CONVECTION EFFECTS AND BANDING STRUCTURE FORMATION MECHANISM DURING DIRECTIONAL SOLIDIFICATION OF PERITECTIC ALLOYS I. Experimental Result

Σχετικά έγγραφα
2011 Đ 3 Ñ ACTA METALLURGICA SINICA Mar pp

ACTA MATHEMATICAE APPLICATAE SINICA Nov., ( µ ) ( (


Z L L L N b d g 5 * " # $ % $ ' $ % % % ) * + *, - %. / / + 3 / / / / + * 4 / / 1 " 5 % / 6, 7 # * $ 8 2. / / % 1 9 ; < ; = ; ; >? 8 3 " #

EFFECTS OF TEMPERATURE GRADIENT ON LAMEL- LAR ORIENTATIONS OF DIRECTIONAL SOLIDIFIED TiAl BASED ALLOY


RELATIONSHIP BETWEEN MECHANICAL PROPERTIES AND LAMELLAR ORIENTATION OF PST CRYSTALS IN Ti 45Al 8Nb ALLOY

STUDY ON CYCLIC OXIDATION RESISTANCE OF HIGH NIOBIUM CONTAINING TiAl BASE ALLOY WITH ERBIUM

NUMERICAL SIMULATION OF KEYHOLE SHAPE AND TRANSFORMATION FROM PARTIAL TO OPEN STATES IN PLASMA ARC WELDING

AN RFID INDOOR LOCATION ALGORITHM BASED ON FUZZY NEURAL NETWORK MODEL. J. Sys. Sci. & Math. Scis. 34(12) (2014, 12),

P É Ô Ô² 1,2,.. Ò± 1,.. ±μ 1,. ƒ. ±μ μ 1,.Š. ±μ μ 1, ˆ.. Ê Ò 1,.. Ê Ò 1 Œˆ ˆŸ. ² μ Ê ² μ Ì μ ÉÓ. É μ ±, Ì μé μ Ò É μ Ò ² μ Ö

1-6 Ð Ï Te (mass%) 0% 0.3% 0.5% 0.8% 1.0% 2.0% 2 Î 1 6

SYNTHESIS OF PLASTIC Zr BASED BULK METALLIC GLASS WITH CRYSTAL PHASE BY DIRECTIONAL SOLIDIFICATION

EFFECT OF HAFNIUM CONTENT ON MORPHOLOGY EVOLUTION OF γ PRECIPITATES IN P/M Ni BASED SUPERALLOY

EFFECT OF HIGH MAGNETIC FIELD ON THE TRANSI- TION BEHAVIOR OF Cu RICH PARTICLES IN Cu 80%Pb HYPERMONOTECTIC ALLOY

P Ò±,. Ï ± ˆ ˆŒˆ Š ƒ ˆŸ. Œ ƒ Œ ˆˆ γ-š Œˆ ƒ ƒˆ 23 ŒÔ. ² μ Ê ². Í μ ²Ó Ò Í É Ö ÒÌ ² μ, É μí±, μ²óï

2 SFI

Estimation of grain boundary segregation enthalpy and its role in stable nanocrystalline alloy design

UDC. An Integral Equation Problem With Shift of Several Complex Variables 厦门大学博硕士论文摘要库

Œ.. ² μ,.. Œ ²μ, ƒ.. μ ±μ,. Ô Ô ², Œ.. ƒê Éμ, Œ.. Œ ² μ *

CORROSION BEHAVIOR OF X70 PIPELINE STEEL IN SIMULATED KU ERLE SOIL SOLUTION WITH CO 2

Θεωρία Συνόλων. Ενότητα: Διατακτικοί αριθμοί. Γιάννης Μοσχοβάκης. Τμήμα Μαθηματικών

P Ë ³μ,.. μ μ³μ²μ,.. ŠμÎ μ,.. μ μ,.. Š μ. ˆ œ ˆ Š Œˆ ŠˆŒ ƒ Œ Ÿ ˆŸ Š ˆ ˆ -ˆ ˆŠ

2011 Ð 5 ACTA MATHEMATICAE APPLICATAE SINICA May, ( MR(2000) ß Â 49J20; 47H10; 91A10

Supporting information. An unusual bifunctional Tb-MOF for highly sensing of Ba 2+ ions and remarkable selectivities of CO 2 /N 2 and CO 2 /CH 4

AN INVESTIGATION ON THE CREEP BEHAVIOR OF PURE Mg

Ó³ Ÿ , º 2(214).. 171Ä176. Š Œ œ ƒˆˆ ˆ ˆŠ

Ó³ Ÿ , º 5(147).. 777Ä786. Œ ˆŠ ˆ ˆ Š ƒ Š ˆŒ. ˆ.. Š Öαμ,. ˆ. ÕÉÕ ±μ,.. ²Ö. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê

MICROSTRUCTURE STABILITY IN A FULLY LAMELLAR HIGH Nb TiAl ALLOY AFTER LONG TERM THERMAL CYCLING

ØSrÚCa Mg 12Zn 4Al 0.3MnÜ

Delta Inconel 718 δ» ¼

Blowup of regular solutions for radial relativistic Euler equations with damping

MICROSTRUCTURE EVOLUTION OF HYPEREUTEC- TOID STEELS DURING WARM DEFORMATION II. Cementite Spheroidization and Effects of Al

P ƒ. μ μ², Œ.. ˆ μ,.. μ ± Î Š Ÿ ˆ Œ ˆŸ ˆ Ÿ Š ˆ. ² μ Ê ² μ Ò É Ì ± Ô± ³ É.

THE MICRO FABRICATING PROCESS AND ELECTRO- MAGNETIC PROPERTIES OF TWO KINDS OF Fe POWDERS WITH DIFFERENT GRAIN SIZES AND INTERNAL STRAINS

ˆ ˆ ˆ ˆˆ γ-ˆ ˆŸ ˆ Š Œ ˆ Œ œ Š ˆˆ

MICROSEGREGATION OF SOLUTE ELEMENTS IN SOLIDIFYING MUSHY ZONE OF STEEL AND ITS EFFECT ON LONGITUDINAL SURFACE CRACKS OF CONTINUOUS CASTING STRAND

v w = v = pr w v = v cos(v,w) = v w

P Œ ²μ, Œ.. ƒê Éμ,. ƒ. ²μ,.. μ. ˆ ˆŸ Œˆ ˆŸ ˆ Š Œ ˆŸ Ÿ - ˆ ˆ ŠˆŒˆ Œ Œˆ ˆ œ ˆ Œ ˆ ŒˆŠ Œ -25

þÿ ɺÁ Ä ÅÂ, ±»Î¼ Neapolis University þÿ Á̳Á±¼¼± ¼Ìù±Â ¹ º à Â, Ç» Ÿ¹º ½ ¼¹ºÎ½ À¹ÃÄ ¼Î½ º±¹ ¹ º à  þÿ ±½µÀ¹ÃÄ ¼¹ µ À»¹Â Æ Å

EXPERIMENTAL RESEARCH ON MELTING SURFACE BEHAVIOR IN MOLD UNDER COMPOUND MAGNETIC FIELD

P ƒ Ê Î 1, 2,.. ƒê μ 1, 3,. ÉÓ±μ 2, O.M.ˆ μ 1,.. Œ É μë μ 1,.. μ μ 1,. ƒ. Ê±μ ± 1,.. ³ 1,.. ±Ê Éμ 1. ˆ ˆ ˆ ˆ Š ˆ Si- ˆ SiC- Š Š ˆ

EFFECT OF WELDING PROCESSING PARAMETERS ON POROSITY FORMATION OF MILD STEEL TREATED BY CO 2 LASER DEEP PENETRATION WELDING

ΓΗ ΚΑΙ ΣΥΜΠΑΝ. Εικόνα 1. Φωτογραφία του γαλαξία μας (από αρχείο της NASA)

ˆ Œ ˆŸ Š ˆˆ ƒ Šˆ ƒ ƒ ˆ Šˆ ˆ ˆ Œ ˆ

PHOTOCATALYTIC PROPERTIES OF TiO 2 THIN FILMS PREPARED BY MICROARC OXIDATION AND DOPING ELECTROLYTES

INFLUENCES OF PHASE PRECIPITATIONS OF TERNARY β Ti Mo Zr(Sn) ALLOYS ON YOUNG S MODULUS AND MECHANICAL PROPERTIES

P ,.. ³,. Š. ³. ˆ ˆŸ Œˆ ˆŸ ˆ ˆ ˆ Š ˆ 9 3 ˆ Œ NiÄNb. ² μ Ê ² μ Ì μ ÉÓ. É μ ±, Ì μé μ Ò É μ Ò ² μ Ö. Õ³ Ó, μ Ö

ER-Tree (Extended R*-Tree)

P μ,. Œμ α 1,. ²μ ± 1,.. ϱ Î, Ÿ. Ê Í± 2 Œˆ ˆ Œ Š Ÿ Š Ÿ ˆ ˆŒ ˆˆ. ² μ Ê ² μ Ò É Ì ± Ô± ³ É

FRICTION AND WEAR PROPERTIES OF SURFACE PLASMA Cr W ALLOYING LAYER OF γ TiAl ALLOY

SUPPLEMENTAL INFORMATION. Fully Automated Total Metals and Chromium Speciation Single Platform Introduction System for ICP-MS

ˆŒ œ ƒ ƒ ˆ ˆŸ ˆ Š ˆ 137 Cs Š ˆ Œ.

P Œ ²μ, ƒ.. μ ±μ,. ˆ. ˆ μ, Œ.. ƒê Éμ,. ƒ. ²μ,.. ³ É. ˆŒ ˆ Š ƒ Œ ˆ Ÿ ˆŸ 238 Uˆ 237 U, Œ ƒ Ÿ Š ˆˆ 238 U(γ,n) 237 U.

High order interpolation function for surface contact problem

MnZn. MnZn Ferrites with Low Loss and High Flux Density for Power Supply Transformer. Abstract:

EFFECTS OF Al Al 4 C 3 REFINER AND ULTRASONIC FIELD ON MICROSTRUCTURES OF PURE Mg

Š Šˆ ATLAS: ˆ ˆŸ ˆ Šˆ, Œ ˆ Œ ˆ.. ƒê ±μ,. ƒ ² Ï ², ƒ.. Š ± ²,. Œ. Ò,.. ŒÖ²±μ ±,.. Ï Ìμ μ,.. Ê ±μ Î,.. ±μ,. Œ. μ

ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ Ä616 Š ˆŒ CMS LHC

Base Metal + Alloying Elements

ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ Ä664

.. ƒ²μ É, Œ. Œ Ï,. Š. μé ±μ,..,.. ³ μ μ, ƒ.. ÒÌ

Θεωρία Συνόλων. Ενότητα: Επιλογής επόμενα. Γιάννης Μοσχοβάκης. Τμήμα Μαθηματικών

Correction of chromatic aberration for human eyes with diffractive-refractive hybrid elements

MICROSTRUCTURE AND MECHANICAL PROPERTIES OF 1500 MPa GRADE ULTRA HIGH STRENGTH LOW ALLOY STEEL

ˆ ˆŸ ˆ ˆŸ ˆ ˆŒ ˆˆ Ÿ Œˆ 10 B

LUO, Hong2Qun LIU, Shao2Pu Ξ LI, Nian2Bing

Evolution of Novel Studies on Thermofluid Dynamics with Combustion

Resurvey of Possible Seismic Fissures in the Old-Edo River in Tokyo

BEHAVIOUR AND MECHANISM OF STRAIN HARDEN- ING FOR DUAL PHASE STEEL DP1180 UNDER HIGH STRAIN RATE DEFORMATION

Supporting Information

Ανώτερα Μαθηματικά ΙI

ƒ Š ˆ Šˆ Š Œˆ Šˆ Š ˆŒ PAMELA ˆ AMS-02

P ƒ. Œ. ʳ Ö,. É ±, ˆ.. Š Öαμ,. ˆ. ÕÉÕ ±μ,.. ² μ. Š -ŒˆŠ Š : Œ ˆ, œ,

3D PHASE FIELD SIMULATION OF MECHATRONIC COUPLE FOR PZT FERROELECTRIC CERAMICS

Ó³ Ÿ , º 1(130).. 7Ä ±μ. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê

EFFECTS OF TEMPERING TEMPERATURE ON THE IMPACT TOUGHNESS OF STEEL 42CrMo

Study on the Strengthen Method of Masonry Structure by Steel Truss for Collapse Prevention

Supporting Information. Generation Response. Physics & Chemistry of CAS, 40-1 South Beijing Road, Urumqi , China. China , USA

FRACTURE TOUGHNESS OF WELDED JOINTS OF X100 HIGH STRENGTH PIPELINE STEEL

Quick algorithm f or computing core attribute

Ó³ Ÿ , º 2(131).. 105Ä ƒ. ± Ï,.. ÊÉ ±μ,.. Šμ ² ±μ,.. Œ Ì ²μ. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê

Ó³ Ÿ º 3[120] Particles and Nuclei, Letters No. 3[120]

, Litrrow. Maxwell. Helmholtz Fredholm, . 40 Maystre [4 ], Goray [5 ], Kleemann [6 ] PACC: 4210, 4110H

Ó³ Ÿ , º 7(163).. 793Ä797 ˆ ˆŠ ˆ ˆŠ Š ˆ. .. Ëμ μ. Î ± É ÉÊÉ ³..., Œμ ±

P ² Ì μ Š ˆ Œˆ Š Œ Œˆ. ² μ Ê ² Nuclear Instruments and Methods in Physics Research.

EFFECTS OF B ON THE MICROSTRUCTURE AND HYDROGEN RESISTANCE PERFORMANCE OF Fe Ni BASE ALLOY

Electronic Supplementary Information DFT Characterization on the Mechanism of Water Splitting Catalyzed by Single-Ru-substituted Polyoxometalates

EFFECT OF LOADING MODES ON MECHANICAL PROPERTY AND STRAIN INDUCED MARTENSITE TRANSFORMATION OF AUSTENITIC STAINLESS STEELS

þÿ Á±½Äà Å, šåá¹±º Neapolis University þÿ Á̳Á±¼¼± ¼Ìù±Â ¹ º à Â, Ç» Ÿ¹º ½ ¼¹ºÎ½ À¹ÃÄ ¼Î½ º±¹ ¹ º à  þÿ ±½µÀ¹ÃÄ ¼¹ µ À»¹Â Æ Å

Studies on the Binding Mechanism of Several Antibiotics and Human Serum Albumin

ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ Ä Œμ Ìμ. ±É- É Ê ± μ Ê É Ò Ê É É, ±É- É Ê, μ Ö

A NEW ONE PARAMETER KINETICS MODEL OF DYNAMIC RECRYSTALLIZATION AND GRAIN SIZE PREDICATION

P ² ± μ. œ Š ƒ Š Ÿƒ ˆŸ Œ œ Œ ƒˆ. μ²μ μ Œ Ê μ μ ±μ Ë Í μ É Í ±μ ³μ²μ (RUSGRAV-13), Œμ ±, Õ Ó 2008.

P ˆŸ ˆ Œ Œ ˆ Šˆ. Š ˆ œ ˆ -2Œ

Gro wth Properties of Typical Water Bloom Algae in Reclaimed Water

SYNTHESIS KINETICS OF (Y, Gd) 2 O 3 Eu 3+ NANO POWDERS DURING PROCESS OF PREPARATION

Š Ÿ Š Ÿ Ÿ ˆ Œ ˆŠ -280

Ó³ Ÿ , º 7(163).. 737Ä741 ˆ ˆŠ ˆ ˆŠ Š ˆ. .. ² Ì μ,.. Œ ± μ,.. Œ ÉÕÏ ±,.. Œμ μ μ,. Œ. Ò, Œ.. ±μ. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê

Å/ ÅÃ... YD/ kod

Transcript:

Õ 47 Õ 3 Vol.47 No.3 2011 3 ½ Õ 275 283 ACTA METALLURGICA SINICA Mar. 2011 pp.275 283 ± Æ µ «À I. Ý À ÈÇË 1,2) É 2) ÌÏÊ 1) Í Î 1) ÃÆÅ 1) ÂÄ 1) 1) Æ«º, Æ«150001 2) Æ«Í ÝÖ Ý Ö Ü, Æ«150001 Ê ÚÛ Ë Bridgman ÞÄ É ³ Î Fe Ni Î ÞÄ Þ Ô», 2 ÞÄ ³Î ÞÄ Ä ÒÞÂË À Ð. º G/V ÞÄ Ä, ³Î ÞÄ Ä ÄË¹Ä Ò, Ê ÞÂØ» ÅÏ ¾«. Ä ÐÊÞÄ È ÚÐ«Ç Ç Ä ³ Ä, Ä ÐÎ Ë Đ À. ¹Ä Ð Î Ç, Õ Î ³, ¹ÄÁ Í Ç Ä ³ Ä. Å ³Î, ÞÄ,,, ÒÞ ¾ TG111.4 ¼ A 0412 1961(2011)03 0275 09 CONVECTION EFFECTS AND BANDING STRUCTURE FORMATION MECHANISM DURING DIRECTIONAL SOLIDIFICATION OF PERITECTIC ALLOYS I. Experimental Result LUO Liangshun 1,2), ZHANG Yumin 2), SU Yanqing 1), WANG Xin 1), GUO Jingjie 1), FU Hengzhi 1) 1) School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 2) National Key Laboratory of Science and Technology on Advanced Composites in Special Environment, Harbin Institute of Technology, Harbin 150001 Correspondent: LUO Liangshun, lecturer, Tel: (0451)86413910, E-mail: luols@hit.edu.cn Supported by National Natural Science Foundation of China (Nos.50901025 and 50771041) and National Science Foundation for Post doctoral Scientists of China (No.20090450840) Manuscript received 2010 09 19, in revised form 2010 11 24 ABSTRACT Systematic directional solidification experiments were conducted to investigate the convection effects on the banding structure evolution and macrosegregation in nonfaceted non faceted model Fe Ni alloy using conventional resistance heating and induction heating Bridgman directional solidification methods in this paper. It was found that convection can induce severe axial and radial macrosegregation in the directionally solidified samples, and make the microstructures complex and make the steady state difficult to achieve. Axial macrosegregation was reflected in finite samples solidified from the beginning to the end of solidification with the transition from primary phase to peritectic phase. The primary peritectic transition depended on the alloy composition and convection strength. Radial macrosegregation reflected in the solute concentration poor in the center and rich in edge, and a primary peritectic transition also exist in the lateral directional from the sample to the edge. KEY WORDS peritectic alloy, directional solidification, convection, segregation, banding structure * Đ Ð Â 50901025 Ë 50771041, Ð Â 20090450840 ÅØ Ê Ð Â Õ ¼± : 2010 09 19, ³¼± : 2010 11 24 : Ø Ð, 1980 Ç, ÆÔ»µ, DOI: 10.3724/SP.J.1037.2010.00485

276 Ó Õ 47 ¹ Æ ß ßÃ, ¹ Ï ÑÏ Ti Al ÑÏ Nd Fe B Ì Y Ba Cu O Ñ [1 9]. Å µ ßÃÁ À Í ¹ º Đ ÝÆ Æ Ï Å Ñ Ñ. ±ÌÜ Á, ÔßÅ Þ Æ Ï, Ý Æ Ï Ó ßÅ Å Æ Ï ßà [1,10,11] : ÆÄ È Å ÓßÃ Æ ÆÂÀÈ ÙÓßÃ ß Ñ ÓßÃÌ È Å ÏßÃÑ, 1. ³ ÓßÃÌ ÙÓßÃ Æ Ï» G/V (G», V Ó) ßÅ 2 ßÃ, Sn Cd, Sn Sb, Zn Cu Ì Pb Bi Ï Æ Õ¼ [12 17], 1a Ì b. É Õ¼ [12 17] µæ, ß ÓßÃ, ¹ 1a Ç Ì±. É, Æ Ï ßÅ Å ³³ Ó, Æ Å Ì ºÅ. Á Æ Ï ßÅ Å Ì ßÃÙ, Ë ßÅ Í Æ ¾ ¹, Î Á ¹ ³Ë, É Đ Æ Ï Ó ßÅ Å ÓßÃÌ Ñ Æ Õ¼. Õ¼ [12 14], ßÅ Ó Ó, Æ «ĐÈ Î, ßÅ Å / Đ Æ Ï ÓßÃÌ Đ Á. Ë ³ ĺ ßÅ ÁÕ¼ ¹ Sn Cd Æ Ï Ó ßÅ ßÃÙ Á, Æ Äº ± 0.6 mm Î, Ø «Ñ Ô, ßÅ 1a ± ÓßÃ, Šĺ Î, Á, ßà ÆÈ, ĺ ßÅ º 6 mm Î, ÓßÃÇË ÙÓßà [12 14]. É, Æ Ï Ó ßÅ Å ÆÑ Á. ßÅ Bridgman, º ½Å Ä, ³ ÐÔ ºÅ», ËÅ Đ È Ï. É, Æ Õ¼ Đ Æ Ï ßÅ Å Óß ÃÌ Đ. Å ßÅ ÛÜ Ì 2, ÛÜ Î Æ Ø Đ, Å Î Î ÛÈ µ ¹Í Đ, Đ ÛÜ ¹. ½Ë 2 ßÅ Fe Ni Æ Ï ßÅ ßÕ¼, Å Õ¼ 2 ßÅ Æ Ï ßÅ Å Ó ßÃÌ Ñ, ÉÑÃÂÆÖ Á Ñ, ËÅ ßÅ Í Æ ¹ ÇÖ¼. 1» Fe Ni Ï Ã Ê ĐÆ Ù Ï. Fe 4.0Ni ( Ö Ý, %, ) Ì Fe 4.1Ni Ñ Æ Fe 4.3Ni Æ Fe 4.4Ni Ì Fe 4.5Ni Å Æ Ï ßÅ ß. Fe Ni Æ Ï ¾ 2. ±ÇÖ, 2 «Ù ½, ÀÈ δ α, Æ γ β. ß Å ß ß ÛÜ ßÅ Ì» ßÅ Â. ß ÛÜ ßÅ 3a. 2 ½ Õ Ta, ³ 2 Đ» / Đ» » [18].» ßÅ 3b, Í Æ, Ä. 2 ßÅ Å ßÃÙ, 2 ßÅ ß Ñ Ê, ĐÆ :» 1 ³Î Ò ÞÄ Û Ø Þ Fig.1 Schematic of various typical microstructures observed during the directional solidification of peritectic alloys (a) banding structure (b) oscillatory treelike structure with an insert showing one typical cross section (c) island banding (d) composite structure 2 Fe Ni ³Î ½ Fig.2 Relevant portion of Fe Ni peritectic phase diagram

Õ 3 Ï Ð : ²Í ÝÃ Ã Ë ÑÝÁ ÒÌ I. Ü 277 3 2 Bridgman ÞÄ Fig.3 Schematic of two directional solidification systems with different heating method (a) resistance heating with two heating zone (b) induction heating Ó ßΠĺ Ñ. ß Å : Ë Î Ï ÜºÁÄ º 4.5 mm 100 mm Å,, ½  Đ, ƺ 5 mm Æ, ß ßÅ À Â, É 1650» 30 min, Å Åß ÓßÅ, À Û ÀÉ Ga In Sn Ï Ì. 2 ßÅ Ì ³,» ÊÎ, 2 ßÅ» ³. Fe Ni Ï, ß ÛÜ ßÅ» µ ß 12 K/mm [18], ßÅ» 30 K/mm. 2 ßÅ» Êų» Ê» Ä Á Æ, «2 ßÅ ±». É, Õ¼ Ý f s ( ßÅ ±ßÅ Ù À ) ßÃÙ Á, º ³ À Å. ßÅ Olympus GX71 µ Â, µ Ë Oberhofer Ïß Ï, ³ : 30 g FeCl 3 + 1 g CuCl 2 + 0.5 g SnCl 2 + 50 ml HCl + 500 ml C 2 H 5 OH + 500 ml H 2 O. 2» ½ 5 Fe Ni Æ Ï ßÅ ß Á 1, ³» 8 K/mm ß Å ß ²Õ¼ [18] Á, Ð. Fe Ni Æ Ï ßÅ ½Ñ ÀÈ ÀÈ α, Å µå ßÃÅ Æ β È ÄÉ Û, ÚÆ Ï ß Å ÅÂÎ Ë α Å β Å (α/β ), 1 Ì 4. Fe Ni Æ Ï» G/V ßÅ Ù µ ÀÈ α È Å, ¹ Å α È À Å ÇÖ, Ú α Î È. Å Õ¼ [19], α È ± º, ÇÖ, ß fs α0 ßÅ À È α Í È Ý, ÀÈ α È. «4 Ì, ßÃÙ α O(α/β) β O(α/β), ÀÈ α, α È» 10 mm α, Æ β (ÙÓ) ßà O(α/β), O(α/β) È» 12.8 mm Æ β, Ú ½ β, β È 0.7 mm «O(α/β) ÄÉßÅ Û. ² ÀÈ α Í È Ý fs α0 =0.29, 4a Ì 1. 2.1 Fe Ni ² º ¹ Á 4a e Fe Ni Ï ß ÛÜ ßÅ Æ ßÃ. / Đ Ó ß Ô Â, Bridgman ßÅ ßß Å Ù, ³Á / Đ Á. Fe Ni Æ Ï ÛÜßÅ ßÃÙ Ñ ««. (1) ßÅ G/V Å ( 1.5 10 9 K s/m 2 ), ÚÆ «ĐÈ Î, ½Æ Å Æ, Ú 5 Æ Ï ßÅ ¹ ß ßÃ. Ô Å, ßà ÆÈ, Fe 4.0Ni Ï 5 µm/s ßÅ 4 ÀÈ α ÌÆ β ÓßÃ; Fe 4.3Ni Ï 5 µm/s ßÅ 11 ßà O(α/β) ± Ïßà ßÃ; Fe 4.5Ni Ï 5 µm/s ßÅ 20 ³ ÆÈ ÙÓßà O(α/β), Ù ÈÈ,

278 Ó Õ 47 1 Fe Ni ³Î ÞĻܨÞ Table 1 Summary of the experiments and the structures of directionally solidified Fe Ni alloys Sample C 0 G V G/V f s f α0 s Macrostructure Heating No. % K/mm µm/s 10 9 K s/m 2 evolution method 1 4.0 8 0.33 24 0.50 >0.50 α P ID 2 4.0 8 1.5 5.3 0.50 >0.50 α P ID 3 4.0 8 5 1.6 0.50 >0.50 α P ID 4 4.0 12 5 2.4 0.61 0.29 α O(α/β) β O(α/β) RS 5 4.0 12 10 1.2 0.61 0.17 α (α C)+β RS 6 4.1 30 5 6.0 0.62 0.38 α β O(α/β) β ID 7 4.1 30 10 3.0 0.67 0.61 α O(α/β) β P ID 8 4.1 30 20 1.5 0.75 0.09 α (α C)+β α (α C)+β α (α C)+β ID 9 4.3 8 1.5 5.3 0.69 0.24 α α IB β α β P ID 10 4.3 8 5 1.6 0.69 α IB ID 11 4.3 12 5 2.4 0.61 0.27 α O(α/β) PCG O(α/β) (α P)+PCG+ (β P) RS 12 4.3 12 5 2.4 1.0 0.23 α O(α/β) α IB PCG β RS 13 4.3 12 10 1.2 0.61 0.07 α O(α/β) (α C)+ β α IB α CPCG RS 14 4.4 12 5 2.4 0.52 0.30 α O(α/β) β O(α/β) PCG O(α/β) PCG RS O(α/β) PCG 15 4.4 12 6 2.0 0.41 0.04 O(α/β) PCG O(α/β) PCG O(α/β) PCG RS O(α/β) PCG O(α/β) PCG O(α/β) PCG O(α/β) 16 4.4 12 10 1.2 0.52 0.06 α O(α/β) CPCG RS 17 4.4 30 10 3.0 0.52 0.44 O(α/β) PCG β P ID 18 4.4 30 15 2.0 0.43 0.37 O(α/β) PCG+ (β P)(fs α0 =0.368) ID 19 4.4 30 20 1.5 0.61 0.49 O(α/β) β P ID 20 4.5 12 5 2.4 0.61 0.38 α O(α/β) α IB PCG+(β P) RS 21 4.5 12 10 1.2 0.61 0.05 α O(α/β) CPCG O(α/β) CPCG RS Note: C 0 initial composition, atomic fraction; G temperature gradient; V velocity; f s volume fraction of solidification; f α0 s volume fraction of primary α phase solidification; C cells; P plane; PCG peritectic coupled growth; CPCG cellular peritectic coupled growth; IB island banding; O(α/β) oscillatory structure between α and β; ID induction heating; RS resistance heating ³ Å β Å, 1 Ì 4a e. ßÅ G/V Å Ê, ÀÈ ««Ó È Î, Fe Ni Æ Ï ßÅ «ß ßÃ: Ó ÓÀÈ α Æ β Ñ Ïßà [20]. (2) «G/V ÅßÅ Î, Fe Ni Æ Ï ßÅ Å Ó Å. ÅÂ, Ô Å Z s, Ú Ý f s Å, ÀÈ α Ô Ý Å Ê, Æ β Ô Ý Å, Å β, Ú Fe Ni Æ Ï ß Å ÅÂÎ ÀÈ α È Æ β È Å, 4c Ì d. «Fe 4.3Ni Ï 5 µm/s ßÅ 12 Ì, Ë Û Ù : ÀÈ α ÙÓßà O(α/β) α / ß Ã ÈÈ PCG β, ÔßÅ, ÀÈ α Ô Ý Å Ê, Æ β Ô Ý Å, α ± ÇË Æ β, 4c. Ô Å, Ï Å», ÚÚ «β È Î ß β. ßÃÙÅ Fe Ni Æ Ï ßÅ Å ½ Æ, ¼ ³ Æ ß Å Ã Á [12,13], «Æ Ï α È ß β È α/β. Đ, α/β ± Óßà β α Đ Ê ½ β ³, α/β ÆÈ β ßÈ ÄÉ ± Û, ³ α. ߯, α/β Å ±Ï Ù Ý f s, Fe 4.3Ni Ï 5 µm/s ßÅ 12, α/β Ý 0.83, 4c. Fe 4.5Ni Ï 5 µm/s ßÅ 20 Á, Ë À ÛÌ, ½ßÃÙ± 12 à : ÀÈ α ÙÓßà O(α/β) α / ßà ÈÈ, ßÅ ÛÎùÆÈ α/β, «Á ÈÈ ³ ß, Ú ÆÈ α/β, 4d. 20 ßÅ ÛÎ Ý 0.61, Fe 4.5Ni Ï «5 µm/s ßÅ ÆÈ α/β Ý ĐÔ 0.61, Ê Fe 4.3Ni Ï 0.83. Ô Ï, G/V, Fe Ni Ï Æ

q3$ sw l : & U y K :K B X i d S s myi \ > n T I. X x G 34 Fe Ni 279 'V zl ;\>zjtb Fig.4 Longitudinal sections of directionally solidified Fe Ni alloys showing the macrostructures evolution (a) specimen 4, Fe 4.0Ni, V =5 µm/s (b) specimen 11, Fe 4.3Ni, V =5 µm/s (c) specimen 12, Fe 4.3Ni, V =5 µm/s (d) specimen 20, Fe 4.5Ni, V =5 µm/s (e) specimen 21, Fe 4.5Ni, V =10 µm/s (f) specimen 6, Fe 4.1Ni, V =5 µm/s (g) specimen 7, Fe 4.1Ni, V =10 µm/s (h) specimen 8, Fe 4.1Ni, V =20 µm/s (i) specimen 17, Fe 4.4Ni, V =10 µm/s P α/β k k a < ye R, A%Or' 3 IeF k. (3) 8 Fe Ni W! { M <M D Z,? 4g. M{Kk?5,?;Ae #j~8.m MJV 8? 6 R. [ {, 8j ~ Z Y CW o Æ ^ α, 8j ~,CW / Æ ^ β, 8 α FT FZ < ^!5 k YF {K. Fe 4.3Ni W! {M <j~ 11 +T, j~zycw o, ^ af SZYM,e $rcw, ^ β Feo{K β IB Y F8 PP ; {K PCG, `M ga F β, E # 5. v { M < G/V M R gh P F α + o P ; V, A^. M k? 6 ~ e V 8 k. # 6 β 5 µm/s α,

280 Ó Õ 47 Fe 4.3Ni Ï 10 µm/s ßÅ 13 ßÅ ßÃ, «Ó α, β, Å ² α ÓßÃ. É, ºÅ ÅÂ, Fe Ni Æ Ï ßÅ Î ½Ë α Å β Å. (4) G/V, ÔÏ, ºÅ Å, Á Æ, Æ, 4a d, ± ÅÂ»Ï Á α/β Ê. (5) α ««Ó Î, Ú G/V Å ±ÀÈ α Đ ß ÅÎ, Fe 4.5Ni Ï ßÅ Å Æ Ï Ï ÓßÃ, «Ó α+ «β ÏßÃÌ α Ï ÓßÃ, 4e. ±Å «Ó α Ì β Ï Óßà ³, ³ ÓÍà ռ.» G/V ÅßÅ Ó Å̺ŠFe Ni Æ Ï ß ÛÜ ßÅ ßÅ Å Ï Î, ±Ç 5 Fe 4.3Ni Î Å 5 µm/s ÒÞÄ / Þ Fig.5 Longitudinal section of the quenched solid/liquid interface of directionally solidified Fe 4.3Ni alloy at V =5 µm/s (β (α) stand for β phase formed by α β solid phase transition) Ç Î. 2.2 Fe Ni ² º ¹ Á ßÅ ÐË, È ĐĐ Í Æ, Å ÄÅ, È, ËÅ / Đ È ¹ ¹Í Đ. ³ ßÎ, È ¹ Đ Í ß, ½ [21], Í 15 mm Î, È µ Ê. ß ß È È ß ¹, «Í 10 mm. Fe Ni Æ Ï, G/V Å, ÀÈ α ĐÈ Î, / Đ Ó Á, / Đ µ  Đ, Ó ³, Ô, Å, 7a. ßÅ G/V Å Ê, Ú Ó, ÀÈ α «Ó Î, / Đ Â µâ ± Đ, 7b, / Đ Á Ó Å Ê. Đ«½Ù ÌÖ Ï Û Ü ßÅ Ì ßÅ Å ßÃÙ. 8 Fe 4.4Ni Ï G/V «2 ³ ßÅ ßÃÌ / ĐßÃ, ³ 8a Ì c ÛÜ ßÅ, 8b Ì d ßÅ. ÛÜ ßÅ ÙÓßà O(α/β) Ì È Ïßà PCG ÓßÃ, Óßà ²Ù 2 ß Ã ³, 8a. Å ßÅ, Fe 4.4Ni Ï ßÃÙĐ, ÀÈ α µå Å ÙÓßà O(α/β) Å 6 Fe 4.3Ni Î Å 10 µm/s ÒÞÄ / Þ Fig.6 Longitudinal section (a) and cross section (b) of directionally solidified Fe 4.3Ni alloy at V =10 µm/s 7 Fe 4.1Ni Î ² ÒÞÄ / Þ Fig.7 Longitudinal section of the quenched solid/liquid interface of directionally solidified Fe 4.1Ni alloy at V =10 µm/s (a) and V =30 µm/s (b)

Õ 3 Ï Ð : ²Í ÝÃ Ã Ë ÑÝÁ ÒÌ I. Ü 281 8 Fe 4.4Ni Î ÞÄ Ø / Þ Fig.8 Microstructures of directionally solidified Fe 4.4Ni alloy (a, c) resistance heating directional solidification, G=12 K/mm, V =6 µm/s (β (α) in Fig.8c stands for the β phase formed by subsequent α β solid phase transformation) (b, d) induction heating directional solidification, G=30 K/mm, V =15 µm/s PCG β ßÃ, ¼³ Å β, 8b Ì d. ¼, ³ Ó 17( 4i), ² Å β È. É, G/V, ÛÜ ßÅ Ì ßÅ ßÃ, Š̺ÅÂ. ßÅ À Á α, ¼«ÙÓßà O(α/β) Å, α Á Ï Ni Ñ, ÏÉ Å, «β Ô Ý Å, ± Å β. Å ÛÜ, Î Å, Đ Ê, α Å β Å Đ Û. ¹ ³ 2 ßÅ Fe Ni Ï ßÃÙÁ Đ, ßÅ Å ¹, Á Ï Ï ¾, ÏÉ Ð, Å β, ÅÛÜ ßÅ Î ¹ ĐÊ, ÏÉ Ö Û, «α/β Û. ±ÛÜ ß Á, Fe Ni Æ Ï ßÅ ßÃÙ «Ù. (1) ÛÜ ßÅ, Fe Ni Æ Ï ßÅ Å ßÃÙ. G/V Å»Î, Ü Æ Ï ± Óßà Óßà ÙÓßÃÌ ÈÈ ßÃ, Ñ G/V Å Î Ï ÓßÃ, Å Ó G/V ÅÎ ß «Ó ÀÈ Æ Ñ ÏßÃ, 1. (2) ßÅ Å ±ÛÜ ßÅ ³. Á³ ½Å Á, ÀÈ α È Ý Ð Å. ÀÈ α È Đ Ï Ö ÅÏĐ ÅÆÓ, ËÅÖ β ʱÈ. α È ¼, Đ Á Ï ÔÒ ¹Ä, ÉÎ ¹ ¼, ßÅ Å ¼Ó., α È ¼, Đ Ï Ö¼», ¼ ±Ç Ç, ¹ ¼Ê. ÌÛ Ü, Æ ± Ï Ì G/V, ºÅ ³Ó Î, ßÅ ÀÈ α fs α0 Đ ÛÜ ( 1), Đ ÛÜ ßÅ Å ¹, Å Đ Ó. ÀÈ α È ½ : Ï ÌÈ Å Ê, Ì ¾, ÛÜ 5 µm/s ßÅ Fe 4.5Ni Ï fs α0» Fe 4.0Ni Ì Fe 4.3Ni Ï, Fe 4.5Ni Ï ºÅ Ó µ. (3) ßÅ ºÅ ±ÛÜ ß Å ³. G/V ÅßÅ Î, ßÅ ºÅÂßÃÙ ÛÜ, Ä Á α/β ( 4g Ì i), ÅÜ ºÅ α/β Å ßÃ, Óßà ÈÈ ß ÃÑ. 2 ßÅ ºÅ ± ÅÂ, ºÅ α/β Ä, ßÅ Đ ¹, ºÅ Ï ÅÒ µ. (4) G/V Å Ê, α ««Ó È Î, ± È, ÌÛÜ ßÅ ßà ٠Ã. G/V Å Ê, ¹ ÆÓ, 2 ßÅ Ê µ. É, ßÅ Å «Ó α+ «β ßÃÌ α Ï Óß Ã ( 4h), ÛÜ ßÅ Å Ï Ï Óßà Á ³ ¾, Ï ßÃ, ÓÍà µõ¼. G/V, ³ Fe Ni Ï

282 Ó Õ 47 ßÅ Å ßÃÙÅ ±, 4g Ì i «, ÔÏ Fe 4.1Ni Fe 4.4Ni, Å̺ŠÑÑ Ê, Æ» Ni É Ï α/β, ±ÇÖ³ Ê. ߯ Óßà ŠÊÅÄ, Fe 4.1Ni Ï ßÅ Å Óßà ß, ĐÄ, 9. Ë 9 «, α Đ β Ê β Î, α Ì β ĐÄ 3.87Ni Ì 4.41Ni, ± À Đ» 1790.1 Ì 1790.2 K, Á α ÊÅÄ 0.3 Ì 0.2 K. Đ, Óßà «, ÔßÅ, ßÅ Û, α Ì β ßÅ Å ÄÇ, ¼ β ± µ α ÆÈ Æ. 2 Ì ³ ¹, ß µ α/β б± Å β Ê, Ä»Î β ½ Ni É ÆÓ, Å α ½ Ni É É», µ¾ α ß β ÊÅÄ», ž β ß ÊÅÄ Ó. ¾ ÂØÆÖ, «ß Fe Ni Ï Óßà Šβ ÊÅÄ ² 0.2 0.3 K À. Ô, ¾ α β Đ Ê ß α ÊÅÄ 0.1 0.2 K À. Æ ÊÅÄ ß ÇÖÕ¼. ½ Á Ï Ý k 0 <1 Fe Ni Æ Ï, k 0 > 1 Æ Ï, Æ Ï ÆÈ. 9 Fe 4.1Ni Î ÒÞ ¾Þ Fig.9 Measured concentration distribution of the banding 3 structure observed in Fe 4.1Ni alloy (1) 5 Fe Ni Æ Ï ß ÛÜ ßÅ Ì» ßÅ ßÅ ß, Fe Ni Æ Ï 2 ßÅ ßÃÌß ßÃ, Óßà Óßà ÙÓßà ÈÈ ßÃÌ ß «Ó È È ßÃÑ. (2) 2 ßÅ, Fe Ni Ï ßÅ Å Å̺Å. 2 ßÅ, Õ Î Đ. Î Æ Ï» G/V ÅßÅ, ÚÀÈ α ĐßÅ Î «. (3) Fe Ni Æ Ï ßÅ Å Å Đ ßÅ À ÀÈ α, Å Á Å ßÃ, Óßà Óßà ÙÓßà ÏßÃ, Đ α Ô Ý Å Ê, β Ô Ý Å, Å ß β È. Ï Ì ³, α Å β Å ßÃÙ Ñ ¼. ±ÛÜ ßÅ, Õ ¹, α Å β Å, Å ÆßÃÙ ÆÓ. (4) Fe Ni Æ Ï ßÅ Å ºÅ Đ Ï ÀÈ α, Ö Ï Æ β(k 0 <1), α ± β À Î Å ßÃ. ßÅ ºÅ α Å β È Å Å, Ñ Ü Å ßÃ. Æ Ï 2 ß Å Å̺ŠÊ. ³ [1] Kerr H W, Kurz W. Int Mater Rev, 1996; 41: 129 [2] Johnson D R, Inui H, Yamaguchi M. Acta Mater, 1996; 44: 2523 [3] Lapin J, Klimova A, Velisek R, Kursa M. Scr Mater, 1997; 37: 85 [4] Zhong H, Li S M, Lu H Y, Liu L, Zou G R, Fu H Z. J Cryst Growth, 2008; 310: 3366 [5] Li S M, Ma B L, Lü H Y, Liu L, Fu H Z. Acta Metall Sin, 2005; 41: 411 (ÈÞ, Ù±Â, ÈÚ,, Ç. Ô, 2005; 41: 411) [6] Nagashio K, Takamura Y, Kuribayashi K. Scr Mater, 1999; 41: 1161 [7] Liu Y C. PhD Thesis, Northwestern Polytechnical University, Xi an, 2000 (. ºÕ¼,, 2000) [8] Wang M. PhD Thesis, Northwestern Polytechnical University, Xi an, 2002 (² Þ. ºÕ¼,, 2002) [9] Fu H Z, Su Y Q, Guo J J, Xu D M. Acta Metall Sin, 2002; 38: 9 ( Ç, Û,, Ï. Ô, 2002; 38: 9) [10] Dobler S, Lo T S, Plapp M, Karma A, Kurz W. Acta Mater, 2004; 52: 2795 [11] Su Y Q, Luo L S, Li X Z, Guo J J, Yang H M, Fu H Z. Appl Phys Lett, 2006; 89: 031918 [12] Trivedi R. Metall Trans, 1995; 26A: 1583

Õ 3 Ï Ð : ²Í ÝÃ Ã Ë ÑÝÁ ÒÌ I. Ü 283 [13] Liu S, Trivedi R. Metall Trans, 2006; 37A: 3293 [14] Trivedi R, Shin J H. Mater Sci Eng, 2005; A413: 288 [15] Li X Z, Guo J J, Su Y Q, Wu S P, Fu H Z. Acta Metall Sin, 2005; 41: 593 (ÈÎ,, Û,, Ç. Ô, 2005; 41: 593) [16] Guo J J, Li X Z, Su Y Q, Wu S P, Fu H Z. Acta Metall Sin, 2005; 41: 599 (, ÈÎ, Û,, Ç. Ô, 2005; 41: 599) [17] Li S M, Liu L, Li X L, Fu H Z. Acta Metall Sin, 2004; 40: 20 (ÈÞ,, ÈÈÉ, Ç. Ô, 2004; 40: 20) [18] Luo L S. PhD Thesis, Harbin Institute of Technology, 2008 (Ø Ð. Ç ºÕ¼, 2008) [19] Karma A, Rappel W J, Fuh B C, Trivedi R. Metall Trans, 1998; 29A: 1457 [20] Luo L S, Su Y Q, Guo J J, Li X Z, Yang H M, Fu H Z. Appl Phys Lett, 2008; 92: 061903 [21] Xu X. Master Dissertation, Northwestern Polytechnical University, Xi an, 2005 (. Đ ºÕ¼,, 2005)