2, u c3 u c = Λ..7 + parallel circuit.7. ircuit Fig..2..7.2 Impedance Zω = + i ω i ω + + i ω 2.5

.8. TANSFOMATION FOMUAE / + / 2 + PAAE 7 Figure.2: + parallel circuit. Z u = Zu = ρ + i u Λ + i u + Λ i u 2, ρ =, u = ω, Λ =.5 u c3 u u c2.5 u c Ρ Ρ Figure.2: Nyquist reduced impedance diagram of the + parallel circuit. u c = + + 4 Λ 2 /2 Λ, u c2 = u r =, u c3 = + + 4 Λ 2 /2 Λ u c3 u c = Λ..8 Transformation formulae / + / 2 r + parallel r + r 2 /l 2 /c 2 parallel circuit is not-distinguishable from / + / 2 circuit for 2 2 / 2 > Fig..22. 2 p 2 + 2p + Zp =.6 2 p 2 + p 2 2+ + r c 2 l 2 p 2 + l2pr+r2 r r 2 + zp = c 2 l 2 p 2 + l2p.7 r 2 + 2 c 2 = 2 2, l 2 = 2, 2 2 r 2 = 2 2 +.8

8 HAPTE. IUITS MADE OF, AND c 2 2 r l 2 r 2 Figure.22: / + / 2 / + 2 / 2 circuit with = 2 and r + r 2 /l 2 /c 2 parallel circuit.

hapter 2 Quartz resonator 2. BVD equivalent circuit Fig. 2., [3, 5, 6, ]. Figure 2.: BVD Butterworth-van Dyke-equivalent circuit of a quartz resonator. 2.2 Admittance Y ω = + i ω + + i ω = i ω i ω 2 ω 2 e Y ω = 2 2 ω 2 + + ω 2 2, Im Y ω = ω + i ω i ω + + ω 2 + ω 2 2 + 2 + ω 2 + 2.3 educed admittance Y Λ i u u = Y u = + Λ i u + i u 2 + γ i u, u = ω, Λ =, γ = e Y u 2 Λ 2 u = + u 4 + u 2 2 + Λ 2, Im Y u Λ u 2 u = u γ + + u 4 + u 2 2 + Λ 2 9

2 HAPTE 2. QUATZ ESONATO B u Im Y * u m u p u s u r u 2 e Y * Figure 2.2: Definitions for u, u m, u r, u s, u 2 and u p. A B Im Y * Im Y * e Y * e Y * D Im Y * Im Y * e Y * e Y * Figure 2.3: hange of admittance diagram with γ. Λ =, γ = 2 A, 2 B, /3, /2 D. 2.3. haracteristic frequencies Maximum of the real part of Y for: u r = e Y u r =, Im Y u r = γ

2.3. EDUED ADMITTANE 2 Zero-phase reduced angular frequencies: u s and u p defined for γ < /2 + Λ :. γ < 2 + Λ Λ γ 2 + Λ u s = 2 Λ 2 γ Λ + γ 2 4 + Λ 2, 2 γ e Y u s = + γλ + γλ 2 γλ + 2 2 2 γ + Λ γ Λ u p = 2 + Λ 2 γ Λ + γ 2 4 + Λ 2, 2 γ e Y u p = + γλ γλ 2 γλ + 2 2 2. γ = 2 + Λ u s = u p = γλ2 + 2γ + Λ e Y u s = e Y u p = + γλ Fig. 2.3. 2 3. γ > 2 + Λ no zero-phase reduced angular frequency Fig. 2.3D. eal quartz : 2 F, 4 F, Ω, 2 H Λ 4 and γ 2 [4, 2]. 2γ

22 HAPTE 2. QUATZ ESONATO

Bibliography [] Arnau, A., Sogorb, T., and Jiménez, Y. A continuous motional series resonant frequency monitoring circuit and a new method of determining Butterworth-Van Dyke parameters of a quartz crystal microbalance in fluid media. ev. Sci. Instrum. 7 2, 2563 257. [2] Bizet, K., Gabrielli,., Perrot, H., and Terrasse, J. Validation of antibody-based recognition by piezoelectric transducers through electroacoustic admittance analysis. Biosensors & Bioelectronics 3 998, 259 269. [3] Butterworth, S. Proc. Phys. Soc. ondon 27 95, 4. [4] Buttry, D. A., and Ward, M. D. Measurement of interfacial processes at electrode surfaces with the electrochemical quartz crystal microbalance. hem. ev. 92 992, 355 379. [5] VanDyke, K. S. Phys. ev 25 925, 895. [6] VanDyke, K. S. In Proceeding of the 928 IEEE International Frequency ontrol Symposium New York, 928, vol. 6, IEEE, p. 742. 23