Optimization under uncertainty: robust optimization

Σχετικά έγγραφα

Statistics 104: Quantitative Methods for Economics Formula and Theorem Review

Z L L L N b d g 5 * " # $ % $ ' $ % % % ) * + *, - %. / / + 3 / / / / + * 4 / / 1 " 5 % / 6, 7 # * $ 8 2. / / % 1 9 ; < ; = ; ; >? 8 3 " #

Other Test Constructions: Likelihood Ratio & Bayes Tests


Fractional Colorings and Zykov Products of graphs

Estimation for ARMA Processes with Stable Noise. Matt Calder & Richard A. Davis Colorado State University

Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science.

5. Choice under Uncertainty

Ó³ Ÿ , º 2(214).. 171Ä176. Š Œ œ ƒˆˆ ˆ ˆŠ

Solutions to Exercise Sheet 5

New bounds for spherical two-distance sets and equiangular lines

Solution Series 9. i=1 x i and i=1 x i.

Probability and Random Processes (Part II)

Statistical Inference I Locally most powerful tests

Probabilistic Approach to Robust Optimization

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

Approximation of distance between locations on earth given by latitude and longitude

Numerical Analysis FMN011

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

2 Composition. Invertible Mappings

Μηχανική Μάθηση Hypothesis Testing

Matrices and Determinants

5.4 The Poisson Distribution.

ST5224: Advanced Statistical Theory II

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Homework 8 Model Solution Section

4.6 Autoregressive Moving Average Model ARMA(1,1)

The ε-pseudospectrum of a Matrix

Lecture 34 Bootstrap confidence intervals

LAD Estimation for Time Series Models With Finite and Infinite Variance

An Inventory of Continuous Distributions

Uniform Convergence of Fourier Series Michael Taylor

Mean-Variance Analysis

The Simply Typed Lambda Calculus

EE512: Error Control Coding

Example Sheet 3 Solutions

Written Examination. Antennas and Propagation (AA ) April 26, 2017.

Reminders: linear functions

Commutative Monoids in Intuitionistic Fuzzy Sets

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 8η: Producer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

Introduction to the ML Estimation of ARMA processes

Module 5. February 14, h 0min

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

An Introduction to Signal Detection and Estimation - Second Edition Chapter II: Selected Solutions

P AND P. P : actual probability. P : risk neutral probability. Realtionship: mutual absolute continuity P P. For example:

Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequality for metrics: Let (X, d) be a metric space and let x, y, z X.

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ

Nondifferentiable Convex Functions

6.3 Forecasting ARMA processes

Homework 3 Solutions

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

Problem Set 3: Solutions

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

Ó³ Ÿ , º 2(131).. 105Ä ƒ. ± Ï,.. ÊÉ ±μ,.. Šμ ² ±μ,.. Œ Ì ²μ. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê

INTERVAL ARITHMETIC APPLIED TO STRUCTURAL DESIGN OF UNCERTAIN MECHANICAL SYSTEMS

Sequent Calculi for the Modal µ-calculus over S5. Luca Alberucci, University of Berne. Logic Colloquium Berne, July 4th 2008

Feasible Regions Defined by Stability Constraints Based on the Argument Principle

➂ 6 P 3 ➀ 94 q ❸ ❸ q ❼ q ❿ P ❿ ➅ ➅ 3 ➁ ➅ 3 ➅ ❾ ❶ P 4 ➀ q ❺ q ❸ ❸ ➄ ❾➃ ❼ 2 ❿ ❹ 5➒ 3 ➀ 96 q ➀ 3 2 ❾ 2 ❼ ❸ ➄3 q ❸ ➆ q s 3 ➀ 94 q ➂ P ❺ 10 5 ➊ ➋➃ ❸ ❾ 3➃ ❼

( ) 2 and compare to M.

Š Ÿ Š Ÿ Ÿ ˆ Œ ˆŠ -280

Parts Manual. Trio Mobile Surgery Platform. Model 1033

Section 8.3 Trigonometric Equations

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

EE 570: Location and Navigation

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

( y) Partial Differential Equations

Areas and Lengths in Polar Coordinates

APPENDICES APPENDIX A. STATISTICAL TABLES AND CHARTS 651 APPENDIX B. BIBLIOGRAPHY 677 APPENDIX C. ANSWERS TO SELECTED EXERCISES 679

Areas and Lengths in Polar Coordinates

w o = R 1 p. (1) R = p =. = 1

Monetary Policy Design in the Basic New Keynesian Model

Lecture 21: Scattering and FGR


ACTA MATHEMATICAE APPLICATAE SINICA Nov., ( µ ) ( (

The Probabilistic Method - Probabilistic Techniques. Lecture 7: The Janson Inequality

M p f(p, q) = (p + q) O(1)

Concrete Mathematics Exercises from 30 September 2016

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

Takeaki Yamazaki (Toyo Univ.) 山崎丈明 ( 東洋大学 ) Oct. 24, RIMS

Inverse trigonometric functions & General Solution of Trigonometric Equations

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

TMA4115 Matematikk 3

Theorem 8 Let φ be the most powerful size α test of H

2?nom. Bacc. 2 nom. acc. S <u. >nom. 7acc. acc >nom < <

Chapter 5, 6 Multiple Random Variables ENCS Probability and Stochastic Processes

!"!# ""$ %%"" %$" &" %" "!'! " #$!

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p)

Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών

Quadratic Expressions

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Discontinuous Hermite Collocation and Diagonally Implicit RK3 for a Brain Tumour Invasion Model

Dong Liu State Key Laboratory of Particle Detection and Electronics University of Science and Technology of China

P ƒ.. Š ³ÒÏ,.. Š ³ÒÏ,.. ± ˆ ŒˆŠˆ Š ˆŠ

Transcript:

CES 735/8 Imre Pólik Outline Motivation Theoretical background Applications Optimization under uncertainty: robust optimization Imre Pólik, PhD McMaster University School of Computational Engineering and Science March 6, 2008

CES 735/8 Imre Pólik Outline Outline Motivation Theoretical background 1 Motivation The role of uncertainty Applications 2 Theoretical background Robust linear optimization Robust least squares optimization 3 Applications Truss topology design Antenna array design

Outline CES 735/8 Imre Pólik Motivation The role of uncertainty Theoretical background Applications Why uncertainty? Design on computer, measure with a ruler, cut with an axe! Uncertain data measurement errors noise unpredictability vibration Implementation errors technological limits imperfect materials

CES 735/8 Imre Pólik Robust linear optimization Outline Motivation Theoretical background Robust linear optimization Robust least squares optimization Applications

Robust linear programming the parameters in optimization problems are often uncertain, e.g., in an LP there can be uncertainty in c, a i, b i minimize c T x subject to a T i x b i, i = 1,..., m, two common approaches to handling uncertainty (in a i, for simplicity) deterministic model: constraints must hold for all a i E i minimize c T x subject to a T i x b i for all a i E i, i = 1,..., m, stochastic model: a i is random variable; constraints must hold with probability η minimize c T x subject to prob(a T i x b i) η, i = 1,..., m Convex optimization problems 4 26

deterministic approach via SOCP choose an ellipsoid as E i : E i = {ā i P i u u 2 1} (ā i R n, P i R n n ) center is ā i, semi-axes determined by singular values/vectors of P i robust LP minimize c T x subject to a T i x b i a i E i, i = 1,..., m is equivalent to the SOCP minimize c T x subject to ā T i x P i T x 2 b i, i = 1,..., m (follows from sup u 2 1(ā i P i u) T x = ā T i x P i T x 2) Convex optimization problems 4 27

stochastic approach via SOCP assume a i is Gaussian with mean ā i, covariance Σ i (a i N (ā i, Σ i )) a T i x is Gaussian r.v. with mean āt i x, variance xt Σ i x; hence ( ) prob(a T b i ā T i i x b i ) = Φ x Σ 1/2 i x 2 where Φ(x) = (1/ 2π) x e t2 /2 dt is CDF of N (0, 1) robust LP minimize c T x subject to prob(a T i x b i) η, i = 1,..., m, with η 1/2, is equivalent to the SOCP minimize c T x subject to ā T i x Φ 1 (η) Σ 1/2 i x 2 b i, i = 1,..., m Convex optimization problems 4 28

CES 735/8 Imre Pólik Robust least squares optimization Outline Motivation Theoretical background Robust linear optimization Robust least squares optimization Applications

minimize Ax b with uncertain A Robust approximation two approaches: PSfrag replacements stochastic: assume A is random, minimize E Ax b worst-case: set A of possible values of A, minimize sup A A Ax b tractable only in special cases (certain norms, distributions, sets A) example: A(u) = A 0 ua 1 x nom minimizes A 0 x b 2 2 12 10 8 x nom x stoch minimizes E A(u)x b 2 2 with u uniform on [ 1, 1] r(u) 6 4 x stoch x wc x wc minimizes sup 1 u 1 A(u)x b 2 2 2 figure shows r(u) = A(u)x b 2 0 2 1 0 1 2 u Approximation and fitting 6 17

stochastic robust LS with A = Ā U, U random, E U = 0, E U T U = P minimize E (Ā U)x b 2 2 explicit expression for objective: E Ax b 2 2 = E Āx b Ux 2 2 = Āx b 2 2 E x T U T Ux = Āx b 2 2 x T P x hence, robust LS problem is equivalent to LS problem minimize Āx b 2 2 P 1/2 x 2 2 for P = δi, get Tikhonov regularized problem minimize Āx b 2 2 δ x 2 2 Approximation and fitting 6 18

worst-case robust LS with A = {Ā u 1A 1 u p A p u 2 1} minimize sup A A Ax b 2 2 = sup u 2 1 P (x)u q(x) 2 2 where P (x) = [ A 1 x A 2 x A p x ], q(x) = Āx b from page 5 14, strong duality holds between the following problems maximize P u q 2 2 subject to u 2 2 1 minimize subject to t λ I P q P T λi 0 q T 0 t 0 hence, robust LS problem is equivalent to SDP minimize subject to t λ I P (x) q(x) P (x) T λi 0 q(x) T 0 t 0 Approximation and fitting 6 19

PSfrag replacements example: histogram of residuals r(u) = (A 0 u 1 A 1 u 2 A 2 )x b 2 with u uniformly distributed on unit disk, for three values of x 0.25 0.2 x rls frequency 0.15 0.1 0.05 x tik x ls 0 0 1 2 3 4 5 r(u) x ls minimizes A 0 x b 2 x tik minimizes A 0 x b 2 2 x 2 2 (Tikhonov solution) x wc minimizes sup u 2 1 A 0 x b 2 2 x 2 2 Approximation and fitting 6 20

CES 735/8 Imre Pólik Truss topology design Outline Motivation Theoretical background Applications Truss topology design Antenna array design

? * } ('!4 1 1 S $ 1 1 /P $ / / 7P / ² 1 1 1 Ÿ $ ² 1 QP R 1 1 1 P / P 1 P $O S S P --! " $# *) * -" *),$# $ "! ' $ ( (!4 $ $# $H ' $(! $# $$!( " % $$$! $# ' 5 (! ( $(! $# $,$$! š $ "! "! 5 ( $ $

!( )!" $ 5 "0$($! "! * " / š 0 $ '"! # ) $ 0 $ '"!)* ) % ($ $# $# ) % ( $ - $! # (!( " $* "! /)& $#!( $" " ) ' "!4 - $#! A B h: db > h y $# - $!( $" " $#!( " )! ' "- )! ' $# ($ $# * & $ š - $!( $" " $# )!! "! $ ' $ )! # $ "- $ $ ' $(! # )! 5 "! ) ( ',., 2 D " $ " $* 5 œ $# " - ( 5 -,$# ( -" )* $ * $# )!$ $# " $* $!( /!( $" " )*! $% $'! "! ' / $' (0 &!( $" " $# )!

± 5 % ($,$# - $%!( $" " %,$#( " $ " $* 5 % $# " $* $!(!( $'& " ) ) $ $$! ("! $ " "! )* -" $# $$!"! )* -" )* $ 4 (' 5 #! $( 5 4 ( -$ 1$# "- 25 ³ / $( ' $(! $$! 5 % ($,$# - $%!( $" " %,$#( " $ " $* 5 % 5 $# " $* $!(!( $'& " $($# $$! ³ ) ) )! "(! "0$($ 0 $ $# "" " š & ' $(! 0 $!,! )"' 5 $* ',-",.! $% $# $ "!)*"'& " $

% % H A G $ W N ' F % ) 5 % ($,$# - $%!( $" " %,$#( " $ " $* 5 % ) ) 5 $# " $* $!(!( $'& " $($# $$! ³ ) ) ). - 5 ' $ $ 5 -$! # ( - ' '! -$!,# 5 ( "" " & ( $#1 " Y a ( d 4 Y 8>`*f]d [a!za@b5y %l^bf]g^5fb5y a!di'z ]b5ea- ghy[z e*\a-a!\ Y[d ;e*e d 8>`a a!g`y[z]ighyo\y!^y [b5ef]z]\ ^bf]g^5fb5a-, b5a " 8>`acd]Y[gha#> \ e;eoib^5fy \]idy[gha- a!z^5dck " 2 df=;da.^ H I > e;0$iza- Y!^5ighY*' Y[\4 iddi'a7\]id 9 Y[gha- a!z^5dck= a-e K " 2 ghe*a!g^5iez Q FG mhmhm G L FG mhmhm G e; @ Y!^bigha!d,\a.- Z]iZ=1^5`aA(a!Za@bM Y!^bï 54, N Q S R W QX X Q S Q Q G S SPQ R N % QX a!iz=1^5`a1\a!di'zmo Y biy a!d Z 6 R > Y I Q S R = K 6 Q S R T X G D Q S Q R m " 2 ^ 4 Y d 4 i g 4 Y - Y i ^ R Q S R = Q S "2 a:5*^a@bzy1e[y[\ id b5a6]b5a!da!z^a!\)<7ymoa!g^e[b ^5`a1gheiY[Z]gha e; ghez]d ^bf]g^5iez Sb ^,6 id 9;:5<>=@?A B2C G `]i*a ^5`a Y!^a@biY b5a!defbghacid QX <;ighy^5i* Y %l^bf]g^5fb5y a!di'zm]b5ea- jlk idc i'oa!z 2Y [b5ef]z]\ ^bf]g^5fb5ap Y[Z7f=4 a@b ef]z]\ ez ^e ^Y1 Y!^a@biY8b5a!defbgha YeZ= ^5` ef]z]\]d ez&^5`a1b5a!defbgha!d e;ua-a- a!z^5d;y[z]\ da.^! e;e[y[\]iz=7dgha!zy bied Z]\ ghez]d ^bf]g^5iez ^5`1^5`a dv Y*a!d eddi'a">e[bd ^ghy[da# Sb ^ >6!;gheiY[Z]gha 9;:5<>=@?%$ B2C 9;:5<>=@?A R& <('*). Q S Q,- G Q S Q R. Q G FG mhmhm G L G N jlk W Q S Q R QX jlk

N A G $ W Q " 2 ^ Q S R = Q S <;ighy %l^bf]g^5fb5y a!di'zm]b5ea- id 9;:5<>=@?%$ B2C 9;:5<>=@?A R& <('*). Q S Q, - G Q S Q R. Q G FG mhmhm G L G N jlk W Q S Q R QX jlk `a@b5a " 9;:5<>=@? A Q S R B2C = D G 6 Q S R " Q S R QX X Q S Q Q "3H R \ "S Q R % FG mhmhm G L*Y b5a1\a!di'zmo Y biy a!d " I \ id>^5`a1da.^ e;ee[y[\]iz= dgha!zy bied "&.b5e Ze ez >acy[ddf4 a ^5`Y!^ 2 4 H dy!^5id -;a!d^5`a %=Y!^a@b ghez]\]i ^5ieZ7! f4 ^5ï 9 e[y[\y[z]\ e;f]d ^&%l^bf]g^5fb5y a!di'z " Z ^5`a f]dfyda.^^5iz=d e;7^5`a % ]b5ea- 6 G mhmhm G 6 idy dv Y*O- Z]i ^a da.^e;a(ce[y[\]d_e; iz^a@b5a!d ^, (C1f4 ^5ï 9 e[y[\&\a!di'z4, 4 2 Z Y ^a@bzy!^5i'oaid ^e f]da Y (C Y[ddi'Oa-,&a-*i';dei\Y da.^ e;e[y[\]dc 6 F R#! \ " 8>`a 1f4 ^5ï 9 e[y[\7y 4]b5e[Y[g`7Y[g`]ia6Oa!d,^5`a a!d ^ eddi'a b5a!df4 ^5dlY[d ;Y b>y[d ^5`a dgha!zy bie#e[y[\]d Y b5a ghez]gha@bza!\ ;f*^ ghy[zjia-\_f]z]d ^Y acghez]d ^bf]g^5iez `]ig`&ghy[zj a1ghbf]d`a!\ < (hdv Y* e*g.ghy[diezy e[y[\4, d ^ i ^ e W - Q 4 -. Q. Q. Q,4 8>`aA[b5ef]Z]\ ^bf]g^5fb5a \ela!d Ze Y[\4 bi'i\ e*\= ^5ieZ]dC Q Q Y[Z]\

/E5Ya ddf4 a!>acy b5a1\a!di'z]iz=1yy[zy ^bf]dd _Y ghy[z^5i*a6oa@b6kl^5`a,ze*\y ^bf]g^5fb5a Y[Z]\^5`a ez4' e[y[\ e;uiz^a@b5a!d ^O6 b5acy[d d`e Z&eZ_^5`a#;ig^5fb5a [b5ef]z]\d ^bf]g^5fb5acy[z]\_^5`a#e[y[\&e;uiz^a@b5a!d ^ 8>`a_e^5i* Y>diZ=a:9 e[y[\ \a!di'z ia-\]d Y Z]igha^bf]ddcY[d ;e*e dc ^5i* Y ghy[z^5i*a6oa@b diz=a:9 e[y[\_\a!di'z 4 ^5`a1gheiY[Z]ghacid ^5i* Y ghy[z^5i*a6oa@b diz=a:9 e[y[\_\a!di'z 4 ^5`a1gheiY[Z]ghacid "^c^5fbz]d ef*^1^5`y!^ `a!z ^5`a (Ce[Y[\ e; iz^a@b5a!d ^,76 id b5a6y[gha!\ i ^5` ^5`a7dV Y*16 - m - - 16 4 ( ]Y[\4' Y[gha!\4,1e*g.ghY[dieZY7e[Y[\&6 l^5`a gheiy[z]gha5f4;d ;b5e ^e 4 " Z e[b\a@b ^eci*]b5e-oa,^5`aod ^Y ;i*i ^ ce;^5`a \a!di'z a.^ f]d b5a6y[gha ^5`a&diZ=a e[y[\ e;,iz^a@b5a!d ^ 6<7^5`aa-*i';dei\ ghez^y[iz]iz= ^5`]idUe[Y[\Y[Z]\Y* e[y[\]d61e; Y Z]i ^5f]\a86 Ze ^ a:5]gha@a!\]iz= e;8^5`a Y Z]i ^5f]\ace; 6 6 6 6 6 mhmhm! 6! F G `a@b5a,6 G mhmhm G 6! Y b5a>e;^5`aze[b - m F 86" Y[Z]\16 G 6 G mhmhm G 6! idy[z&e[b^5`e[ezy ]Y[did,iZM>!

" Y[ddiZ=&;b5e ^5`aOdiZ=a:9 e[y[\ ^e ^5`a b5e;f]d ^ \a!di'z >a e*\]i'; ^5`acb5a!df4 ^,Y[d ;e*e dc ^5i* Y ghy[z^5i*a6oa@b diz=a:9 e[y[\_\a!di'z 4 ( e;f]d ^, ghy[z^5i*a6oa@b eiy[z]gha!d a!di'z %iz=a:9 e[y[\ e;f]d ^ eiy[z]ghä Sb ^,6 < gheiy[z]ghä Sb ^ e[y[\]d 64 86 - m F 86"

CES 735/8 Imre Pólik Antenna array design Outline Motivation Theoretical background Applications Truss topology design Antenna array design

I I ˆ D LP R P 1 P $ R 1-5 P P5 5 ŸP 1 6 F I -[ 6 F I -[ F F I 1. % Œ I,1F -[ F F I 1 % Œ I,1F -[!! Œ! DO / 1L: 6 F I -[ A- N : % Œ 1F -[ F I6F IA- :F IoD> 1 F I P7 žp R 3 F I 6 F I 3. «P 1 2P R P D % - P % 0. P R Ia9 * } D! * $O -ŸP F$#*I / «1 P /.š % «P "AF$#*Ia9.>?>?>?9 F$#*I % 5 QP 1 $.š 0 C J. 1 1 C ˆ) 0 C C F$#*I - $7 -²P F$#*IaR R 4 $,' Q P C F$#*I - $ 0 C Ÿ QP / QP 1P 1QP / /š P P= 5 QP P D P DO R / 5 P P 1 "' D P - 1 D. DO - AO P P QP P $ O! F I % C ˆ) 0 C C F I./ 1 D. DO 4 R

y * k! N - ² P - QP / P «.. š! * P / AO P QP5P QP P 1 QP Q$4! y F I6 ƒ < 3 F Œ [ F IF /I!! 0.25 0.2 0.15 0.1 0.05 0 0.05 P 0.1 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 S / 1 QP J 8-9 ' Œ 6 R

! 3 3 3 3 % 3 *. 5 -LP AO P 1 QP PQš 7 / 1.2 *.Q / P - - R! 1.2 1 1 0.8 0.8 0.6 0.6 0.4 0.4 0.2 0.2 0 0 0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 -²P P -$# QP (' ž 4 O QP! C F IQ6 % F I %& / 3 / C )-,DC C F I E J F mf IkF /I!"! C 6 8->?<ZG94GŸ6«8-9.<9.>?>?>?9k<8 «6 3 ) 0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 -²P P. P QP k P P P / $ QP P P $!!!!! "!

e } } N! DO P Q L - 1! * $O QP -žp! 1.2 1 % F I % C ),DC C F I 9 J 0.25 1.2 0.8 0.2 1 0.15 0.8 0.6 0.1 0.05 0.6 0.4 0.4 0 0.05 0.2 0 0.2 0.1 0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 S C F$#*I - F$#*I 0 ² / ² - P LP! F I % C ),DC C F I! ž P 8-9 % F I % C ),DC C F I 9 J 0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 - P. P QP k D# P P P F I 6=<B& 6T8->8 / ; $ž, C ' G 6 <9.>?>?>?9.<8 ' 1 1 QP DO R ),' D P QPT P«O R Ÿ $ 1 P 0 R QP.!,DC 6=FZ< 1 ªHC I, C 1ªHC Z % 8->88-<9m8->88-<$ C )

I } $.Q R.š žp! 1.2 1 0.8 0.6 0.4 0.2 0 0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1S QP /š 1 šp 1 P P. P"! -²P 8 6 4 2 0 2 4 6 8 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 ² -žp Z,' QP 5 Z P P 8->8 -R $# 1 P š. T 1 Ÿ L Z P R - P } H % F I % C ),DC C F I 9 J, 1 1 8 4 4.š,DC FZ< 1 ªHC I,DC (' 7.. QP «7 Q ² žp P 8-> -9.<>88-< šq! Ž až 6 6 FZ< 1 ª m9.>?>?>?9.< 1 ª ªHC 8->88-<. O N ²P $ '/ QP T. 4 4 '. R DO 'N P 1$ Ž až QP O$O š % QP $ 7 1 QP QP QP QP ' 5 Z Q.$ 5 DO š«o D $ $$ R - P 5 ž 7. -. D R

8 3 ' ' ' C ' ' 1 C } P 5 ) CA,DC QP -,DC QP $. P"! 8,DC FZ< 1 ªHC I,DC ª C / QP QP P QP O! 1ª C 6T8-B 1ª C 3 6 C 3 > 7O Qš QP $. P, C '; T L QP P QP O! 6 &/' C ) C FZ< 1 ª C I, C 1 6 &/' C ) CA,DC 1 9 F % I 3 3 6 & C ' ) C 3 C 3, C 3 > -² 1 - - 1š QP $ DO 2 Ÿ % D9 / Q $ Z / DO R 5 š 1 ' š O 8 % R R ' % ' C ) CA,DC 1 % ' C ) C 3 C 3, C3 R R R } &/' C ) C FZ< 1 ªHC I,DC 1 8 1ªHC 6«8-B 1ªa3 C 6 3 & C ' ) CA,DC 1 % & C ' ) C 3 C 3, C3 8! - 1$. P«T P. - 6 6 1 Fm9.>?>?>?9 I < (' $ / DO.š $O / 1 - O. P - O 1 6 FZFZ< 1 ª ai m9.>?>?>?9.fz< 1 ª I I P R. 7ªHC 1 T / % ª 9 ª R ;0 ² P/ ª C QP5 T šo 1 - R )m $ % - A- % 3 DO š $ / Ÿ / <8 [ R Z @ ' P 3 o D $ $.š o

& } - $= P - P = -! % F I % C ), C C F I E J 4 }.Q LS $ Qš & 6 < Z! 1.2 S QP F I %& F I % C )-,DC C F I21 C )-,DC C F I % ª & C ), C 3 C3 F I ª & C ), C3 C3 F I % E J 1 0.8 0.6 _ª 6T8->88-< 0.4 0.2 0 0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 š P TP. 1 Z P R - 0 / O š R $O ŸP $ Qš Ÿ 1 $ 5 T ' P $ $! $# 5P.š 'N Z P 7 -žo R R R

e c 3 & 3 3 3 3 } P R ' P $ Qš 1$ P R.! $# P.š ' ² Z P Ÿ ž - O R R R } F I % F I %& % F I % C ),DC C F I "E J 4 C )-,DC C F I21 ª & C ), C 3 C3 F I C ), C C F I %ª & C ), C3 C3 F I % E J P $ Qš ² žp C F$#*I T 1$ 1$P P š R.Q ' ² PQš % / 7P P 1$ / š R )QP P ' Ÿ T / 4 PQP P, C T O! - o 1$ o o H o H o o o o / š / 4 2O ' QP DO $O - D P = TP $ - $ R ). ' QP QP P $#P '.² P - - / QP= QP R R 'Q R C ü *s e c H

/ 3? P 2 ž 5 LP 1,'! * $O QP -žp!? 0.25 1.2 0.2 1 120 90 1 60 120 90 0.87966 60 0.15 0.8 0.8 0.65974 0.6 0.1 0.6 150 30 150 0.43983 30 0.4 0.05 0.4 0.2 0.21991 0 0.2 180 0 180 0 0.05 0 S C 0.2 0.2 0.4 0.6 1.2 1.4 1.6 F$#*I 0.2 0.4 0.6-1 1.2 1.4 F$#*I 0.1 0 0.8 1.6 0 0.8 1 5 QPT $2,DC ' GŸ6=<9.>?>?>?9.<8 $# / $O / F I % C ),DC C F I F I 3! 3! 210 240 270 ² P $ $O # 300 330 1P -! - $-! LP $ 210 240 270 300 330 R

ˆ I? "! š $ $O 7 NP $ 1 PL R QP. k D! P R O ' QP $# P ' 1 Z! 150 210 120 240 90 180 0 0.4 0.2 1 0.8 0.6 60 300 30 330 150 210 120 240 90 151.6557 101.1038 50.5519 180 0 60 300 30 330? N0. -Q 7 ",ž% 3 F 1 <ki, - ' 6=<8 R 1.š, ( FZ< 1 ª ( I, ( 9 ª ( J % ª 9 ª - 1$ Ÿ '"² 7. QP«O / L. - 6 6 FZ< 1 ª m9.>?>?>?9.< 1 ª ª ( ª D9 / š R 270 270 7 P $ -!N - $-! P.š R

ˆ I ˆ I? ",ž% 3 J 6 6 FZ< 1 ª m9.>?>?>?9.< 1 ª ª ( ª - P. - P 6 6 FZ< 1 ª 9.>?>?>?9.< 1 ª (*) ˆ ª 3( ª 3 - / 1; ; QP QP ' QP 5 QP. 1š D P 5 5. P QP $O.Q / ²! ",ž% 3 E J >.Q ' O P $= LP $ 'Q / / / 4! 120 90 1 60 120 90 0.84322 60 0.8 0.63241 0.6 150 30 150 0.42161 30 0.4 0.2 0.2108 180 0 180 0 210 330 210 330 240 300 240 300 270 7 P $ -!N - $-! P.š R 270 $O 4 L R R