FRACTURE TOUGHNESS OF WELDED JOINTS OF X100 HIGH STRENGTH PIPELINE STEEL

Σχετικά έγγραφα
ACTA MATHEMATICAE APPLICATAE SINICA Nov., ( µ ) ( (

RELATIONSHIP BETWEEN MECHANICAL PROPERTIES AND LAMELLAR ORIENTATION OF PST CRYSTALS IN Ti 45Al 8Nb ALLOY

STUDY ON CYCLIC OXIDATION RESISTANCE OF HIGH NIOBIUM CONTAINING TiAl BASE ALLOY WITH ERBIUM

MICROSTRUCTURE EVOLUTION OF HYPEREUTEC- TOID STEELS DURING WARM DEFORMATION II. Cementite Spheroidization and Effects of Al


Z L L L N b d g 5 * " # $ % $ ' $ % % % ) * + *, - %. / / + 3 / / / / + * 4 / / 1 " 5 % / 6, 7 # * $ 8 2. / / % 1 9 ; < ; = ; ; >? 8 3 " #


1-6 Ð Ï Te (mass%) 0% 0.3% 0.5% 0.8% 1.0% 2.0% 2 Î 1 6

EFFECT OF HIGH MAGNETIC FIELD ON THE TRANSI- TION BEHAVIOR OF Cu RICH PARTICLES IN Cu 80%Pb HYPERMONOTECTIC ALLOY

P Ò±,. Ï ± ˆ ˆŒˆ Š ƒ ˆŸ. Œ ƒ Œ ˆˆ γ-š Œˆ ƒ ƒˆ 23 ŒÔ. ² μ Ê ². Í μ ²Ó Ò Í É Ö ÒÌ ² μ, É μí±, μ²óï

Abstract: JFE JFE SA440. TiN B FL. 100 mm

EFFECT OF WELDING PROCESSING PARAMETERS ON POROSITY FORMATION OF MILD STEEL TREATED BY CO 2 LASER DEEP PENETRATION WELDING

NUMERICAL SIMULATION OF KEYHOLE SHAPE AND TRANSFORMATION FROM PARTIAL TO OPEN STATES IN PLASMA ARC WELDING

Effects of Retained Austenite Characteristics on Delayed Fracture Properties of Ultra High-Strength TBF Steels

EFFECTS OF TEMPERING TEMPERATURE ON THE IMPACT TOUGHNESS OF STEEL 42CrMo

Delta Inconel 718 δ» ¼

CORROSION BEHAVIOR OF X70 PIPELINE STEEL IN SIMULATED KU ERLE SOIL SOLUTION WITH CO 2

48 12 Ö Vol.48 No ACTA METALLURGICA SINICA Dec pp Î µ TG142.1, Á A Ì µ (2012)

2011 Đ 3 Ñ ACTA METALLURGICA SINICA Mar pp

MICROSTRUCTURE AND MECHANICAL PROPERTIES OF 1500 MPa GRADE ULTRA HIGH STRENGTH LOW ALLOY STEEL

SYNTHESIS OF PLASTIC Zr BASED BULK METALLIC GLASS WITH CRYSTAL PHASE BY DIRECTIONAL SOLIDIFICATION

THE MICRO FABRICATING PROCESS AND ELECTRO- MAGNETIC PROPERTIES OF TWO KINDS OF Fe POWDERS WITH DIFFERENT GRAIN SIZES AND INTERNAL STRAINS

EFFECT OF HAFNIUM CONTENT ON MORPHOLOGY EVOLUTION OF γ PRECIPITATES IN P/M Ni BASED SUPERALLOY

2011 Ð 5 ACTA MATHEMATICAE APPLICATAE SINICA May, ( MR(2000) ß Â 49J20; 47H10; 91A10

Supporting Information. Enhanced energy storage density and high efficiency of lead-free

Œ.. ² μ,.. Œ ²μ, ƒ.. μ ±μ,. Ô Ô ², Œ.. ƒê Éμ, Œ.. Œ ² μ *

Θεωρία Συνόλων. Ενότητα: Διατακτικοί αριθμοί. Γιάννης Μοσχοβάκης. Τμήμα Μαθηματικών

AN RFID INDOOR LOCATION ALGORITHM BASED ON FUZZY NEURAL NETWORK MODEL. J. Sys. Sci. & Math. Scis. 34(12) (2014, 12),

BEHAVIOUR AND MECHANISM OF STRAIN HARDEN- ING FOR DUAL PHASE STEEL DP1180 UNDER HIGH STRAIN RATE DEFORMATION

P É Ô Ô² 1,2,.. Ò± 1,.. ±μ 1,. ƒ. ±μ μ 1,.Š. ±μ μ 1, ˆ.. Ê Ò 1,.. Ê Ò 1 Œˆ ˆŸ. ² μ Ê ² μ Ì μ ÉÓ. É μ ±, Ì μé μ Ò É μ Ò ² μ Ö

Ó³ Ÿ , º 7(163).. 798Ä802 ˆ ˆŠ ˆ ˆŠ Š ˆ. .. Ëμ μ. Î ± É ÉÊÉ ³..., Œμ ±

MICROSTRUCTURE STABILITY IN A FULLY LAMELLAR HIGH Nb TiAl ALLOY AFTER LONG TERM THERMAL CYCLING

2 SFI

2 PbO 2. Pb 3 O 4 Sn. Ti/SnO 2 -Sb 2 O 4 -CF/PbO x SnO 2 -Sb PbO 2. Sn-Sb 1:1. 1 h. Sn:Sb=10:1. PbO 2 - CeO 2 PbO 2. [8] SnO 2 +Sb 2 O 4 _

ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ Ä616 Š ˆŒ CMS LHC

P ² ± μ. œ Š ƒ Š Ÿƒ ˆŸ Œ œ Œ ƒˆ. μ²μ μ Œ Ê μ μ ±μ Ë Í μ É Í ±μ ³μ²μ (RUSGRAV-13), Œμ ±, Õ Ó 2008.

P Œ ²μ, Œ.. ƒê Éμ,. ƒ. ²μ,.. μ. ˆ ˆŸ Œˆ ˆŸ ˆ Š Œ ˆŸ Ÿ - ˆ ˆ ŠˆŒˆ Œ Œˆ ˆ œ ˆ Œ ˆ ŒˆŠ Œ -25

Ανώτερα Μαθηματικά ΙI

P Ë ³μ,.. μ μ³μ²μ,.. ŠμÎ μ,.. μ μ,.. Š μ. ˆ œ ˆ Š Œˆ ŠˆŒ ƒ Œ Ÿ ˆŸ Š ˆ ˆ -ˆ ˆŠ

ØSrÚCa Mg 12Zn 4Al 0.3MnÜ

A NEW ONE PARAMETER KINETICS MODEL OF DYNAMIC RECRYSTALLIZATION AND GRAIN SIZE PREDICATION

Ó³ Ÿ , º 2(131).. 105Ä ƒ. ± Ï,.. ÊÉ ±μ,.. Šμ ² ±μ,.. Œ Ì ²μ. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê

ER-Tree (Extended R*-Tree)

P Œ ²μ, ƒ.. μ ±μ,. ˆ. ˆ μ, Œ.. ƒê Éμ,. ƒ. ²μ,.. ³ É. ˆŒ ˆ Š ƒ Œ ˆ Ÿ ˆŸ 238 Uˆ 237 U, Œ ƒ Ÿ Š ˆˆ 238 U(γ,n) 237 U.

FRICTION AND WEAR PROPERTIES OF SURFACE PLASMA Cr W ALLOYING LAYER OF γ TiAl ALLOY

ˆ Œ ˆŸ Š ˆˆ ƒ Šˆ ƒ ƒ ˆ Šˆ ˆ ˆ Œ ˆ

M 2. T = 1 + κ 1. p = 1 + κ 1 ] κ. ρ = 1 + κ 1 ] 1. 2 κ + 1

Ó³ Ÿ º 3[120] Particles and Nuclei, Letters No. 3[120]

ˆ ˆ ˆ ˆˆ γ-ˆ ˆŸ ˆ Š Œ ˆ Œ œ Š ˆˆ

Motion analysis and simulation of a stratospheric airship

P ƒ.. Š ³ÒÏ,.. Š ³ÒÏ,.. ± ˆ ŒˆŠˆ Š ˆŠ

INFLUENCES OF PHASE PRECIPITATIONS OF TERNARY β Ti Mo Zr(Sn) ALLOYS ON YOUNG S MODULUS AND MECHANICAL PROPERTIES

AN INVESTIGATION ON THE CREEP BEHAVIOR OF PURE Mg

Recent advances in coal to chemicals technology developed by SINOPEC

CONVECTION EFFECTS AND BANDING STRUCTURE FORMATION MECHANISM DURING DIRECTIONAL SOLIDIFICATION OF PERITECTIC ALLOYS I. Experimental Result

Protective Effect of Surface Coatings on Concrete

P ƒ. μ μ², Œ.. ˆ μ,.. μ ± Î Š Ÿ ˆ Œ ˆŸ ˆ Ÿ Š ˆ. ² μ Ê ² μ Ò É Ì ± Ô± ³ É.

P ˆ.. Œμ ±μ ±μ,. ˆ. ˆ Ó±μ,.. Š ²μ

Blowup of regular solutions for radial relativistic Euler equations with damping

49 Ö 6 Đ Vol.49 No ACTA METALLURGICA SINICA Jun pp

P ƒ Ê Î 1, 2,.. ƒê μ 1, 3,. ÉÓ±μ 2, O.M.ˆ μ 1,.. Œ É μë μ 1,.. μ μ 1,. ƒ. Ê±μ ± 1,.. ³ 1,.. ±Ê Éμ 1. ˆ ˆ ˆ ˆ Š ˆ Si- ˆ SiC- Š Š ˆ

Ó³ Ÿ , º 7(163).. 793Ä797 ˆ ˆŠ ˆ ˆŠ Š ˆ. .. Ëμ μ. Î ± É ÉÊÉ ³..., Œμ ±

Ó³ Ÿ , º 4Ä5(174Ä175).. 629Ä634 ˆ ˆŠ ˆ ˆŠ Š ˆ. .. Ëμ μ,.. μ, Š.. ±μ. Î ± É ÉÊÉ ³..., Œμ ±

,,, (, ) , ;,,, ; -

v w = v = pr w v = v cos(v,w) = v w

Supporting information. An unusual bifunctional Tb-MOF for highly sensing of Ba 2+ ions and remarkable selectivities of CO 2 /N 2 and CO 2 /CH 4

MODEL RESEARCH BASED ON LIQUID/SOLID TWO PHANSE FLOWS IN METALLURGY STIRRED TUBULAR REACTOR

Š Ÿ Š Ÿ Ÿ ˆ Œ ˆŠ -280

Study on the Strengthen Method of Masonry Structure by Steel Truss for Collapse Prevention

Αλγόριθμοι Δικτύων και Πολυπλοκότητα Προσεγγιστικοί Αλγόριθμοι. Άρης Παγουρτζής

EFFECT OF LOADING MODES ON MECHANICAL PROPERTY AND STRAIN INDUCED MARTENSITE TRANSFORMATION OF AUSTENITIC STAINLESS STEELS

FENXI HUAXUE Chinese Journal of Analytical Chemistry. Savitzky-Golay. n = SG SG. Savitzky-Golay mmol /L 5700.

.. ƒ²μ É, Œ. Œ Ï,. Š. μé ±μ,..,.. ³ μ μ, ƒ.. ÒÌ

Quantitative chemical analyses of rocks with X-ray fluorescence analyzer: major and trace elements in ultrabasic rocks

P ˆ.. ƒê ²μ 1,.. Œ ² ±μ 1,..Šμ Í,.. ʳ,.. μ μ 2. ˆ ˆŸ Š Š ˆ ƒ ˆŒ œ ƒ Œ ƒ ƒ Š-Š ˆ 10- Œ ˆ. ( ), Œμ ± Œμ ± 1 μ Ò É Ì μ²μ ±μ³ μ ÉÒ ±Êʳ ÒÌ μ μ

UDC. An Integral Equation Problem With Shift of Several Complex Variables 厦门大学博硕士论文摘要库

High order interpolation function for surface contact problem

EFFECTS OF TEMPERATURE GRADIENT ON LAMEL- LAR ORIENTATIONS OF DIRECTIONAL SOLIDIFIED TiAl BASED ALLOY

P μ,. Œμ α 1,. ²μ ± 1,.. ϱ Î, Ÿ. Ê Í± 2 Œˆ ˆ Œ Š Ÿ Š Ÿ ˆ ˆŒ ˆˆ. ² μ Ê ² μ Ò É Ì ± Ô± ³ É

Ó³ Ÿ , º 3(187).. 431Ä438. Š. ˆ. ±μ,.. ŒÖ²±μ ±,.. Ï Ìμ μ,.. μ² ±μ. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê

P ² Ì μ Š ˆ Œˆ Š Œ Œˆ. ² μ Ê ² Nuclear Instruments and Methods in Physics Research.

(II) * PACS: a, Hj 300. ) [6 9] ) [10 23] ) [26 30]. . Deng [24,25] Acta Phys. Sin. Vol. 61, No. 15 (2012)

Š Šˆ ATLAS: ˆ ˆŸ ˆ Šˆ, Œ ˆ Œ ˆ.. ƒê ±μ,. ƒ ² Ï ², ƒ.. Š ± ²,. Œ. Ò,.. ŒÖ²±μ ±,.. Ï Ìμ μ,.. Ê ±μ Î,.. ±μ,. Œ. μ

MnZn. MnZn Ferrites with Low Loss and High Flux Density for Power Supply Transformer. Abstract:

MICROSTRUCTURES AND PROPERTIES OF PULSED MIG ARC BRAZED FUSION WELDED JOINT OF Al ALLOY AND GALVANIZED STEEL

p din,j = p tot,j p stat = ρ 2 v2 j,

ƒ Š ˆ Šˆ Š Œˆ Šˆ Š ˆŒ PAMELA ˆ AMS-02

P ²ÒÏ,.. μ μ Š ˆ ˆ Ÿ ˆ

Š ˆ œ Ÿ ˆ œ Œ Œ ƒ ˆ Œ Œ LEPTA

PHOTOCATALYTIC PROPERTIES OF TiO 2 THIN FILMS PREPARED BY MICROARC OXIDATION AND DOPING ELECTROLYTES

ˆ Œ ˆ Ÿ ˆ ˆŸ Ÿ - ˆ ˆ Šˆ Š ˆŸˆ

EFFECTS OF Al Al 4 C 3 REFINER AND ULTRASONIC FIELD ON MICROSTRUCTURES OF PURE Mg

ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ Ä Œμ Ìμ. ±É- É Ê ± μ Ê É Ò Ê É É, ±É- É Ê, μ Ö

MICROSEGREGATION OF SOLUTE ELEMENTS IN SOLIDIFYING MUSHY ZONE OF STEEL AND ITS EFFECT ON LONGITUDINAL SURFACE CRACKS OF CONTINUOUS CASTING STRAND

P Î,.. Š ²³Ò±μ, Œ.. Œ ϱ,.. ʳ ˆ ˆ ˆ ˆŸ ˆŠ Š Š ˆ Ÿ -200

Ó³ Ÿ , º 5(147).. 777Ä786. Œ ˆŠ ˆ ˆ Š ƒ Š ˆŒ. ˆ.. Š Öαμ,. ˆ. ÕÉÕ ±μ,.. ²Ö. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê

BEHAVIOR OF MARTENSITE REVERSE TRANSFORMA- TION IN 18Mn TRIP STEEL DURING WARM DEFORMATION

ƒ Š ˆ ˆ ˆˆ. ƒ. Ê ÖÏμ a,.. Š Ê,.. Šμ²μ ÊÉμ a, ƒ..œ ÍÒ a,. ƒ. Œμ²μ± μ a,.. ± a a Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê

Quick algorithm f or computing core attribute

Ó³ Ÿ , º 2(214).. 171Ä176. Š Œ œ ƒˆˆ ˆ ˆŠ

Transcript:

49 Õ 5 Ú Vol.49 No.5 2013 5 Ç 576 582 ACTA METALLURGICA SINICA May 2013 pp.576 582 X100 É ¾ ÅÌ Ô «1,2) ß 1,2) Đ Þ 3) Ü 3) 1) Ð ÊË, 721008 2) Ï Ã, 721008 3) Ü µ Ü ÊËÜÃ, 710065 ºº» Ù± (CTOD) À ± X100 Ô Ô Û Ã () Î ³ º, ºÃº SEM Û TEM ± CTOD «Ó µë Î ³. Ä Ì, ± X100 Ô º Ã. Ϋ, ᧙ δ 0.2 Û δ 0.2BL ÖÉ Ø Ã Ñ Ô Í, «º ¼ Ã Ñ Ô, ÞØ «, Ü º Ö. «Ó Í (GB) Û ± Ñ (QF) Í Ñ (BF), Í M A þ ¾ Í Ñ Ç ; Ô «Ó Ñ (AF), M A Ü «,» Ì ; Ã Ó Í ÛÕ Í Ñ, M A ɼ ¾ ÇÛ Ç. ØÎÑ» M A ËĐßÔ Û Ã º «Æ Ñ, µë ¾ ÃÔ Ñ «º. ½ X100, Ô, º, º» Ù± (CTOD) Ñ Ã TG115.5 ºÎÈ A ¹ 0412 1961(2013)05 0576 07 FRACTURE TOUGHNESS OF WELDED JOINTS OF X100 HIGH STRENGTH PIPELINE STEEL BI Zongyue 1,2), YANG Jun 1,2), NIU Jing 3), ZHANG Jianxun 3) 1) National Engineering Technology Research Center for Petroleum and Natural Gas Tubular Goods, Baoji 721008 2) Steel Pipe Research Institute of Baoji Petroleum Steel Pipe Co., Ltd., Baoji 721008 3) School of Materials Science and Engineering, Xi an Jiao Tong University, Xi an 710065 Correspondent: BI Zongyue, professor, Tel: (0917)3398475, E-mail: bsgbzy@cnpc.com.cn Supported by National Science & Technology Pillar Program (No.2011BAE35B01) Manuscript received 2012 11 27, in revised form 2013 02 27 ABSTRACT Fracture toughness of base metal, weld seam and heat affected zone () in X100 high strength pipeline steel welded joints was investigated by three point crack tip opening displacement (CTOD) test. Microstructure and inclusion near fracture zones were observed by means of SEM and TEM. The results indicated that fracture toughness of X100 high strength pipeline steel welded joints was greatly influenced by test temperature. At the same temperature, the numerical values of apparent crack initiation δ, conditional crack initiation δ 0.2 and δ 0.2BL of base metal are higher than that of weld seam and, and low temperature fracture toughness of base metal is better than those of weld seam and. With temperature decreasing, the fracture toughness of base metal, weld seam and decreased. The microstructure of near fracture zones of base metal specimen was composed of granular bainite (GB), a small quasi polygonal ferrite (QF) and lath bainite ferrite (BF), and the fine and equally dispersed M A structure distributed on the grain boundary. The microstructure of near fracture zones of weld seam specimen was composed of acicular ferrite (AF), and the form of M A constituents shows diversity, sharp angled clearly. The microstructure * Đ Å± Æ 2011BAE35B01 Á²Û : 2012 11 27, ÓÁ²Û : 2013 02 27 ± É : Æ,, 1962, Ë, ¼É DOI: 10.3724/SP.J.1037.2012.00703

5 Ú Å : X100 Ó ¹ 577 of near fracture zones of coarse grain was composed of GB and parallel LBF, and the square, wedged and bar M A constituents distributed on the interior of grain, grain boundary and lath boundary. The poor fracture toughness of weld seam and specimen results from large size and cusp type M A structure. While the higher distribution of inclusion in weld seam makes fracture toughness worse. KEY WORDS X100 pipeline steel, welded joint, fracture toughness, crack tip opening displacement (CTOD) Ù ÁÕ«½ Â, ÂÓ À Đ Ð È, Đ Ð Ç À À Ù Ù Ù ±½Ç [1 3]. ĐÀ Î ÃÄ Ê Ø ÅÆ». Ð ² [4,5], Á ĐÀ Å È Ä 7%. À Ù ± ½ ²» ÐĐ ÉÀ «. «Ý½ßÒ À µù» Ð [6 8] Ø Õ ÀÐ, ² ÆÆ ««Ò Ø Þ Ù³ ÜÞ H 2 S [9 11]. лÜÙ».»ÅÀ¾»¹»Ü«2 ÅÁ È.»¹¼ Ú² δ(ctod)»» Õл ÜÌÍ ², ²»Ü»»¹«Ðصܻ Ð [12 15], CTOD Á º ÕÀÀ» Ð. [16] Í,»¹½ «È δ < δ c (δ c»¹¼ Ú² È, Å Á ). ¼ ÏÚ X100 ̲, X100 Õ Õ» Ð, ÕÀµÄ Ð. ̲ X100 ÕÀ À Õ Ü µäæ () ²È, Å Ü ², ÛÏÞ Æ ²» Ð ½½ µ ³ ² Õ Ü» Ð µä, 쵆 µå CTOD Á» Ð, Ìͳ»ĐÎ ß. 1 Í Á» X100 Ù Õ Õ 1219 mm, 15.3 mm, ÞÈ (б, %) : C, Si, Mn 1.95, P 0.011, S 2, Ni 0.39, Cr 0.28, Cu 0.21, Mo, Nb+V+Ti 0.094, Fe ±. Õ Ïµ À ÞÐ 1, Õ Ú» X100 À ÐÕ ÜÕ. ÏÕ Õ Õ Ü CTOD,» Ð BS7448 µ [17] ÈÚ Ò»¹ µ 3., B 12 mm, W 24 mm,  4W 96 mm, a λ¹Â, Ú ²Ð 1a Û È.» 0.08 mm Õ Mo ¹Ì, Ï¹Ì 9 mm »ÀÔÒ Â 3 mm» 1 X100 À Ö Å ßÑ ¼º½ Û³ (CTOD) Ó Table 1 Mechanical properties and size of base metal, weld seam and heat affected zone () crack tip opening displacement (CTOD) samples of X100 pipeline steel Sample, B, mm W, mm R p0.2, MPa R m, MPa A, % R p0.2 /R m 15 12 24 750 845 17 0.89 15 12 24 645 745 0.87 15 12 24 699 805 0.87 Note: test temperature, R p0.2 yield strength, R m tensile strength, A uniform elongation, B thickness, W width 1 ¼ «Û CTOD «º Á Ç Fig.1 Standard three point bending specimen (a) and length measurement of CTOD specimen (b) (a nominal crack length, δ crack tip opening displacement value)

578 Ê Û 49 Õ Ò»¹,» Ï Á Šż¹»¹. Ï Ò»¹ Í, Đà ƻ¹¼ Õг. ³ Û Å»¹Â ± a 0 Ï 0.45W 0.55W º. CTOD Á Ï CSS 88100 Ï, Á Ó S=96mm, Á µ : ϵ (15 ), 10 Ü 30, Å Í ³ F V»Ð Á Ð. F V 2a, ²³ ÙÍÙ ÕÐ Ú² V p «Æ 2a ÛÈ. Í, Ï Đ, Ý µ Ï Ó. 1b ÛÈ ÏÅ¾Ä 9 Å ±»¹Â, Ý Ó È 1%δ ²Ð, ± ½ 0.01 mm. Ʋ»¹Â : a 0 = 1 8 (a 01 +a 09 8 + a 0i ) (1) 2 i=2 Æ, a 0i (i=2, 3, 4,, 8) i Å Å»¹ Â. a = 1 8 (a 1 +a 9 2 + 8 a i ) (2) i=2 Æ, a i (i=2, 3, 4,, 8) i Å»¹» «Â. Æ, a Ö»»¹«±. a = a a 0 (3) ÈÐ ÙÍÙ F ݲ³ V p,» Ʋ Æ Force F O (a) v P A Parallel to OA v e Crack opening displacement V 2 F V Û ÂÇ «Ç Fig.2 Typical F V curve (a) and observation section (b) of near fracture zone (V p plastic component of notch opening displacement, V e theoretical elastic notch opening displacement) V F CTOD : FS δ = [ BW 3/2f(a 0 W )]2 (1 µ2 ) 2R P0.2 E + 0.4(W a 0)V p 0.4W +0.6a 0 +δ z (4) Æ, Possion µ=0.3; Ðϱ E=2.058 10 5 MPa; R p0.2 ; f(a 0 /W) Ý ±, Ð a 0 /W ϵ ÕÀ ; δ z Ú² ² ² Ø ÐÓ È Ó. Ð BS7448 µ, ÈÐ Ð Þ Ü³, Þ Æ ÛÈ: δ = m+l( a) x m, l 0 and 0 x 1 (5) Æ, m, l Ü x Û À. Æ, R m. È δ = 1.87( R m R p0.2 ) a (6)» S4300 É (SEM) Æ Ô,»» EDAX Genesis6.0 Ù (EDS) ² Ì È Ï, Ä» JEM 200CX (TEM) Æ Ô M A,   60 cm, ² 160kV. CTOD» 1/2» Â Õ ¹ ½Ç Ú, 2b ÛÈ, È SEM Ü TEM, SEM» Ü Ð,» 3%( ) ÉÖ Ü Ö + ÆÐ µ, TEM Þ 50 µm, Ï Ñ Æ Ð 10% À Ö +90% Ö ( ) µ Ï Ñ. 2 Í ÏÇ 2.1 Æ Â ÒÄË CTOD л¹» й Þ»¹«, Æ»¹«,»¹¹«± Æ»¹«, Æ R. 3 Ç X100 Ù Õ Õ Ï½ µ Þ Ü³ ³ ÖÆ., δ Ü δ 0.2 Ø»¹«± a= Ü 0.2 mm Û²³ CTOD, Ý Ò ³ µä; δ 0.2BL Ø Ì ³ ( 3 Blunting line ) a Ö Þ a=0.2 mm CTOD, Ý Ë ³ µä. CTOD È»¹«Í ½ Á»¼ Ú², Þ»¹»Ü«. 4 Ç Á µ ² CTOD δ, δ 0.2 Ü δ 0.2BL µä. Ü, µ ³ ² CTOD µä Æ. Õ CTOD δ, δ 0.2 Ü δ 0.2BL Ùµ Î, Õ» ÐÙµ, Í ³ Ê; Ï µ, CTOD Ù,

5 Ú Å : X100 Ó ¹ 579 CTOD, mm CTOD, mm CTOD, mm 0.50 0.45 0.40 0.35 (a) Blunting line Offset line =-30 o C =15 o C =-10 o C = 2.11 a = 0.13313+0.54086 a 0.90931 =231+0.65044 a 0.95853 =094+0.48713 a 0.59674 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 a, mm 0.50 0.45 0.40 0.35 (b) Blunting line Offset line = -30 o C = 15 o C = -10 o C = 2.16 a = 39+0.35118 a 0.47268 = 0.01024+0.32977 a 0.34825 = 0.01451+0.35687 a 0.42961 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 a, mm 0.50 0.45 (c) = 15 o C = -10 o C 0.40 0.35 Blunting line Offset line = -30 o C = 2.15 a = 0.01945+0.51211 a = 0.07878+0.36425 a 0.66714 = 469+0.41967 a 0.46169 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 a, mm 3 Ô Ã Fig.3 Resistance curves of base metal (a), weld seam (b) and (c) ( a average stable crack extension, δ CTOD value, temperature) Ò, Õ Î,» н, ½ Õ. Ò, µ ³ Đ µä X100 Ù Õ Õ ÐÐ, Ùµ. 2.2 ÁÊÓ 2.2.1 Ö CTOD Ý Æ 5 Ç CTOD Æ Ô. ¾ 5 Ð, Á» X100 Ô Î (GB) ± µ² Ò (QF). Ý, Î Ò (BF) Æ, Ƚ, M A Ä BF Ⱦ. M A Ý ÏÒ ²»¹»Ü«ÆµÄ. [18 20] ±, Î Ä È¾ M A, ½ ²Þ²Ô» ³»¹,»Ä»¹«½Ç Ó, Á»¹«Â,»¹, ² Ð. Ì µ» н Õ Ü À±. 2.2.2 ÚÙ CTOD Ý Æ 6 Õ CTOD Æ Ô. ¾ 6 Ð, Õ Ô Ò (AF) ܵ Ý M A. 6a AF ʵ, Ï AF Ò¾ ²«Þ Ô, M A,, AF Ì Ú Ê¾ Â. ¾ 6b M A ݵ, µú ¼, Ä Ò ¾ È. ¼ M A ² Ð Ñ Æ [12,19]. ³ ²», ²ÔÊ ½ Šϼ ²ÈÜ È», ³,»Ù³ ³³Í ¹, È»Á, È»¹Á. ÌÕ µ» Ð À±. 2.2.3 Å CTOD Ý Æ 7 µäæ CTOD Æ Ô. Ʋ Ó ÞÆ Æ, ÝÕÀ µ (>1150 ) À, à Ac 3 Ö µ, ÅÎ Đ Â Ù, Æ, ÀÅ Ù µ. [21 23], Õ ÞÐ ºÆ Õ ÆÜ ÈÆ. ¾ 7a Ð, Æ Ô GB ÜÖ BF, ÀÅÎ È (PAGB), ½ Ö BF ÀÅÎ Âȵ ÅÜ. 7b Ü c, M A Ê µ Ý, ½ Ü BF È, È, ÏÒÄ 2 µm. Ù Ó ½ ¹, M A ¾Ð Å Ç Â ³, ÏÒ Ù, ¼, Ò ½ÇÐ. ÙÏÒ¼ M A ²Þ²Ô», ³,»¹Â ĐÎ. ² Ð Ù Ú. 2.3 CTOD ÙÎ ßÂ. Ô Ð, Ð Ø Õ Ü²Ì Ô ½ Å Ø, Ò Â ÞÈ ÀÅ Ô Ý, Õ Ì, Ý ÞÈ Ü Í ½. Õ Ð, ÏÕ ÞÈ ² ß ¹ ÞÌ Ò Ti Ü Mo Å, È ± Ì ² AF Ú [24,25].

580 Ê Û 49 Õ 0.18 0.16 (a) 0.26 0.24 (b), mm 0.14 0.2, mm 0.22 0.12 0.2BL, mm 0.36 0.33 0.27 (c) -30-20 -10 0 10 20, o C 0.2, mm 0.18 (d) -30-20 -10 0 10 20, o C = -30 o C = -10 o C = 15 o C 0.24 0.21-30 -20-10 0 10 20, o C 4 ± CTOD Ð Ö δ, δ 0.2 Û δ 0.2BL à Fig.4 Effects of test temperature on apparent crack initiation CTOD δ (a), conditional crack initiation CTOD δ 0.2 (b), and δ 0.2BL (δ resistance to crack extension expressed in terms of CTOD at a = mm crack extension including blunting, δ 0.2 resistance to crack extension expressed in terms of CTOD at a= 0.2 mm crack extension including blunting, δ 0.2BL resistance to crack extension expressed in terms of CTOD at a=0.2 mm crack extension offset to the blunting line) 5 CTOD «Ó Fig.5 SEM (a) and TEM (b) images of near fracture zone in the CTOD sample of base metal (GB granular bainite, QF quasi polygonal ferrite, BF bainite ferrite) 8 Õ Ü Ì EDS. 8a Ð, Ï 75 µm 75 µm Æ Ä 100 Å ± Ì, Ý µêå, ÙÎ ½, Õ 0.1µm 1 µm ½Å. Ì Ì È» ÂÙ ²Ð, ϳ ²», ² ³ ³, Ä»¹Ï È Í µ. Å Ì ¹»¹ ÀÜ, ÐÓ È»¹,». Å EDS Ð, Õ Ì Èµ Å Ü, Å Al 2 O 3, MgO, CaS Ü TiO 2 Å. Ì Õ Â, Ï Ù Æ, Ú 1 Å ± Ì, ÊÅ, ÏÒÄ 1 µm. ± Ì ÏÂ Í ÙÙ Î ³, Ù Ì ¾Ó ¹»¹ À

5v M : X100 F EBoFF "- j [ p: X X#!ofF 581 6 CTOD Fig.6 SEM (a) and TEM (b) images of near fracture zone in the CTOD sample of weld seam (AF acicular ferrite) [ 7 (Kh[ CTOD X X#!ofF Fig.7 SEM (a) and TEM (b, c) images of near fracture zone in the CTOD sample of coarse grain (PAGB prior austenite grain boundaries) [ p:wz6 X X# )S342 O445 8 CTOD Fig.8 SEM images showing morphology and distribution of inclusions in the near fracture zones of weld seam (a) and base metal CTOD specimens (b), and the EDS results of inclusion A in Fig.8a (c) and inclusion B in Fig.8b (d) (Arrows in Fig.8a, b represent inclusions, Wm mass fraction, WA atomic fraction)

582 Ê Û 49 Õ Ü, Ä Ò Ø Þ»¹«, ² Ð. Å EDS, Å Al 2 O 3, TiO 2 Ü SiO 2 Å. 3 Ç Ð, Ì Èµ Å (1) µ ² X100 À Õ µä Æ ()» РƵÄ, Ùµ, CTOD ; е,» δ 0.2 Ü δ 0.2BL Ê Ù Ò Õ Î,» н, ½ Õ. (2) Æ Ô Î Ü ± µ² Ò Î Ò, Î M A Ä Î Ò È ; Õ Æ Ô Ò, M A ݵ, ¼ Í ; µ ÄÆ Æ Ô Î ÜÖ Î Ò, M A ʽ ÈÜ È. ÙÏÒ¼ M A Ì Õ Ü µä Æ» Ð À±. (3) Õ Ì Ò± Ü µäæà Å, Ý¹Ô ²Õ» Ð Ú. ¼À [1] Pan J H. Weld Pipe, 2008; 31(4): 5 (. Ô, 2008; 31(4): 5) [2] Li H L, Ji L K, Xie L H. J Hebei Univ Sci Technol, 2006; 27: 1 ( ¾, Ý,. ß Đ ØÝÝ, 2006; 27: 1) [3] Zhang B, Qian C W, Wang Y M, Zhang Y Z. Petro Eng Cons, 2012; 38: 1 ( ¹, Ç, À, Ý. ËÌ, 2012; 38: 1) [4] Takuya H, Eiji T, Hiroshi M, Hitoshi A. X100/X120 Level High Performance Pipeline Steel International High Level Forum. Beijing: China Machine Press, 2005: 136 [5] Yoo J Y, Ahn S S, Seo D H, Song W H, Kang K B. Mater Manuf Process, 2011; 26: 154 [6] Wang Y Q, Wu Y M, Shi Y J, Jiang J J. Eng Mech, 2006; 23: 74 (, ¾ Ê,,. ËÌ Ý, 2006; 23: 74) [7] Xiao G C, Jing H Y, Xu L Y. J Mech Eng, 2011; 47: 26 (Ï,, Ö ¹. ËÌÝ, 2011; 47: 26) [8] Zhou M, Du L X, Liu X H, Wang Y X. J Plast Eng, 2010; 17: 108 ( Ê, ¾Ô, Á, È. Ô ËÌÝ, 2010; 17: 108) [9] Yu Z F, Shi H, Tong L, Liu R. Oil Gas Storage Transp, 2010; 29: 143 ( Ý, Â, ³,. É, 2010; 29: 143) [10] Li H L, Li X, Ji L K, Chen H D. Weld Pipe, 2007; 30(5): 5 ( ¾, Ê, Ý, Ä Õ. Ô, 2007; 30(5): 5) [11] Feng Y R, Diao S, Huo C Y, Xion Q R, Zhu W D, Li N. China Saf Sci J, 2007; 17: 159 ( ³,, ¹, Ò,,. ĐÝ Ý, 2007; 17: 159) [12] Zhong Y, Xiao F R, Zhang J W, Shan Y Y, Wang W, Yang K. Acta Mater, 2006; 54: 435 [13] Yang F P, Luo J H, Zhang H, Zhang G L, Zhang Y. J Plast Eng, 2011; 18: 103 ( Õ, Ë,,,. Ô ËÌÝ, 2011; 18: 103) [14] Luo J W, Qin H T. Weld Pipe, 2009; 32(7): 33 ( ¾, Ðß. Ô, 2009; 32(7): 33) [15] Shin S Y, Woo K J, Hwang B, Kim S, Lee S. Metall Mater Trans, 2009; 40A: 867 [16] Hu C X. Special Functional Coating. Beijing: Beijing University of Technology Press, 1989: 1 (. Ð Í. : Ë ØÝ Æ, 1989: 1) [17] British Standard Institution. BS 7448, London: British Standard, 1991 [18] Hwang B, Kim Y G, Lee S, Kim Y M, Kim N J, Yoo J Y. Metall Mater Trans, 2005; 36A: 2107 [19] Xu X L, Zhao K, Zhao D, Wang W F. J Iron Steel Res Int, 2011; 18: 487 [20] Xu D Y, Yu H. Proceeding of the 10th International Conference on Steel Rolling. Beijing: Metallurgical Industry Press, 2010: 134 [21] Bi Z Y, Jing X T, Xu X L, Jin S L. J Iron Steel Res, 2010; 22: 27 ( Æ, Ì, ÖÝ, Ë. Ý, 2010; 22: 27) [22] Chen Y Q, Du Z Y, Xu L H. Trans China Weld Inst, 2010; 31(5): 101 (Ä,,. Ô Ý, 2010; 31(5): 101) [23] Zhang X Y, Gao H L, Zhuang C J, Ji L K. Trans China Weld Inst, 2010; 31(3): 29 ( µ¹,,, Ý. Ô Ý, 2010; 31(3): 29) [24] Shu W, Wang X M, Li S R, He X L. Acta Metall Sin, 2011; 47: 435 (, ÝË,, Ð. Ë Ý, 2011; 47: 435) [25] Chen Y Q. PhD Dissertation, Tianjing University, 2010 (Ä. ÍØݼÉݱ, 2010) ( ÕÛ: Ð Ø)