EFFECT OF HIGH MAGNETIC FIELD ON THE TRANSI- TION BEHAVIOR OF Cu RICH PARTICLES IN Cu 80%Pb HYPERMONOTECTIC ALLOY

Σχετικά έγγραφα
ACTA MATHEMATICAE APPLICATAE SINICA Nov., ( µ ) ( (



Z L L L N b d g 5 * " # $ % $ ' $ % % % ) * + *, - %. / / + 3 / / / / + * 4 / / 1 " 5 % / 6, 7 # * $ 8 2. / / % 1 9 ; < ; = ; ; >? 8 3 " #

STUDY ON CYCLIC OXIDATION RESISTANCE OF HIGH NIOBIUM CONTAINING TiAl BASE ALLOY WITH ERBIUM

EXPERIMENTAL RESEARCH ON MELTING SURFACE BEHAVIOR IN MOLD UNDER COMPOUND MAGNETIC FIELD

2011 Đ 3 Ñ ACTA METALLURGICA SINICA Mar pp

RELATIONSHIP BETWEEN MECHANICAL PROPERTIES AND LAMELLAR ORIENTATION OF PST CRYSTALS IN Ti 45Al 8Nb ALLOY

MICROSTRUCTURE EVOLUTION OF HYPEREUTEC- TOID STEELS DURING WARM DEFORMATION II. Cementite Spheroidization and Effects of Al

Ó³ Ÿ , º 2(131).. 105Ä ƒ. ± Ï,.. ÊÉ ±μ,.. Šμ ² ±μ,.. Œ Ì ²μ. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê

ƒ Š ˆ Šˆ Š Œˆ Šˆ Š ˆŒ PAMELA ˆ AMS-02

P É Ô Ô² 1,2,.. Ò± 1,.. ±μ 1,. ƒ. ±μ μ 1,.Š. ±μ μ 1, ˆ.. Ê Ò 1,.. Ê Ò 1 Œˆ ˆŸ. ² μ Ê ² μ Ì μ ÉÓ. É μ ±, Ì μé μ Ò É μ Ò ² μ Ö

ˆ Œ ˆŸ Š ˆˆ ƒ Šˆ ƒ ƒ ˆ Šˆ ˆ ˆ Œ ˆ

Ó³ Ÿ º 3[120] Particles and Nuclei, Letters No. 3[120]

P Ë ³μ,.. μ μ³μ²μ,.. ŠμÎ μ,.. μ μ,.. Š μ. ˆ œ ˆ Š Œˆ ŠˆŒ ƒ Œ Ÿ ˆŸ Š ˆ ˆ -ˆ ˆŠ

Œ.. ² μ,.. Œ ²μ, ƒ.. μ ±μ,. Ô Ô ², Œ.. ƒê Éμ, Œ.. Œ ² μ *

Θεωρία Συνόλων. Ενότητα: Διατακτικοί αριθμοί. Γιάννης Μοσχοβάκης. Τμήμα Μαθηματικών

P ƒ.. Š ³ÒÏ,.. Š ³ÒÏ,.. ± ˆ ŒˆŠˆ Š ˆŠ

P Ò±,. Ï ± ˆ ˆŒˆ Š ƒ ˆŸ. Œ ƒ Œ ˆˆ γ-š Œˆ ƒ ƒˆ 23 ŒÔ. ² μ Ê ². Í μ ²Ó Ò Í É Ö ÒÌ ² μ, É μí±, μ²óï

Ó³ Ÿ , º 7(205) Ä1486 ˆ ˆŠ ˆ ˆŠ Š ˆ. . ³ μ 1, ƒ. μ μë,. μ,. ŠÊ² ±μ,. Œ ² μ ± Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê

Ανώτερα Μαθηματικά ΙI

Ó³ Ÿ , º 2(214).. 171Ä176. Š Œ œ ƒˆˆ ˆ ˆŠ

NUMERICAL SIMULATION OF KEYHOLE SHAPE AND TRANSFORMATION FROM PARTIAL TO OPEN STATES IN PLASMA ARC WELDING

ƒê,.. ± É,.. Ëμ μ. ˆŸ Œ ƒ ˆ ƒ Ÿ ˆ ˆˆ ˆ ˆ ˆ Šˆ- ˆŒŒ ˆ ƒ Œ ƒ ˆ. ² μ Ê ² ² ±É Î É μ

Delta Inconel 718 δ» ¼

1-6 Ð Ï Te (mass%) 0% 0.3% 0.5% 0.8% 1.0% 2.0% 2 Î 1 6

P Œ ²μ, ƒ.. μ ±μ,. ˆ. ˆ μ, Œ.. ƒê Éμ,. ƒ. ²μ,.. ³ É. ˆŒ ˆ Š ƒ Œ ˆ Ÿ ˆŸ 238 Uˆ 237 U, Œ ƒ Ÿ Š ˆˆ 238 U(γ,n) 237 U.

P Œ ²μ, Œ.. ƒê Éμ,. ƒ. ²μ,.. μ. ˆ ˆŸ Œˆ ˆŸ ˆ Š Œ ˆŸ Ÿ - ˆ ˆ ŠˆŒˆ Œ Œˆ ˆ œ ˆ Œ ˆ ŒˆŠ Œ -25

P ƒ Ê Î 1, 2,.. ƒê μ 1, 3,. ÉÓ±μ 2, O.M.ˆ μ 1,.. Œ É μë μ 1,.. μ μ 1,. ƒ. Ê±μ ± 1,.. ³ 1,.. ±Ê Éμ 1. ˆ ˆ ˆ ˆ Š ˆ Si- ˆ SiC- Š Š ˆ

FRACTURE TOUGHNESS OF WELDED JOINTS OF X100 HIGH STRENGTH PIPELINE STEEL

Αλγόριθμοι Δικτύων και Πολυπλοκότητα Προσεγγιστικοί Αλγόριθμοι. Άρης Παγουρτζής

Š Ÿ Š Ÿ Ÿ ˆ Œ ˆŠ -280

.. ƒ²μ É, Œ. Œ Ï,. Š. μé ±μ,..,.. ³ μ μ, ƒ.. ÒÌ

M 2. T = 1 + κ 1. p = 1 + κ 1 ] κ. ρ = 1 + κ 1 ] 1. 2 κ + 1

P ² ± μ. œ Š ƒ Š Ÿƒ ˆŸ Œ œ Œ ƒˆ. μ²μ μ Œ Ê μ μ ±μ Ë Í μ É Í ±μ ³μ²μ (RUSGRAV-13), Œμ ±, Õ Ó 2008.

P ƒ. μ μ², Œ.. ˆ μ,.. μ ± Î Š Ÿ ˆ Œ ˆŸ ˆ Ÿ Š ˆ. ² μ Ê ² μ Ò É Ì ± Ô± ³ É.

ER-Tree (Extended R*-Tree)

Ó³ Ÿ , º 7(163).. 798Ä802 ˆ ˆŠ ˆ ˆŠ Š ˆ. .. Ëμ μ. Î ± É ÉÊÉ ³..., Œμ ±

ˆ Œ ˆ Ÿ ˆ ˆŸ Ÿ - ˆ ˆ Šˆ Š ˆŸˆ

P ˆŸ ˆ Œ Œ ˆ Šˆ. Š ˆ œ ˆ -2Œ

High order interpolation function for surface contact problem

Ó³ Ÿ , º 7(163).. 793Ä797 ˆ ˆŠ ˆ ˆŠ Š ˆ. .. Ëμ μ. Î ± É ÉÊÉ ³..., Œμ ±

CORROSION BEHAVIOR OF X70 PIPELINE STEEL IN SIMULATED KU ERLE SOIL SOLUTION WITH CO 2

Ó³ Ÿ , º 5(147).. 777Ä786. Œ ˆŠ ˆ ˆ Š ƒ Š ˆŒ. ˆ.. Š Öαμ,. ˆ. ÕÉÕ ±μ,.. ²Ö. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê

BEHAVIOUR AND MECHANISM OF STRAIN HARDEN- ING FOR DUAL PHASE STEEL DP1180 UNDER HIGH STRAIN RATE DEFORMATION

ˆ ˆ ˆ ˆˆ γ-ˆ ˆŸ ˆ Š Œ ˆ Œ œ Š ˆˆ

Blowup of regular solutions for radial relativistic Euler equations with damping

P Î,.. Š ²³Ò±μ, Œ.. Œ ϱ,.. ʳ ˆ ˆ ˆ ˆŸ ˆŠ Š Š ˆ Ÿ -200

Š ˆ œ Ÿ ˆ œ Œ Œ ƒ ˆ Œ Œ LEPTA

2 SFI

P ² Ì μ Š ˆ Œˆ Š Œ Œˆ. ² μ Ê ² Nuclear Instruments and Methods in Physics Research.

ˆŸ ˆ Œ ˆ ˆ œ Š Œ Œ ƒ ˆ ƒ Ÿ ˆ ŒˆŠ Š Œ ˆ ˆ Š Œ ˆŠ 235-V3

EFFECT OF HAFNIUM CONTENT ON MORPHOLOGY EVOLUTION OF γ PRECIPITATES IN P/M Ni BASED SUPERALLOY

Œˆ ˆ ƒ ˆŸ Ÿ ˆ ˆ Ÿ Œˆ ˆ

P ˆ.. Œμ ±μ ±μ,. ˆ. ˆ Ó±μ,.. Š ²μ

P ²ÒÏ,.. μ μ Š ˆ ˆ Ÿ ˆ

Ηυλοποίησ ητηςπαραπάνωκατηγορίαςβρίσ κεταισ τοναλγόριθμο º¾ºΗγραμμή

p din,j = p tot,j p stat = ρ 2 v2 j,

Studies on the Binding Mechanism of Several Antibiotics and Human Serum Albumin

AN INVESTIGATION ON THE CREEP BEHAVIOR OF PURE Mg

Œ.. ÉÊ Í± 1,.. Ö Õ²Ö 1,.. Šμ Î ±μ,.. Š Îʱ,.. ŠÊÎ ±,..Œμ Î,.. ³ μ,.. μ³êéμ,. A. Ìμ ± 1

ØSrÚCa Mg 12Zn 4Al 0.3MnÜ

ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ Ä616 Š ˆŒ CMS LHC

ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ Ä Œμ Ìμ. ±É- É Ê ± μ Ê É Ò Ê É É, ±É- É Ê, μ Ö

MICROSTRUCTURE STABILITY IN A FULLY LAMELLAR HIGH Nb TiAl ALLOY AFTER LONG TERM THERMAL CYCLING

Ó³ Ÿ , º 7(205) Ä1268 ˆ ˆŠ ˆ ˆŠ Š ˆ. ƒ ˆˆ μì Ê ³... Ê ±μ, Œμ ± Í μ ²Ó Ò ² μ É ²Ó ± Ö Ò Ê É É Œˆ ˆ, Œμ ± É ƒ ³³ - μ ª Œμ ±, Œμ ±

v w = v = pr w v = v cos(v,w) = v w

2011 Ð 5 ACTA MATHEMATICAE APPLICATAE SINICA May, ( MR(2000) ß Â 49J20; 47H10; 91A10

CONVECTION EFFECTS AND BANDING STRUCTURE FORMATION MECHANISM DURING DIRECTIONAL SOLIDIFICATION OF PERITECTIC ALLOYS I. Experimental Result

ˆŒ œ ƒ ƒ ˆ ˆŸ ˆ Š ˆ 137 Cs Š ˆ Œ.

Ó³ Ÿ , º 4(181).. 501Ä510

P ˆ.. ƒê ²μ 1,.. Œ ² ±μ 1,..Šμ Í,.. ʳ,.. μ μ 2. ˆ ˆŸ Š Š ˆ ƒ ˆŒ œ ƒ Œ ƒ ƒ Š-Š ˆ 10- Œ ˆ. ( ), Œμ ± Œμ ± 1 μ Ò É Ì μ²μ ±μ³ μ ÉÒ ±Êʳ ÒÌ μ μ

Ó³ Ÿ , º 6(155).. 805Ä813 ˆ ˆŠ ˆ ˆŠ Š ˆ. ˆ.. ³ Ì μ, ƒ.. Š ³ÒÏ, ˆ.. Š Ö. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê. Ÿ. ʲ ±μ ±

FRICTION AND WEAR PROPERTIES OF SURFACE PLASMA Cr W ALLOYING LAYER OF γ TiAl ALLOY

1 h, , CaCl 2. pelamis) 58.1%, (Headspace solid -phase microextraction and gas chromatography -mass spectrometry,hs -SPME - Vol. 15 No.

UDC. An Integral Equation Problem With Shift of Several Complex Variables 厦门大学博硕士论文摘要库

EFFECTS OF TEMPERING TEMPERATURE ON THE IMPACT TOUGHNESS OF STEEL 42CrMo

; +302 ; +313; +320,.

ØÖÓÒÓÑ ÈÖ Ø ÙÑ Ù Ò Ö Ò Ë Ð ØÛ ØØ Ö¹ ØÖÓÒÓÑ Íº Ù ÍÒ Ú Ö ØØ Ù ÙÖ ¹ Ò Ö ËÓÒÒ ÒÐ Ù Ñ Î ÖÐ Ù Ò Â Ö Ð ÙÒ ½ Û ÙÒ Ö ËÓÒÒ Ö Ò À ÑÑ Ð ÞÙ Ï ÒØ Ö Ò Ò Ö Ð Ò Ò Ò ÙÒ

MODEL RESEARCH BASED ON LIQUID/SOLID TWO PHANSE FLOWS IN METALLURGY STIRRED TUBULAR REACTOR

ƒ Š ˆ ˆ ˆˆ. ƒ. Ê ÖÏμ a,.. Š Ê,.. Šμ²μ ÊÉμ a, ƒ..œ ÍÒ a,. ƒ. Œμ²μ± μ a,.. ± a a Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê

Ó³ Ÿ , º 3(187).. 431Ä438. Š. ˆ. ±μ,.. ŒÖ²±μ ±,.. Ï Ìμ μ,.. μ² ±μ. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê

P ,.. ³,. Š. ³. ˆ ˆŸ Œˆ ˆŸ ˆ ˆ ˆ Š ˆ 9 3 ˆ Œ NiÄNb. ² μ Ê ² μ Ì μ ÉÓ. É μ ±, Ì μé μ Ò É μ Ò ² μ Ö. Õ³ Ó, μ Ö

P μ,. Œμ α 1,. ²μ ± 1,.. ϱ Î, Ÿ. Ê Í± 2 Œˆ ˆ Œ Š Ÿ Š Ÿ ˆ ˆŒ ˆˆ. ² μ Ê ² μ Ò É Ì ± Ô± ³ É

Š Šˆ ATLAS: ˆ ˆŸ ˆ Šˆ, Œ ˆ Œ ˆ.. ƒê ±μ,. ƒ ² Ï ², ƒ.. Š ± ²,. Œ. Ò,.. ŒÖ²±μ ±,.. Ï Ìμ μ,.. Ê ±μ Î,.. ±μ,. Œ. μ

ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ Ä1350 ˆ ˆ Š -3

EFFECT OF WELDING PROCESSING PARAMETERS ON POROSITY FORMATION OF MILD STEEL TREATED BY CO 2 LASER DEEP PENETRATION WELDING

,,, (, ) , ;,,, ; -

Œ ˆ Œ Ÿ Œˆ Ÿ ˆŸŒˆ Œˆ Ÿ ˆ œ, Ä ÞŒ Å Š ˆ ˆ Œ Œ ˆˆ

Electromagnetic behavior for laboratory scale and industrial scale electroslag remelting process

Ó³ Ÿ , º 4Ä5(174Ä175).. 629Ä634 ˆ ˆŠ ˆ ˆŠ Š ˆ. .. Ëμ μ,.. μ, Š.. ±μ. Î ± É ÉÊÉ ³..., Œμ ±

Ó³ Ÿ , º 7(156).. 62Ä69. Š Œ œ ƒˆˆ ˆ ˆŠ. .. ŠÊ²Ö μ 1,. ƒ. ²ÓÖ μ 2. μ ± Ê É É Ê Ò μ μ, Œμ ±

ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ Ä664

THE MICRO FABRICATING PROCESS AND ELECTRO- MAGNETIC PROPERTIES OF TWO KINDS OF Fe POWDERS WITH DIFFERENT GRAIN SIZES AND INTERNAL STRAINS

Ó³ Ÿ , º 4Ä5(174Ä175).. 682Ä688 ˆ ˆŠ ˆ ˆŠ Š ˆ

PACS: Pj, Gg

SYNTHESIS OF PLASTIC Zr BASED BULK METALLIC GLASS WITH CRYSTAL PHASE BY DIRECTIONAL SOLIDIFICATION

EFFECTS OF TEMPERATURE GRADIENT ON LAMEL- LAR ORIENTATIONS OF DIRECTIONAL SOLIDIFIED TiAl BASED ALLOY

2 PbO 2. Pb 3 O 4 Sn. Ti/SnO 2 -Sb 2 O 4 -CF/PbO x SnO 2 -Sb PbO 2. Sn-Sb 1:1. 1 h. Sn:Sb=10:1. PbO 2 - CeO 2 PbO 2. [8] SnO 2 +Sb 2 O 4 _

Ó³ Ÿ , º 1(130).. 7Ä ±μ. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê

Transcript:

Ø 46 Ø 4 Vol.46 No.4 2010 Đ 04 Ø 423 428 ACTA METALLURGICA SINICA Apr. 2010 pp.423 428 Ð Ô Cu 80%Pb Û Cu Å ² Ò³ ½ ¾¹º»¼ ( Ê ÞÆ Ï Æ«³ÃÛÊ, 110004) Á Cu Í Cu 80%Pb( Ð) Æ Ç µ «Ë, ¹ Cu Í Æ³ Ò. Ú, Ç È, Cu Í 800 Ô º Ò, 900 Ô Ð Cu», Í ÎÕ ÒÖ Ú Â ß; Cu Í Ò Æ, Ñ Cu Ó ; Cu ͺ Ò, ͳ» ³ Ú, Í ¾ Í ÒÖ ÅÑ. Ç ½ ÅÑ Í Ò Ö, Í ÕÆ, ÅÑ Cu Í ±, Cu». Í ¾, Ç µ ÍÞ Ï À Ö ±ÂÛØ. Þ Ñ Cu Pb Æ, Æ, Í Ò, Ç ÖÙ Ð TG146.1, TG113.12 Æ A µ Ð 0412 1961(2010)04 0423 06 EFFECT OF HIGH MAGNETIC FIELD ON THE TRANSI- TION BEHAVIOR OF Cu RICH PARTICLES IN Cu 80%Pb HYPERMONOTECTIC ALLOY ZHANG Lin, WANG Engang, ZUO Xiaowei, HE Jicheng Key Laboratory of Electromagnetic Processing of Materials, Ministry of Education, Northeastern University, Shenyang, 110004 Correspondent: WANG Engang, professor, Tel: (024)83681739, E-mail: egwang@mail.neu.edu.cn Supported by National Natural Science Foundation of China (Nos.50574027 and 50901019), High Technology Research and Development Program of China (No.2007AA03Z519), Specialized Research Found for the Doctoral Program of Higher Education (No.20070145062), and 111 project (No.B07015) Manuscript received 2009 09 19, in revised form 2009 12 22 ABSTRACT The Cu 80%Pb(mass fraction) hypermonotectic alloy with a dense distribution of Cu rich particles was annealed at different temperatures under high magnetic field, the transition behavior of Cu rich particles in solid liquid mixture zone was investigated. The results show that, the transition behavior of Cu rich particles occurs above 800, a compact segregation layer forms in the sample top above 900, the particle size and transition velocity increase with annealing temperature increasing. The Cu rich particles grow and coalesce with each other during transiting, the coalescence mechanism is different from Cu rich droplets. The cluster of Cu rich particles float up wholly, leave a clear boundary between Cu rich particle and Cu rich dendrite zones, the mutual interaction between the particles makes the transition velocity decreased. The high magnetic field has effect on decreasing the transition velocity of Cu rich particles, inhibiting the coarsening and coalescing of Cu rich particles, which could decrease the segregation of Cu rich particles, and inhibit the formation of compact Cu rich segregation layers. Based on the mutual interaction between the particles, the acting forces on the Cu rich particles and the final velocity have been analyzed and calculated to show the influence of * Þ ¼ Ë Þ 50574027  50901019, Þ Ù ¹ Û Þ 2007AA03Z519, Ë Ë ÜÍ Þ 20070145062 Â Ë Ë Ä Þ Û Þ B07015 Ë ¹ : 2009 09 19, ±¹ : 2009 12 22 :, ß, 1979 À, Ä, DOI: 10.3724/SP.J.1037.2009.00629

424 É Ø 46 magnetic field. KEY WORDS Cu Pb alloy, monotectic alloy, particle transition, high magnetic field Ç ÙÀ»ÎÄ ², Ê Æ Ì. Æ Â º ÕË Ä [1] [2] [3] Å [4] ÆÂ À Ç º, ± Ð Ï ½, À Ç, Ì». Ð º È Ç À º [5,6] Û, È Õ Ç Ú Ë ÃÎ ², È Ðµ, Ë Ó Ç. Ú Ô Î Ä Ã Ç À Ç Á ² É ÆÝ [7,8]. º [9] ºÌ È ÕØ Ú Ô, Î ², ¾ Æ È ½. Ä Ç Ú ²  : ÚÐÂ Ð Ý Ú, Ð Ú Ô, Ú Ô Ð² ; Ú Â Ð ÝÒ Ú, «ÝÕ, Ú ÔÎ Î, ÝÆ. Æ ¼ [10 14] È Ü À À, Æ ³ º Î À, Ó Ö ÎĐ. Cu 80%Pb Ç Ú Â, Cu Ô 955 Õ Á à Cu Cu Î, Î ÝÆ в ² [15]. Cu Î Pb Ð Í Đ Ç, Cu Î Ç À Ô, Ç Ò Ô. º [9] Pb º Cu Ô ÓÀ Ã È ß ßÈ À ², ÜÙ ÎĐ. Ä Î Ó, º Cu Pb Ç Ç Đ (326 955 ) Ð Cu Î Á Ç À, ÕÖ È ±Ð. 1 Õ Ì Cu 80%Pb( Ñ) Ç, Ar ŵ, 1200 Õ 2 min Ô Å, Å 160 /s. 9 mm, 25 mm, Òà Cu Î Ï ± 1 à 2 ß. Ú Cu Î Ð Ö ±, Î ± 3 30 µm Ð ( 2), ³ Ø Î 8 µm. Ð 10 mm ÇÝ, ÆÐÇ Ø, È Ð ² ½ Ð, 700, 800, 900 à 950 Æ È, À ½ÃÈ. Ã È 1 ¾ Fig.1 Microstructure of a prefabricated sample 0.25 0.20 0 5 10 15 20 25 30 2 Cu Í µ Fig.2 Diameter distribution of Cu rich particles with different diameters Ó Ì È. ½ÃÈ, Û Å, Å 24 /min, ß 24 mm, µ «. Ë Ì¹ ( Ö 18 mm) ( Ö 10 mm) µ ( Ö 2 mm) À ½, ² Cu Î Ï ± ÀÅÜ. 2 ß Ø 3 Cu 80%Pb Ç È ÃÈ É, ² ÃÈ ( µ, µ Cu, É µ Pb. Ä, È ). ¼ ÄÈ Ù ½., 700, È Ó À»Î ² ( 3a, b), Ú Î Ö ±; 800 È Öµ À»É Pb Å ( 3c, d), Õ Pb Ð, Cu µ Å Î, µ Å ¼, ± Å Î ¼ ; 900 È µá Ø Cu ¼ ( 3e), Cu ÎÍ µ¼,

t4 bi : N4 Cu 80%Pb D "M C! Cu <T mf f 4 425 P6!Eo 3 I ; t h # Cu 0 ( 3f), _b P6!E h >V DW % K' jt ` [h >V )4 # Cu 3r; %h>v(, P6t>^Y3 5* n #P6!E, nw P6 n^>vh8[s + 0.. 1 B1, >V( 0$(h 0, fw 1 # T * v 3 DW % r >V( K K,, w, *>V/h, s 0, x B. B, >VDW % w E, 3 *, P6!E h u, e h K I[, Q 'jt `[h>v5*fw n #P6!E, w P6 n^>v/h s. 950 H^ 0, 1, 6 K P ) ~ [, # P6!E* ' jt ` [h >V 5 * 700 Q h 20 µm [ 9 900 Q h 58 µm, *h T, An E= f7(h P6!E* ' jt ` [h >V 5 * 700 Q h, # P6!E* _b ~) E = ^ ; t h # Cu 0 18 µm [ 9 900 Q h 48 µm. 3 *, ( 4a), # Pb 0 E# Cu 3q 0 $EX U, 3 Cu 80%Pb E #N "O5JO5 P, %" JO 60 min W^a" ( g 9^2 Fig.3 Microstructures of the upper (a f), middle (g l) and nether (m r) parts of Cu 80%Pb alloy samples annealed for 60 min under different temperatures (white areas denote the Cu rich phases, dark areas denote the Pb rich phases, the upper, middle and nether parts of sample are at 18, 10 and 2 mm from the bottom, respectively) (a, g, m) at 700, under 0 T magnetic flux density (MFD) (b, h, n) at 700, under MFD (c, i, o) at 800, under 0 T MFD (d, j, p) at 800, under MFD (e, k, q) at 900, under 0 T MFD (f, l, r) at 900, under MFD i 1 " S\)u 2CV $q=u' / + w A Table 1 Second phase diameter distribution and particle region interface height at diferent experiment conditions Annealing temperature 800 900 950 700 Diameter distribution, µm 0T 1T 6T Maximum probability density diameter, µm Interface height from bottom, mm 0T 10 50 10 45 10 90 10 120 0T 20 18 0 0 10 80 27 22 2 1 10 110 58 48 18 5 58 18 10 230 10 220 10 150 10 140 1T 65 6T 60 1T 12 6T 11 10

426 É Ø 46 Ù Í Cu Î. Æ È, ȵ 1 µ Cu ¼ ( 4b,c,d), µ Cu Î, Î Ï ¹ ± ( 5), Ï ±ÅÜ Ö Î ¼ Ú 1 À., Ûȵ, Î Ï ± ½Ö³ Ø Î, Î Ù «Ò. É, È Î ÕÖ À Ø, Ûȵ. Cu Î Î D ÜÙ:, D i Ú i º Î. ( 4 ) Di 3 D = πd3 i ( 4 ) (1) 3 πd3 i»ì Î 6 ß., 800 Õ É, È Î ¾ ; 900 ÕÉ, È ¹Ê «Ò Î, 6 T Õ È Ûȵ Û¹, 6 È Î ¾. Õ Ì Û, Û Ã, Cu Î Ë Ö, Î Ä ² Ä, È ² Û¹. È 900 950 Ð ¹Ê, Cu Î Ë ÕÖ Î ² Û¹ Ø. (a) 0 50 100 150 200 0.25 (b) 0.20 0 20 40 60 80 100 120 140 160 (c) 0 20 40 60 80 100 120 140 160 5 Cu 80%Pb Æ 950, Ç Ð µ«60 min Ï Cu ¾ Í µ Fig.5 Diameter distribution of Cu rich particles in the upper part of Cu 80%Pb alloy samples annealed at 950 for 60 min under different MFD of 1 (a), 6 (b) and (c) 4 Cu 80%Pb Æ 950, Ç Ð µ«60 min Ï ¾ Fig.4 Microstructure of the upper part of Cu 80%Pb alloy samples annealed at 950 for 60 min under different MFD of 0 (a), 1 (b), 6 (c) and (d) Mean diameter of particle, m 120 100 80 60 40 6 T 700 800 900 Annealing temperature, o C 6 ÂÇ µ Cu ¾ Í µ Fig.6 Mean diameter of Cu rich particles annealed at different temperatures under different MED 0 T 1 T

Ø 4 : Æ «Cu 80%Pb Å Cu Ì Ñ Đ 427 3 3.1 ±Ý Đ ÓÜ Cu 326 955 Cu Pb Ç Ç, Cu ÎÇ Pb Ð [15]. Cu ²À É Ä ß Stokes, Cu Î Ý Ð Pb Ø ¾, ÉĐ Ï Ç, ² ¼. Î Ë Ostwald [16], Ï Cu Î Pb Ð ÕÐ É, Ï Î Ù µ, Ù, Î ÎÔ, Î ÎÈ, Î Å. Ú ÔĐ Ç Á ÂÌ» [17], Î ß Æ É, à ٠ Ç. ÊÌ Â, ÎĐ Ç Ì, ±Ð Ostwald Ä, غ Cu Î Á ØÉ, ÎÆº Á ε «Ò, Ù Ò Î, ± Ë Ostwald Á, ÝÉ É Á Î º ν Á. ÎÆº ÆÁ Î Á Î ÆÅ È Ç, Î Ï Ã Î, Î Î Õ Ç Ø Cu ¼. ÝÉ, È 900 à 950 Ì Á Cu Î Ã Ø Cu ¼, Cu Î Ostwald à ÎÇ. Cu Ë. Û Ã «Ò [18], ßÕ Cu Î Ã ²À 900 955 ½Û¹. Á ³Ñ ¹ [16], Ð Á ³ÑÛ Ã Đ, ÝÉ Ostwald Cu Î Ë Û Ã, 700 à 800 Ì, Ë Ñ, 900 Õ, Ë» ¹Ê, ÝÉÌ Î. Ð ¹Ê Á ³Ñ, Ostwald. È Õ Ø ß [13], Ì È Æ Æ È ½¹Ê Ø Pb, «Ò Á ³Ñ, Ê «Ò Ostwald, Î Î Á à ΠÑ, ÁÇ É«Ò. Ì ½, È Ø Ó ½ ÎÇ», Î À ÉĐ, Á Ø Cu ¼. 3.2 Ü Cu «Ó Ú Í Cu Î, ÉĐ ÀÑ, ÝÉ, Î߻ Ë. Îß ÅÀ F buo, Ä F g, F vis, ßÈ F m.» Ë ß : F buo F g F m F vis = 0 (2), Ä ¾ Î Ð Ø ¾ÜÙ À F buo F g = 4 3 ρgπr3 (3), ρ Ð ÎĐ Ø ¾, g Ä, R Î. Ö ± Cu Î À Ò Reynolds Ñ Î», Cu ß Ó Ñ É, ÎĐ Ã ßÈ, Éß Happel [19] ÜÙ Î, Î, Î, ± Ôº Îß F vis = bπµrvλ (4), µ Ð, v Î, λ ¹³Ñ. λ =, φ Îß Ó Ñ. 3 + 2φ 5/2 3 9 2 φ1/3 + 9 2 φ5/3 3φ 2 (5) È ß Ø Hartmann Ñ Ha ¹ [20] ( σ ) 1/2 Ha = BL (6) µ, L µ Ï, Ô, Û Ú Ô, σ ß, B ȵ. [20] : È ß Éß ß F = F vis {1+ 3 8 Ha + 7 960 Ha2 43 7680 Ha3 + O(Ha 4 )} (7) Æ È, Ì Î Ï, Ha >>1, ÝÉ Î ÖßÈ Ç F = F m + F vis = F vis Ha 3 (Ha >> 1) (8) (8) à (3) (2), À È Ã È Î Á v 0 à v m v m = v 0 = 2 ρ 3 9 9 µ gr2 2 φ1/3 + 9 2 φ5/3 3φ 2 (9) 3 + 2φ 5/3 2 ρ 3B(σµ) 1/2 gr3 9 2 φ1/3 + 9 2 φ5/3 3φ 2 3 + 2φ 5/3 (10)

428 É Ø 46 ¼¼ (9) à (10) ÜÙ Ì Ç Cu Îß Á ( Î Ï»Ì Ï, Á¹Ñ¼¼ ¼ [18] È ), 7 ß., Æ È Õ¹Ê«Ò Cu Î Á. 800 Õ É, È ÎÁ ¾ Û Ã, ½» È. 6 T Õ È Ûȵ Û¹, 6 T É, Á ². ÕÜÙ Ï É Î, Û Î» Ã, µ Î Ó Ñ, ÎĐ ÆÝÅ,, Î Î ¹Ê«Ò, Ö ± Î µ μ. É ½, Æ È Cu Î ¾ ¹Ê Ø, Cu Î «ÒÎ Î ÏÅ «Ò, ÎÇ Ò, ÝÉ «Ò ÎË. Terminal settling velocity of particle, m/s 10 08 06 04 02 6 T 00 700 800 900 Annealing temperature, o C 7 Ë µ Cu ¾ Í À Ö 4 Fig.7 Terminal settling velocity of Cu rich particles annealed at different temperatures under different MFD (1) Cu 80%Pb Ç ÃÈ À ½ÃÈ, Û Đ, Î Ï, ¼. 900 Õ, È, Cu Î Ç ¼Á Ø Cu. (2) Æ È, Cu ², ¼ «Ò, Cu Î Ï. 900 Õ, È ÕØ Cu Ø ¼ Á. (3) È «Ò Cu, É«Ò Î Ostwald, Î Cu ÎĐ Ç Ø, Ê Cu Ë Ã Î ². 0 T 1 T [1] Dhindaw B K. Stefanescu D M, Singh A K, Curreri P A. Metall Trans, 1988; 19A: 2839 [2] Liu Y, Guo J J, Jia J, Su Y Q, Ding H S. Acta Metall Sin, 2000; 36: 1233 (, ³, Ð, Õ, ÍÂ. ËÆ, 2000; 36: 1233) [3] Yang S, Liu W J, Jia J. Mater Sci Technol, 2002; 10: 19 (,, Ð. Ë ¾Ö, 2002; 10: 19) [4] Zu D Y, Yang X H, Han X M, Wei B B. Chin J Nonferrous Met, 2003; 13: 328 (ÇĐ,, ÀÃ,. ËÆ, 2003; 13: 328) [5] Yasuda H, Ohnaka I, Kawakami O, Ueno K, Kishio K. ISIJ Int, 2003; 43: 942 [6] Zhao J Z, Li H L, Wang Q L, Zhao L, He J. Acta Metall Sin, 2009; 45: 1344 (»Æ, É Ê,, Ã, Ä. ËÆ, 2009; 45: 1344) [7] Ratke L, Diefenbach S. Mate Sci Eng, 1995; R15: 263 [8] Zhao J Z, Li H L, Zhao L. Acta Metall Sin, 2009; 45: 1435 (»Æ, É Ê, Ã. ËÆ, 2009; 45: 1435) [9] Zhang L, Wang E G, Zuo X W, He J C. Acta Metall Sin, 2008; 44: 165 (,,, ÈÚ. ËÆ, 2008; 44: 165) [10] Xu Z M, Li T X, Zhang X P, Zhou R H. J Shanghai Jiaotong Univ, 2001; 35: 668 (Å Ú, É, Í«, ÅÂ. ËËÆ, 2001; 35: 668) [11] Zhong Y B, Ren Z M, Sun Q X, Jiang Z W, Deng K, Xu K D. Acta Metall Sin, 2003; 39: 1269 (, ¾ Ü, Ü,, Ð, Ä Õ. ËÆ, 2003; 39: 1269) [12] Shu D, Sun B, Li K, Zhou Y. Scr Mater, 2003; 48: 1385 [13] Colli F, Fabbri M, Negrini F, Asai S, Sassa K. Int J Comput Math Electr Electron Eng, 2003; 22: 58 [14] Zhang L, Yao G C, Jiao W L. J Northeastern Univ (Nat Sci), 2004; 25: 682 ( Ä, Å, Ê. ËËÆ ( ¼ Ë ), 2004; 25: 682) [15] Zhang L. PhD Dissertation, Northeastern University, Shenyang, 2008 (. Ë Ë Ð,, 2008) [16] Ratke L, Voorhees P W. Growth and Coarsening. Berlin: Springer Verlag, 2002: 1 [17] Walter H U, Vreeburg J P B. Fluid Sciences and Materials Science in Space. Berlin: Springer Verlag, 1987: 1 [18] Brandes E A, Brook G B. Smithells Metals Reference Book. 7th Ed., Oxford: Butterworth Heinemann, 1998: 1 [19] Happel J. AIChE J, 1959; 5: 174 [20] Chester W. J Fluid Mech, 1957; 3: 304