Symmetries and Feynman Rules for Ramond Sector in WZW-type Superstring Field Theories

Σχετικά έγγραφα
Symmetries and Feynman Rules for Ramond Sector in WZW-type Superstring Field Theories

2 Composition. Invertible Mappings

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)

derivation of the Laplacian from rectangular to spherical coordinates

Homework 3 Solutions

Math 6 SL Probability Distributions Practice Test Mark Scheme

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Example Sheet 3 Solutions

EE512: Error Control Coding

Partial Differential Equations in Biology The boundary element method. March 26, 2013

ST5224: Advanced Statistical Theory II

Lecture 2. Soundness and completeness of propositional logic

C.S. 430 Assignment 6, Sample Solutions

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

On a four-dimensional hyperbolic manifold with finite volume

Space-Time Symmetries

Section 9.2 Polar Equations and Graphs

Finite Field Problems: Solutions

Areas and Lengths in Polar Coordinates

4.6 Autoregressive Moving Average Model ARMA(1,1)

Areas and Lengths in Polar Coordinates

Fractional Colorings and Zykov Products of graphs

The Simply Typed Lambda Calculus

= {{D α, D α }, D α }. = [D α, 4iσ µ α α D α µ ] = 4iσ µ α α [Dα, D α ] µ.

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Second Order Partial Differential Equations

ECE 308 SIGNALS AND SYSTEMS FALL 2017 Answers to selected problems on prior years examinations

The challenges of non-stable predicates

Section 8.3 Trigonometric Equations

Other Test Constructions: Likelihood Ratio & Bayes Tests

Inverse trigonometric functions & General Solution of Trigonometric Equations

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

1 String with massive end-points

Strain gauge and rosettes

Every set of first-order formulas is equivalent to an independent set

ψ ( 1,2,...N ) = Aϕ ˆ σ j σ i χ j ψ ( 1,2,!N ) ψ ( 1,2,!N ) = 1 General Equations

( y) Partial Differential Equations

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Revisiting the S-matrix approach to the open superstring low energy eective lagrangian

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님

ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ. ΘΕΜΑ: «ιερεύνηση της σχέσης µεταξύ φωνηµικής επίγνωσης και ορθογραφικής δεξιότητας σε παιδιά προσχολικής ηλικίας»

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Potential Dividers. 46 minutes. 46 marks. Page 1 of 11

ΑΚΑ ΗΜΙΑ ΕΜΠΟΡΙΚΟΥ ΝΑΥΤΙΚΟΥ ΜΑΚΕ ΟΝΙΑΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ

Solutions to Exercise Sheet 5

PARTIAL NOTES for 6.1 Trigonometric Identities

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

Partial Trace and Partial Transpose

Στο εστιατόριο «ToDokimasesPrinToBgaleisStonKosmo?» έξω από τους δακτυλίους του Κρόνου, οι παραγγελίες γίνονται ηλεκτρονικά.

CRASH COURSE IN PRECALCULUS

Second Order RLC Filters

Numerical Analysis FMN011

Instruction Execution Times

Lecture 34 Bootstrap confidence intervals

Similarly, we may define hyperbolic functions cosh α and sinh α from the unit hyperbola

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006

Non-Gaussianity from Lifshitz Scalar

Solutions to the Schrodinger equation atomic orbitals. Ψ 1 s Ψ 2 s Ψ 2 px Ψ 2 py Ψ 2 pz

From the finite to the transfinite: Λµ-terms and streams

( ) 2 and compare to M.

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

6.3 Forecasting ARMA processes

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

Approximation of distance between locations on earth given by latitude and longitude

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

Κάθε γνήσιο αντίγραφο φέρει υπογραφή του συγγραφέα. / Each genuine copy is signed by the author.

General 2 2 PT -Symmetric Matrices and Jordan Blocks 1

Derivation of Optical-Bloch Equations

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Higher Derivative Gravity Theories

CE 530 Molecular Simulation

1) Formulation of the Problem as a Linear Programming Model

Section 7.6 Double and Half Angle Formulas

w o = R 1 p. (1) R = p =. = 1

ΚΥΠΡΙΑΚΟΣ ΣΥΝΔΕΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY 21 ος ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ Δεύτερος Γύρος - 30 Μαρτίου 2011

ΕΘΝΙΚΗ ΣΧΟΛΗ ΤΟΠΙΚΗΣ ΑΥΤΟ ΙΟΙΚΗΣΗΣ Β ΕΚΠΑΙ ΕΥΤΙΚΗ ΣΕΙΡΑ ΤΜΗΜΑ: ΟΡΓΑΝΩΣΗΣ ΚΑΙ ΙΟΙΚΗΣΗΣ ΤΕΛΙΚΗ ΕΡΓΑΣΙΑ. Θέµα:

The Pohozaev identity for the fractional Laplacian

Congruence Classes of Invertible Matrices of Order 3 over F 2

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΠΕΛΟΠΟΝΝΗΣΟΥ

The Hartree-Fock Equations

Matrices and Determinants

Overview. Transition Semantics. Configurations and the transition relation. Executions and computation

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

Μηχανική Μάθηση Hypothesis Testing

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

Right Rear Door. Let's now finish the door hinge saga with the right rear door

Statistical Inference I Locally most powerful tests

Capacitors - Capacitance, Charge and Potential Difference

Επιβλέπουσα Καθηγήτρια: ΣΟΦΙΑ ΑΡΑΒΟΥ ΠΑΠΑΔΑΤΟΥ

Démographie spatiale/spatial Demography

If we restrict the domain of y = sin x to [ π 2, π 2

Dr. D. Dinev, Department of Structural Mechanics, UACEG

Transcript:

Symmetries and Feynman Rules for Ramond Sector in WZW-type Superstring Field Theories Hiroshi Kunitomo YITP 215/3/5 @Nara Women s U. Nara arxiv:1412.5281, 153.xxxx Y TP YUKAWA INSTITUTE FOR THEORETICAL PHYSICS 1

1. Introduction WZW-type Superstring field theory A formulation with no explicit picture changing operator and working well for NS sector: Open [Berkovits 1995] / Hetetrotic [Okawa and Zwiebach 24, Berkovits, Okawa and Zwiebach 24] Difficult to construct an action for R sector EOM [Berkovits 21] [HK 214] A pseudo-action [Michishita 25] [HK 214] We can construct the self-dual Feynman rules reproducing the on-shell four point amplitudes. However, these rules do not reproduce the five-point amplitudes [Michishita 27], or have an ambiguity [HK 213]. Q: Can we construct consistent Feynman rules? 2

Plan of the Talk 1. Introduction 2. New Feynman rules in the WZW-type open SSFT 2.1 EOM and the pseudo-action 2.2 Gauge fixing and the self-dual Feynman rules 2.3 Gauge symmetries and the new Feynman rules 3. Amplitudes with the external fermions 4. Summary and discussion 3

2. New Feynman rules in the WZW-type Open SSFT 2.1 EOM [Berkovits] and the pseudo-action [Michishita] String fields : Grassmann even, NS Φ H NS large G, P =, and, 1/2, respectively. NS action : S NS = 1 2 e Φ Qe Φ e Φ ηe Φ 1 and R Ψ HR large with dte tφ t e tφ {e tφ Qe tφ, e tφ ηe tφ }. 1 EOM including the R sector : ηe Φ Qe Φ + ηψ 2 =, Q ηψ =, 2 where Q A = QA + Ae Φ Qe Φ 1 A e Φ Qe Φ A. Gauge symmetry : e Φ δe Φ = Q Λ + ηλ 1 ηψλ 12 Λ 12 ηψ, δψ = Q Λ 12 + ηλ 32 + ΨηΛ 1 ηλ 1 Ψ. 3a 3b 4

Auxiliary field : Grassmann even, Ξ H R large with G, P =, 1/2. The pseudo-action : The variation of S = S NS + S R yields S R = 1 2 QΞeΦ ηψe Φ. 4 ηe Φ Qe Φ + 1 2 {ηψ, Q Ξ } =, Q ηψ =, ηq Ξ =. 5 where Ξ = e Φ Ξe Φ. If we eliminate Ξ by imposing a constraint Q Ξ = ηψ, 5 become EOM 2. Since this is not the true action we cannot derive the Feynman rules. 5

2.2 Gauge fixing and the self-dual Feynman rules Quadratic part of the action has gauge symmetries S = 1 2 QΦηΦ 1 QΞηΨ, 6 2 δφ = QΛ + ηλ 1, δψ = QΛ 12 + ηλ 32, δξ = QΛ 1 2 + η Λ 12. 7 Fix them by the simplest gauge conditions b Φ = ξ Φ =, b Ψ = ξ Ψ =, b Ξ = ξ Ξ =. 8 The propagators become ΦΦ Π = ξ b L = dτξ b e τl, ΨΞ = ΞΨ = 2 ξ b L = 2Π. 9 In order to take into account the constraint, we replace ηψ and QΞ by their linearized self-dual part ω = ηψ + QΞ/2 in vertices: the self-dual rules. 6

Propagator : NS : ΦΦ = ξ b L, R : ωω = 1 2 Q ξ b ξ b η + η L L Q diagonal Vertices :... on-shell external fermions : ω Restrict them by the linearized constraint QΞ = ηψ, Then ω = ηψ 1 which automatically implies the on-shell condition QηΨ =. 7

The self-dual Feynman rules give the well-known on-shell 4-point amplitudes but cannot reproduce the 5-point amplitudes. [Michishita] 2.3 Gauge symmetries and the new Feynman rules Gauge symmetries : The pseudo- action S = S NS + S R is invariant under e Φ δe Φ = Q Λ + ηλ 1, 11a δψ = ηλ 32 + [Ψ, ηλ 1 ], δξ = QΛ 1 2 + [Q, Λ ]. 11b These are compatible with the self-dual/anti-self-dual decomposition. δq Ξ ± ηψ = [Q Ξ ± ηψ, Λ 1 ], 12 and so respected by the self-dual rules. However, these symmetries are not enough to gauge away all the un-physical states. They do not contain all the symmetries of the quadratic action 7. 8

The missing symmetries generated by Λ1 2 and Λ1 2 can be extended to e Φ δe Φ = 1 2 {Q Ξ, Λ 12 } + 1 2 {ηψ, Λ 12 }, 13 δψ = Q Λ 12, δξ = e Φ η Λ 12 e Φ. 14 The variation of the action under these transformations becomes δs = 1 4 Λ 1 2 [Q Ξ 2, Q Ξ ηψ] + 1 4 Λ 12 [ηψ 2, Q Ξ ηψ], 15 which vanishes under the constraint. These additional symmetries are not compatible with the self-dual/andti-selfdual decomposition. The self-dual rules do not respect them. Claim : The Feynman rules have to respect these symmetries too. 9

The new Feynman rules Propagator : NS : ΦΦ = ξ b L, R : ΨΞ = ΞΨ = 2 ξ b L off-diagonal Vertices :... 1

on-shell external fermions : Add two possibilities, Ψ and Ξ. Restrict them by the linearized constraint QΞ = ηψ. 16 We can show that all the on-shell 4- and 5 point amplitudes are correctly reproduced by the new Feynman rules. 11

3. Amplitudes with the external fermions Four-point amplitudes are correctly reproduced as in the self-dual rules. Difference between two rules comes from from the diagram with either i at least two fermion propagators, A QΠ R η + ηπ R Q QΠ R η + ηπ R Q W, 17 in the self-dual rules and A QΠ R η QΠ R η W + ηπ R Q ηπ R Q W, 18 in the new rules. Or, ii two-fermion-even-boson interaction at least one of whose fermions, e.g. S 4 R = 1 4 Φ 2 QΞηΨ Φ 2 ηψqξ + 1 4 ΦQΞΦηΨ ΦηΨΦQΞ. 19 These differences improve the discrepancy in the five-point amplitudes! 12

3.2 Five-point amplitudes For example, ordering FFBBB Five two-propagator 2P diagrams A E B A C B B D C E D A C a D b E c D C E D E B A C A d B e 13

A E B D C a A 2Aa F F BBB = 1 dτ 1 dτ 2 8 QΞ A ηψ B + ηψ A QΞ B ξ c1 b c1 QΦ C ηξ c2 b c2 QΦ D ηφ E + ηφ D QΦ E W + QΞ A ηψ B + ηψ A QΞ B ξ c1 b c1 ηφ C Qξ c2 b c2 QΦ D ηφ E + ηφ D QΦ E W 2 3 4 2 5 1 Witten diagram 14

Using One can rewrite it as A 2Aa F F BBB = 1 2 + 1 8 dτ{q, b }e τl = d 2 τ QΞ A ηψ B + ηψ A QΞ B dτ QΞ A ηψ B + ηψ A QΞ B dτ τ e τl, 21 ξ c1 b c1 QΦ C b c2 QΦ D ηφ E W ξ c b c Φ C QΦ D ηφ E + ηφ D QΦ E W 2 QΞ A ηψ B + ηψ A QΞ B ξ c b c QΦ C ηφ D Φ E W QΦ D ηφ E + ηφ D QΦ E ξ c b c QΞ A ηψ B + ηψ A QΞ B Φ C W 2 ηφ D Φ E ξ c b c QΞ A ηψ B + ηψ A QΞ B QΦ C W, 22 15

B A C E D b A 2Pb F F BBB = 1 2 dτ 1 dτ 2 QΞ B Φ C ηξ c1 b c1 Q Φ D ηξ c2 b c2 Q Φ E ηψ A W + ηψ B Φ C Qξ c1 b c1 η Φ D Qξ c2 b c2 η Φ E QΞ A W 23 16

= 1 2 d 2 τ QΞ B QΦ C ξ c1 b c1 QΦ D b c2 ηφ E ηψ A W + ηψ B QΦ C ξ c1 b c1 QΦ D b c2 ηφ E QΞ A W 1 2 dτ QΞ B Φ C ξ c b c ηφ D QΦ E ηψ A W QΞ B QΦ C ξ c b c ηφ D Φ E ηψ A W QΦ E ηψ A ξ c b c QΞ B ηφ C Φ D W + ηφ E QΞ A ξ c b c ηψ B QΦ C Φ D W + ηφ E ηψ A ξ c b c QΞ B QΦ C Φ D W Φ E ηψ A ξ c b c QΞ B QΦ C ηφ D W. 24 17

A 2Pc F F BBB =1 2 d 2 τ QΦ C QΦ D ξ c1 b c1 ηφ E b c2 QΞ A ηψ B + ηψ A QΞ B W + 1 dτ 2 Φ C QΦ D ξ c b c ηφ E QΞ A ηψ B + ηψ A QΞ B W 8 + QΦ C ηφ D ηφ C QΦ D ξ c b c Φ E QΞ A ηψ B + ηψ A QΞ B W 2 QΦ C ηφ D ξ c b c Φ E QΞ A ηψ B + ηψ A QΞ B W 2 QΦ C Φ D ξ c b c ηφ E QΞ A ηψ B + ηψ A QΞ B W 2 QΞ A ηψ B + ηψ A QΞ B ξ c b c Φ C QΦ D ηφ E W QΞ A ηψ B + ηψ A QΞ B ξ c b c QΦ C ηφ D ηφ C QΦ D Φ E W + 2 QΞ A ηψ B + ηψ A QΞ B ξ c b c QΦ C ηφ D Φ E W, 25 18

A 2Pd F F BBB =1 2 + 1 4 d 2 τ QΦ D ηφ E ξ c1 b c1 QΞ A b c2 ηψ B + ηψ A b c2 QΞ B dτ QΦ D ηφ E + ηφ D QΦ E ξ c b c ηψ A QΞ B Φ C W + ηφ D Φ E ξ c b c QΞ A ηψ B + ηψ A QΞ B QΦ C W + QΞ B Φ C ξ c b c QΦ D ηφ E + ηφ D QΦ E ηψ A W QΞ B QΦ C ξ c b c ηφ D Φ E ηψ A W QΦ C W ηψ B QΦ C ξ c b c ηφ D Φ E QΞ A W, 26 19

A 2Pe F F BBB =1 2 d 2 τ ηφ E QΞ A ξ c1 b c1 ηψ B b c2 QΦ C QΦ D W + ηφ E ηψ A ξ c1 b c1 QΞ B b c2 QΦ C QΦ D W 1 4 dτ Φ E ηψ A ξ c b c QΞ B QΦ C ηφ D + ηφ C QΦ D W ηφ E QΞ A ξ c b c ηψ B QΦ C Φ D Φ C QΦ D W ηφ E ηψ A ξ c b c QΞ B QΦ C Φ D Φ C QΦ D W QΦ C ηφ D + ηφ C QΦ D ξ c b c Φ E ηψ A QΞ B W QΦ C Φ D Φ C QΦ D ξ c b c ηφ E QΞ A ηψ B + ηψ A QΞ B W, 27 2

five one-propagator diagrams A E B A C B D E A B a C C b D D c E D C E D B C E d A A e B 21

Similarly, A 1Pa F F BBB = 1 24 dτ QΞ A ηψ B + ηψ A QΞ B ξ c b c Φ C QΦ D ηφ E ηφ D QΦ E W 2 QΞ A ηψ B + ηψ A QΞ B ξ c b c QΦ C Φ D ηφ E ηφ C Φ D QΦ E + QΞ A ηψ B + ηψ A QΞ B W ξ c b c QΦ C ηφ D ηφ C QΦ D Φ E W, 28 22

A 1Pb F F BBB =1 4 dτ ηψ B ηφ C ξ c b c QΦ D Φ E QΞ A W QΞ B ηφ C ξ c b c QΦ D Φ E ηψ A W ηψ B Φ C ξ c b c QΦ D ηφ E ηφ D QΦ E QΞ A W A 1Pc F F BBB =1 8 1 4 QΞ A ηψ B Φ C Φ D Φ E W, 29 dτ QΦ C ηφ D + ηφ C QΦ D ξ c b c Φ E QΞ A ηψ B ηψ A QΞ B W, 3 A 1Pd F F BBB =1 8 dτ QΦ D ηφ E + ηφ D QΦ E ξ c b c QΞ A ηψ B ηψ A QΞ B Φ C W, 31 23

A 1Pe F F BBB =1 4 dτ Φ E ηψ A ξ c b c QΞ B QΦ C ηφ D ηφ C QΦ D W + ηφ E QΞ A ξ c b c ηψ B ηψ A ξ c b c QΞ B QΦ C Φ D W 1 4 ηψ A QΞ B Φ C Φ D Φ E W. 32 No-propagator diagram : A E 5 B 3 C D A NP F F BBB = 1 12 QΞ A ηψ B + ηψ A QΞ B Φ C Φ D Φ E W. 33 24

A F F BBB = = e i=a A 2Pi F F BBB + d 2 τ e i=a A 1Pi F F BBB + ANP F F BBB QΞ A ηψ B + ηψ A QΞ B ξ c1 b c1 QΦ C b c2 QΦ D ηφ E W + ηψ B QΦ C ξ c1 b c1 QΦ D b c2 ηφ E QΞ A W + QΞ B QΦ C ξ c1 b c1 QΦ D b c2 ηφ E ηψ A W + QΦ C QΦ D ξ c1 b c1 ηφ E b c2 QΞ A ηψ B + ηψ A QΞ B W + QΦ D ηφ E ξ c1 b c1 QΞ A b c2 ηψ B + ηψ A b c2 QΞ B QΦ C W + ηφ E QΞ A ξ c1 b c1 ηψ B b c2 QΦ C QΦ D W + ηφ E ηψ A ξ c1 b c1 QΞ B b c2 QΦ C QΦ D W 25

= d 2 τ ηψ A ηψ B ξ c1 b c1 QΦ C b c2 QΦ D ηφ E W + ηψ B QΦ C ξ c1 b c1 QΦ D b c2 ηφ E ηψ A W + QΦ C QΦ D ξ c1 b c1 ηφ E b c2 ηψ A ηψ B W + QΦ D ηφ E ξ c1 b c1 ηψ A b c2 ηψ B QΦ C W + ηφ E ηψ A ξ c1 b c1 ηψ B b c2 QΦ C QΦ D W, 34 after eliminating Ξ by QΞ = ηψ. Since the final expression has the same form up to ξ as the bosonic SFT with ηψ = V 1/2, QΦ = V A = V, we can conclude that this is equal to the well-known amplitude. Similarly, we can compute the ampolitudes with FFFFB and FBFBB, and show that the results are equal to the well-known amplitues. 26

4. Summary and discussion We have found that the missing gauge-symmetries are realized as those under which the variation of the pseudo-action is propotional to the constraint. We have proposed the new Feynman rules for the open SSFT respecting all the gauge- symmetries. We have shown that the correct on-shell four- and five-point amplitudes are reproduced by the new rules. We can apply the similar argument to the heterotic string field theory, and obtain the new Feynmnan rules which reproduce the correct four- and five-point amplitudes without any ambiguity. 27

To clarify whether the new Feynman rules reproduce all the on-shell amplitudes at the tree level. general theory of the pseudo-action and its symmetries To extend the Feynman rules to those applicable beyond the tree level. gauge fixing by means of the BV method extra factor 1/2 for each fermion loop? 28