arxiv: v3 [math.pr] 12 Sep 2016

Σχετικά έγγραφα
( ) ( t) ( 0) ( ) dw w. = = β. Then the solution of (1.1) is easily found to. wt = t+ t. We generalize this to the following nonlinear differential

= e 6t. = t 1 = t. 5 t 8L 1[ 1 = 3L 1 [ 1. L 1 [ π. = 3 π. = L 1 3s = L. = 3L 1 s t. = 3 cos(5t) sin(5t).

Electronic Companion to Supply Chain Dynamics and Channel Efficiency in Durable Product Pricing and Distribution

Approximation of the Lerch zeta-function

Xiaoquan (Michael) Zhang

Lecture 6. Goals: Determine the optimal threshold, filter, signals for a binary communications problem VI-1

Global Attractor for a Class of Nonlinear Generalized Kirchhoff-Boussinesq Model

Approximate System Reliability Evaluation

Example 1: THE ELECTRIC DIPOLE

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

(a,b) Let s review the general definitions of trig functions first. (See back cover of your book) sin θ = b/r cos θ = a/r tan θ = b/a, a 0

I.I. Guseinov. Department of Physics, Faculty of Arts and Sciences, Onsekiz Mart University, Çanakkale, Turkey

Deterministic Policy Gradient Algorithms: Supplementary Material

Example Sheet 3 Solutions

Uniform Convergence of Fourier Series Michael Taylor

On Zero-Sum Stochastic Differential Games

Analysis of optimal harvesting of a prey-predator fishery model with the limited sources of prey and presence of toxicity

2 Composition. Invertible Mappings

Fractional Calculus. Student: Manal AL-Ali Dr. Abdalla Obeidat

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Statistical Inference I Locally most powerful tests

Appendix A. Stability of the logistic semi-discrete model.

On the Galois Group of Linear Difference-Differential Equations

Motion of an Incompressible Fluid. with Unit Viscosity

Analytical Expression for Hessian

RG Tutorial xlc3.doc 1/10. To apply the R-G method, the differential equation must be represented in the form:

Déformation et quantification par groupoïde des variétés toriques

Bounding Nonsplitting Enumeration Degrees

The challenges of non-stable predicates

Every set of first-order formulas is equivalent to an independent set

Q π (/) ^ ^ ^ Η φ. <f) c>o. ^ ο. ö ê ω Q. Ο. o 'c. _o _) o U 03. ,,, ω ^ ^ -g'^ ο 0) f ο. Ε. ιη ο Φ. ο 0) κ. ο 03.,Ο. g 2< οο"" ο φ.

1 3D Helmholtz Equation

Asymptotic behavior of solutions of mixed type impulsive neutral differential equations

Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α

George S. A. Shaker ECE477 Understanding Reflections in Media. Reflection in Media

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p)

6.3 Forecasting ARMA processes

326. Dynamic synchronization of the unbalanced rotors for the excitation of longitudinal traveling waves

Matrix Hartree-Fock Equations for a Closed Shell System

( ) ( ) ( ) Fourier series. ; m is an integer. r(t) is periodic (T>0), r(t+t) = r(t), t Fundamental period T 0 = smallest T. Fundamental frequency ω

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Oscillating dipole system Suppose we have two small spheres separated by a distance s. The charge on one sphere changes with time and is described by

Fractional Colorings and Zykov Products of graphs

Appendix. The solution begins with Eq. (2.15) from the text, which we repeat here for 1, (A.1)

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Αλγόριθμοι και πολυπλοκότητα Maximum Flow

EE512: Error Control Coding

On Quasi - f -Power Increasing Sequences

e t e r Cylindrical and Spherical Coordinate Representation of grad, div, curl and 2

Global Existence of Solutions of the Gierer-Meinhardt System with Mixed Boundary Conditions

21. Stresses Around a Hole (I) 21. Stresses Around a Hole (I) I Main Topics

( P) det. constitute the cofactor matrix, or the matrix of the cofactors: com P = c. ( 1) det

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Space Physics (I) [AP-3044] Lecture 1 by Ling-Hsiao Lyu Oct Lecture 1. Dipole Magnetic Field and Equations of Magnetic Field Lines

Exercise, May 23, 2016: Inflation stabilization with noisy data 1

Online Appendix to the Paper No Claim? Your Gain: Design of Residual Value Extended Warranties under Risk Aversion and Strategic Claim Behavior

ECE145a / 218a Tuned Amplifier Design -basic gain relationships

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

Tutorial Note - Week 09 - Solution

The choice of an optimal LCSCR contract involves the choice of an x L. such that the supplier chooses the LCS option when x xl

ω = radians per sec, t = 3 sec

Necessary and sufficient conditions for oscillation of first order nonlinear neutral differential equations

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

THE BLOWUP OF SOLUTIONS FOR 3-D AXISYMMETRIC COMPRESSIBLE EULER EQUATIONS

r = x 2 + y 2 and h = z y = r sin sin ϕ

Homework 3 Solutions

Math221: HW# 1 solutions

Vidyalankar. Vidyalankar S.E. Sem. III [BIOM] Applied Mathematics - III Prelim Question Paper Solution. 1 e = 1 1. f(t) =

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Matrices and Determinants

The Simply Typed Lambda Calculus

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

Finite Field Problems: Solutions

LAGRANGIAN EQUILIBRIUM EQUATIONS IN CYLINDRICAL AND SPHERICAL COORDINATES

Other Test Constructions: Likelihood Ratio & Bayes Tests

Reservoir modeling. Reservoir modelling Linear reservoirs. The linear reservoir, no input. Starting up reservoir modeling

Lecture 12 Modulation and Sampling

The Euler Equations! λ 1. λ 2. λ 3. ρ ρu. E = e + u 2 /2. E + p ρ. = de /dt. = dh / dt; h = h( T ); c p. / c v. ; γ = c p. p = ( γ 1)ρe. c v.

Laplace s Equation in Spherical Polar Coördinates

) 2. δ δ. β β. β β β β. r k k. tll. m n Λ + +

A Two-Sided Laplace Inversion Algorithm with Computable Error Bounds and Its Applications in Financial Engineering

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 10η: Basics of Game Theory part 2 Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών

α ]0,1[ of Trigonometric Fourier Series and its Conjugate

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

Research Article Existence of Positive Solutions for Fourth-Order Three-Point Boundary Value Problems

Section 8.3 Trigonometric Equations

ΜΟΝΑΔΕΣ ΑΡΙΣΤΕΙΑΣ ΑΝΟΙΧΤΟΥ ΛΟΓΙΣΜΙΚΟΥ

Parametrized Surfaces

4.2 Differential Equations in Polar Coordinates

Congruence Classes of Invertible Matrices of Order 3 over F 2

An Inventory of Continuous Distributions

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

Galatia SIL Keyboard Information

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

Managing Production-Inventory Systems with Scarce Resources

Reminders: linear functions

Second Order Partial Differential Equations

Inverse trigonometric functions & General Solution of Trigonometric Equations

Numerical Analysis FMN011

Fourier Transform. Fourier Transform

Transcript:

On he obu Dynkin Game Ehan Bayaka, Song Yao axiv:156.9184v3 mah.p 12 Sep 216 Abac We analyze a obu veion of he Dynkin game ove a e P of muually ingula pobabiliie. We fi pove ha conevaive playe lowe and uppe value coincide Le u denoe he value by V. Such a eul connec he obu Dynkin game wih econd-ode doubly efleced backwad ochaic diffeenial equaion. Alo, we how ha he value poce V i a ubmaingale unde an appopiaely defined nonlinea expecaion E up o he fi ime τ when V mee he lowe payoff poce L. If he pobabiliy e P i weakly compac, one can even find an opimal iple P,τ,γ fo he value V. The muual ingulaiy of pobabiliie in P caue majo echnical difficulie. To deal wih hem, we ue ome new mehod including wo appoximaion wih epec o he e of opping ime. Keywod: obu Dynkin game, nonlinea expecaion, dynamic pogamming pinciple, conol in weak fomulaion, weak abiliy unde paing, maingale appoach, pah-dependen ochaic diffeenial equaion wih conol, opimal iple, opimal opping wih andom mauiy. 1 Inoducion We analyze a coninuou-ime obu Dynkin game wih epec o a non-dominaed e P of muually ingula pobabiliie on he canonical pace Ω of coninuou pah. In hi game, Playe 1, who negaively/conevaively hink ha he Naue i alo again he, will eceive he following paymen fom Playe 2 if he wo playe chooe τ T and γ T epecively o qui he game: τ,γ := τ γ g d+1 {τ γ} L τ +1 {γ<τ} U γ. Hee T denoe he e of all opping ime wih epec o he naual filaion F of he canonical poce B, and he unning payoff g, he eminal payoff L U ae F adaped pocee unifomly coninuou in ene of 1.6. A pobabiliie in P ae muually ingula, one can no define he condiional expecaion of he nonlinea expecaion inf, and hu Playe 1 lowe value poce V and uppe value poce V, in eenial exemum P P ene. Inead, we ue hifed pocee and egula condiional pobabiliy diibuion ee Secion 1.1 fo deail o define V ω:= up τ T inf inf γ T P P,ω,ω τ,γ, V ω:= inf P P,ω inf γ T up τ T,ω τ,γ,,ω,t Ω. Hee T denoe he e of all opping ime wih epec o he naual filaion F of he hifed canonical poce B on he hifed canonicalpaceω, P,ωi a pah-dependen pobabiliyewhich include all egulacondiional pobabiliy diibuion emming fom P ee P2, and,ω τ,γ:= τ γ g,ω d+1 {τ γ} L,ω τ +1 {γ<τ} Uγ,ω. We ae gaeful o Jianfeng Zhang fo inighful commen. Depamen of Mahemaic, Univeiy of Michigan, Ann Abo, MI 4819; email: ehan@umich.edu. E. Bayaka i uppoed in pa by he Naional Science Foundaion unde DMS-161317, and by he Suan M. Smih Pofeohip. Any opinion, finding, and concluion o ecommendaion expeed in hi maeial ae hoe of he auho and do no neceaily eflec he view of he Naional Science Foundaion. Depamen of Mahemaic, Univeiy of Pibugh, Pibugh, PA 1526; email: ongyao@pi.edu. S. Yao i uppoed in pa by he Naional Science Foundaion unde DMS-161328

obu Dynkin Game 2 In Theoem 4.1, we demonae ha Playe 1 lowe and uppe value pocee coincide and hu he ha a value poce V ω=v ω=v ω,,ω,t Ω in he obu Dynkin game. We alo ee in Theoem 4.1 ha he fi ime τ when V mee L i an opimal opping ime fo Playe 1, i.e. V = inf inf E P τ,γ, 1.1 γ T P P and ha pocee V + g d,,t i a ubmaingale unde he pahwie-defined nonlinea expecaion E ξω:= inf ξ,ω,,ω,t Ω up o ime τ. P P,ω Since a Dynkin game i acually a coupling of wo opimal opping poblem, he maingale appoach inoduced by Snell 55 o olve he opimal opping poblem wa lae exended o Dynkin game, ee e.g. 48, 11, 1, 43, 46. In he cuen pape, we will adop a genealized maingale mehod wih epec o he nonlinea expecaion E = {E },T. The muual ingulaiy of pobabiliie in P give ie o ome majo echnical hudle: Fi, no dominaing pobabiliy in P mean ha we do no have a dominaed convegence heoem fo he nonlinea expecaion E. Becaueofhi, onecannofollowhe claicappoachfodynkingameoobainhe E maingale popey of V + g d. Second, we do no have a meauable elecion heoem fo opping aegie, which complicae he poof of he dynamic pogamming pinciple. Ou maingale appoach a wih a dynamic pogamming pinciple DPP fo poce V. The uboluion pa of DPP Popoiion 3.1 elie on a weak abiliy unde paing aumpion P3 on he pobabiliy cla {P,ω},ω,T Ω, which allow u o conuc appoximaing meaue by paing ogehe local ε opimal pobabiliic model. We how in Secion 5 ha P3, along wih ou ohe aumpion on he pobabiliy cla, ae aified in he cae of ome pah-dependen SDE wih conol, which epeen a lage cla of model on imulaneou dif and volailiy unceainy. We demonae ha he upeoluion pa of he DPP Popoiion 3.2byemployingacounabledeneubeΓofT oconucauiableappoximaion. Thidynamicpogamming eul implie he coninuiy of poce V Popoiion 3.4, which play a cucial ole in he appoximaion cheme o be decibed in he following paagaph fo poving Theoem 4.1. The key o Theoem 4.1 i he E ubmaingaliy of poce { V + g d },T up o τ. Inpied by Nuz and Zhang 5 idea on uing opping ime wih finiely many value fo appoximaion, we define an appoximaing equence of value pocee V n o V by V n ω := inf inf P P,ω γ T up τ T n,ω τ,γ V ω,,ω,t Ω, whee T n collec all T opping ime aking value in { i2 n T } 2 n. By P3, Popoiion 3.1 ill hold i= fo V n, which lead o ha fo any δ> and k n, he poce { V n+ g d } i an E ubmaingale ove he,t gid {i2 k T} 2k i= up o he fi ime νn,δ when V n mee L+δ ee A.14. Leing k, n and hen ε, we can deduce fom lim V n =V Popoiion 3.3 and he coninuiy of V ha he poce { V + n g d },T i an E ubmaingale up o τ. Theoem 4.1 hen eaily follow. I i woh poining ou ha ou agumen doe no equie he payoff pocee o be bounded. A he co of ome addiional condiion uch a he weak compacne of P and he onge paing condiion of 56 all of which ae aified fo conol of weak fomulaion, ee Example 6.1, we can apply he main eul of 7 o find in Theoem 6.1 a pai P,γ P T uch ha V = τ,γ. 1.2 elevan Lieaue. Since i inoducion by 18, Dynkin game have been analyzed in dicee and coninuouime model fo decade. Benouan and Fiedman 24, 8, 9 fi analyzed he game in he eing of Makov diffuion pocee by mean of vaiaional inequaliie and fee bounday poblem. Bayaka and Sîbu in 4 had a feh look a hi poblem uing he Sochaic Peon mehod a veificaion appoach wihou moohne. Fo a moe geneal cla of ewad pocee maingale appoach wa developed unde Mokobodzki condiion ee e.g. 48, 1, 11, 1 and ceain egulaiy aumpion on payoff pocee ee e.g. 43, 41. Cvianić and Kaaza 16 conneced Dynkin game o backwad ochaic diffeenial equaion BSDE wih wo eflecing baie L and U. Along wih he gowh of he BSDE heoy, Dynkin game have aaced much

1.1 Noaion and Peliminaie 3 aenion in he pobabiliic famewok wih Bownian filaion, ee e.g. 31, 3, 27, 26, 61, 29, 33, 13, 23, 6. Among heewok,27,29, 33,13,23,6onlyequie L<U ahehanmokobodki condiionviaapenalizaionmehod. In Mahemaical Finance, he heoy of Dynkin game can be applied o picing and hedging game opion o Iaeli opion and hei deivaive, ee 39, 44, 35, 26, 22, 17 and he efeence in he uvey pape 4. Alo, 22, 2 analyzed he eniiviy of he Dynkin game value wih epec o change in he volailiy of he undelying. Thee i pleniful eeach on Dynkin game in many ohe aea: fo example, 31, 3, 26, 29, 33 added ochaic conol ino he Dynkin game o udy mixed zeo-um ochaic diffeenial game of conol and opping; 59, 37, 25, 12 and 57, 15 udied ome Dynkin game hough he aociaed ingula conol poblem and impule conol poblem epecively; 62, 54, 6, 42 conideed he Dynkin game in which he playe can chooe andomized opping ime; and 9, 51, 47, 14, 34, 28, 32 analyzed non-zeo um Dynkin game. Howeve, hee ae only a few wok on Dynkin game unde model unceainy: Hamadene and Hdhii 29 and Yin 63 udied he Dynkin game ove a e of equivalen pobabiliie, which epeen dif unceainy o Knighian unceainy. When he pobabiliy e conain muually ingula pobabiliie o equivalenly, boh dif and volailiy of he undelying can be manipulaed again Playe 1, Dolinky 17 deived dual expeion fo he upeeplicaion pice of game opion in he dicee ime, and Maoui e al. 45 elaed he Dynkin game unde G expecaion inoduced by Peng 52 o econd-ode doubly efleced BSDE. In hi pape we ubanially benefi fom he maingale echnique developed fo obu opimal opping poblem by 38, 3 which analyzed he poblem when P i dominaed, 19 P i non-dominaed bu he Naue and he oppe coopeae and 5, 5 in which P i non-dominaed and he Naue and oppe ae adveaie. Epecially he eul of 7 ae cucial fo deemining a addle poin. The lae eul alo ecenly poved o be ueful fo defining he vicoiy oluion of fully non-linea degeneae pah dependen PDE in 21. The e of he pape i oganized a follow: In Secion 1.1, we will inoduce ome noaion and peliminay eul uch a he egula condiional pobabiliy diibuion. In Secion 2, we e-up he age fo ou main eul by impoing ome aumpion on he ewad poce and he clae of muually ingula pobabiliie. Then Secion 3 deive popeie of Playe 1 uppe value pocee and appoximaing value pocee uch a pah egulaiy and dynamic pogamming pinciple. They play eenial ole in deiving ou main eul on he obu Dynkin game aed in Secion 4. In Secion 5, we give an example of pah-dependen SDE wih conol ha aifie all ou aumpion. In Secion 6, we dicu he opimal iple fo Playe 1 value unde addiional condiion. Secion 7 conain poof of ou eul while he demonaion of ome auxiliay aemen wih aed label in he coeponding equaion numbe in hee poof ae defeed o he Appendix. We alo include in he appendix a echnical lemma neceay fo he poof of Theoem 4.1. 1.1 Noaion and Peliminaie Thoughou hi pape, we fix d N. Le S > d BS > d le,t. he Boel σ field of S> d and fo all d d valued poiively definie maice and denoe by unde he elaive Euclidean opology. We alo fix a ime hoizon T, and We e Ω := { ω C,T; d : ω= } a he canonical pace ove peiod,t and denoe i null pah by :={ω=,,t}. Fo any,t, ω, := up ω, ω Ω define a emi-nom on Ω. In paicula,,,t i he unifom nom on Ω. The canonical poce B of Ω i a d dimenional andad Bownian moion unde he Wiene meaue P of Ω,FT. Le F = {F},T, wih F := σ B;,, be he naual filaion of B and denoe i P augmenaion by F = { F }, whee,t F := σ F N { and N := N Ω : N A fo ome A FT wih P A = }. The expecaion on Ω,F T,P will be imply denoed by E. Alo, we le P be he F pogeively meauable igma field of,t Ω and le T ep. T collec all F ep. F opping ime. Given,T, we e T :={τ T : τω, ω Ω }, T :={τ T : τω, ω Ω } and define he uncaion mapping Π fom Ω o Ω by Π ω :=ω ω,,ω,t Ω. By Lemma A.1 of 5, τπ T, τ T. 1.3

obu Dynkin Game 4 Fo any δ> and ω Ω, O δ ω := { ω Ω : ω ω, < δ } i an F meauable open e of Ω, 1.4 and O δω:= { ω Ω : ω ω, δ } i an F meauable cloed e of Ω ee e.g. 2.1 of 5. In paicula, we will imply denoe O T δ ω and OT δ ω by O δ ω and O δ ω epecively. Fo any n N and,t, le T n denoe all F opping ime aking value in { n i }2n i= wih n i := i2 n T, i =,,2 n, 1.5 and e T n:={τ T n: τω, ω Ω }. In paicula, we lieally e T :=T and T :=T. Le P collec all pobabiliie on Ω,FT. Fo any P P, we conide he following pace abou P: 1 Fo any ub igma-field G of FT, le L1 G,P be he pace of all eal-valued, G meauable andom vaiable ξ wih ξ L 1 G,P := ξ <. 2 Le SF,P be he pace of all eal valued, F adaped pocee {X },T wih all coninuou pah and aifying X <, whee X := X,T = up X.,T We will dop he upecip fom he above noaion if i i. Fo example, Ω,F=Ω,F. We ay ha a poce X i bounded by ome C > if X ω C fo any,ω,t Ω. Alo, a eal-valued poce X i aid o be unifomly coninuou on,t Ω wih epec o ome modulu of coninuiy funcion ρ if X 1 ω 1 X 2 ω 2 ρ d 1,ω 1, 2,ω 2, 1,ω 1, 2,ω 2,T Ω, 1.6 whee d 1,ω 1, 2,ω 2 := 1 2 + ω 1 1 ω 2 2,T. Fo any,t, aking 1 = 2 = in 1.6 how ha X ω 1 X ω 2 ρ ω1 ω 2,, ω1,ω 2 Ω, which implie he F meauabiliy of X. So X i indeed an F adaped poce wih all coninuou pah. Moeove, le M denoe all modulu of coninuiy funcion ρ uch ha fo ome C> and <p 1 p 2, In hi pape, we will ue he convenion inf :=. ρx Cx p1 x p2, x,. 1.7 1.2 Shifed Pocee and egula Condiional Pobabiliy Diibuion In hi ubecion, we fix T. The concaenaion ω ω of an ω Ω and an ω Ω a ime : ω ω := ω1 {,} + ω+ ω 1 {,T},,T define anohe pah in Ω. Se ω = and ω Ã:= { ω ω: ω Ã} fo any non-empy ube à of Ω. Lemma 1.1. If A F, hen ω Ω A fo any ω A. Fo any F meauable andom vaiable η, ince {ω Ω : ηω =ηω} F, Lemma 1.1 implie ha ω Ω {ω Ω : ηω =ηω} i.e., ηω ω=ηω, ω Ω. 1.8 To wi, he value ηω depend only on ω,. Le ω Ω. Fo any A Ω we e A,ω :={ ω Ω : ω ω A} a he pojecion of A on Ω along ω. In paicula,,ω =. Given a andom vaiable ξ on Ω, define he hif ξ,ω of ξ along ω, by ξ,ω ω:=ξω ω, ω Ω. Coepondingly, fo a poce X={X },T on Ω, i hifed poce X,ω i X,ω, ω := X,ω ω = X ω ω,, ω,t Ω. Shifed andom vaiable and hifed pocee inhei he meauabiliy of oiginal one:

2. Weak Sabiliy unde Paing 5 Popoiion 1.1. Le T and ω Ω. 1 If a eal-valued andom vaiable ξ on Ω i F meauable fo ome,t, hen ξ,ω i F meauable. 2 Fo any n N { } and τ T n, if τω Ω,T fo ome,t, hen τ,ω T n. 3 Given τ T, if τω, hen τω Ω τω; if τω ep. >, hen τω ω ep. >, ω Ω and hu τ,ω T. 4 If a eal-valued poce {X },T i F adaped ep. F pogeively meauable, hen X,ω i F adaped ep. F pogeively meauable. Le P P. In ligh of he egula condiional pobabiliy diibuion ee e.g. 58, we can follow Secion 2.2 of 5 o inoduce a family of hifed pobabiliie {P,ω } ω Ω P, unde which he coeponding hifed andom vaiable and hifed pocee inhei he P inegabiliy of oiginal one: Popoiion 1.2. 1 I hold fo P a.. ω Ω ha P,ω = P. 2 If ξ L 1 F T,P fo ome P P, hen i hold fo P a.. ω Ω ha ξ,ω L 1 F T,P,ω and,ω ξ,ω = ξ F ω. 1.9 3 If X S F,P fo ome P P, hen i hold fo P a.. ω Ω ha X,ω S F,P,ω. A a conequence of 1.9, a hifed P null e alo ha zeo meaue. Lemma 1.2. Fo any N N, i hold fo P a.. ω Ω ha N,ω N. Thi ubecion wa peened in 5 wih moe deail and poof. In he nex hee ecion, we will gadually povide he echnical e-up and pepaaion fo ou main eul Theoem 4.1 and Theoem 6.1 on he obu Dynkin game. 2 Weak Sabiliy unde Paing To udy he obu Dynkin game, we need ome egulaiy condiion on he payoff pocee. Sanding aumpion on payoff pocee g, L, U. A g, L and U ae hee eal-valued pocee ha ae unifomly coninuou on,t Ω wih epec o he ame modulu of coninuiy funcion ρ and aify L ω U ω,,ω,t Ω. Fo any,ω,t Ω and,,t, we echnically define,,,ω := g ωd +1 { }L ω+ 1 { <}U ω. By 1.6,,,,ω 1,,,ω 2 g ω 1 g ω 2 d+1 { } L ω 1 L ω 2 +1 { <} U ω 1 U ω 2 1+ ρ ω1 ω 2,, ω1,ω 2 Ω. 2.1 Le he obu Dynkin game a fom ime,t when he hioy ha been evolving along pah ω, fo ome ω Ω. Playe 1 and 2 make hei own choice on he exiing ime of he game. If Playe 1 elec τ T and Playe 2 elec γ T, he game ceae a τ γ. Then Playe 1 will eceive fom he opponen an accumulaed ewad τ γ U,ω γ g,ω d and a eminal payoff L,ω τ ep. U,ω mean a paymen fom Playe 1 o Playe 2. So Playe 1 oal wealh a ime τ γ i,ω τ,γ := τ γ g,ω d+1 {τ γ} L,ω τ +1 {γ<τ} U,ω γ = γ if τ γ ep. γ<τ. Hee negaive τ γ τ γ g,ω d+1 {τ γ} L,ω τ γ +1 {γ<τ} U,ω τ γ. g,ω d, L,ω τ Since Popoiion 1.1 4 how ha g,ω, L,ω and U,ω ae F adaped pocee wih all coninuou pah, Alo, i i clea ha,ω τ,γ F τ γ, τ,γ T. 2.2,ω τ,γ ω =,τ ω,γ ω,ω ω, ω Ω. 2.3 o

obu Dynkin Game 6 Nex, we define Ψ := L U,,T. By 1.6, one can deduce ha Ψ ω 1 Ψ ω 2 ρ ω1 ω 2,,,T, ω1,ω 2 Ω; 2.4 Fo he eade convenience we povided a poof in Secion 7.1. I i clea ha,ω τ,γ τ γ g,ω d+ψ,ω τ γ,,ω,t Ω, τ,γ T. 2.5 The following eul how ha he inegabiliy of hifed payoff pocee i independen of he given pah hioy. Lemma 2.1. Aume A. Fo any,t and P P, if Ψ,ω SF T,P and g,ω d< fo ome ω Ω, hen Ψ,ω SF T,P and g,ω d< fo all ω Ω. We will concenae on hoe pobabiliie P in P unde which hifed payoff pocee ae inegable: Aumpion 2.1. Fo any,t, P { } := P P : Ψ, SF T,P and g, d< i no empy. emak 2.1. 1 If Ψ SF,P and T g d <, hen P P fo any,t. 2 A we will how in Popoiion 5.1, when he modulu of coninuiy ρ in A ha polynomial gowh, he law of oluion o he conolled SDE 5.1 ove peiod,t belong o P. Unde A and Aumpion 2.1, one can deduce fom Lemma 2.1 ha fo any,t and P P, Ψ,ω S F,P and T g,ω d <, ω Ω. 2.6 Nex, we need he pobabiliy cla o be adaped and weakly able unde paing in he following ene: Sanding aumpion on he pobabiliy cla. P1 Fo any,t, we conide a family {P,ω} ω Ω of ube of P uch ha P,ω 1 =P,ω 2 if ω 1, =ω 2,. 2.7 Aume fuhe ha he pobabiliy cla {P,ω},ω,T Ω aify he following wo condiion fo ome modulu of coninuiy funcion ρ : fo any < T, ω Ω and P P,ω: P2 Thee exi an exenion Ω,F,P of Ω,F T,P i.e. F T F and P F T =P and Ω F wih P Ω = 1 uch ha P, ω belong o P,ω ω fo any ω Ω. P3 weak abiliy unde paing Fo any δ Q + and λ N, le {A j } λ j= be a F paiion of Ω uch ha fo,,λ, A j O δ j ω j fo ome δ j,δ Q {δ} and ω j Ω. Then fo any P j P,ω ω j,,,λ, hee exi a P P,ω uch ha i PA A =PA A, A F T ; ii Fo any,,λ and A F, PA A j = PA A j ; iii Fo any n N { } and T, hee exi n j T,,,λ uch ha fo any A F and τ T n E P 1A Aj,ω τ, n j 1 { ω A Aj} up j,ω ω ς, + ς T n g,ω ωd + ρ δ. 2.8 emak 2.2. 1 By 2.7, one can egad P,ω a a pah-dependen ube of P. In paicula, P:=P,= P,ω, ω Ω. 2 Boh ide of 2.8 ae finie a we will how in Secion 7. In paicula, he expecaion on he igh-hand-ide ae well-defined ince he mapping ω up E P,ω ω ς, i coninuou unde nom,t fo any n N { }, ς T n P P and T.

3. The Dynamic Pogamming Pinciple 7 3 Analogou o P2 aumed in 5, he condiion P3 can be egaded a a weak fom of abiliy unde paing ince i i implied by he abiliy unde finie paing ee e.g. 4.18 of 56 : fo any < T, ω Ω, P P,ω, δ Q + and λ N, le {A j } λ j= be a F paiion of Ω uch ha fo j = 1,,λ, A j O δ j ω j fo ome δ j,δ Q {δ} and ω j Ω. Then fo any P j P,ω ω j,,,λ, he pobabiliy defined by i in P,ω. PA=PA A + 1 { ω Aj}P j A, ω, A FT 2.9 A poined ou in emak 3.6 of 49 ee alo emak 3.4 of 5, 2.9 i no uiable fo he example of pahdependen SDE wih conol ee Secion 5. Thu we aume he weak paing condiion P3, which un ou o be ufficien fo ou appoximaion cheme in poving he main eul. 3 The Dynamic Pogamming Pinciple Conide he obu Dynkin game wih payoff pocee g,l,u and ove he pobabiliy cla {P,ω},ω,T Ω a decibed in Secion 2. If Playe 1 conevaively hink ha Naue i alo again he, hen fo any,ω,t Ω, V ω := up τ T inf inf γ T P P,ω,ω τ,γ and V ω := inf P P,ω inf γ T up τ T,ω τ,γ define he lowe value and uppe value of Playe 1 a ime given he hioical pah ω,. A we will ee in Theoem 4.1 ha V coincide wih V a Playe 1 value poce V, whoe um wih g d i an E ubmaingale up o he fi ime τ when V mee L. Fo hi pupoe, we deive in hi ecion ome baic popeie of V and i appoximaing value including dynamic pogamming pinciple. Le A, P1 P3 and Aumpion 2.1 hold houghou he ecion. Fo any,ω,t Ω, following 5 idea, we echnically define appoximaing value pocee of V by V n ω := inf inf P P,ω up γ T τ T n and e in paicula V ω := V ω. Le n N { }. I i clea ha V n T,ω = inf And we can how ha inf P PT,ω γ T T,ω τ,γ inf P P,ω inf γ T up τ T,ω τ,γ = V ω, n N, 3.1 up T,ω τ,γ = inf τ T T n P PT,ω T,ω T,T = L T ω, ω Ω. 3.2 Ψ ω L ω V n ω U ω Ψ ω,,ω,t Ω. 3.3 Fo he eade convenience we povide a poof in Secion 7.1. We need he following aumpion on V n o dicu he dynamic pogamming pinciple hey aify. Aumpion 3.1. Thee exi a modulu of coninuiy funcion ρ 1 ρ uch ha fo any n N { } V n ω 1 V n ω 2 ρ1 ω1 ω 2,,,T, ω1,ω 2 Ω. 3.4 emak 3.1. If P,ω doe no depend on ω fo all,t, hen Aumpion 3.1 hold auomaically. emak 3.2. Aumpion 3.1 implie ha V n i F adaped fo any n N { }. We fi peen he ub-oluion ide of dynamic pogamming pinciple fo V n : Popoiion 3.1. Fo any n N { }, T and ω Ω, V n ω inf inf P P,ω up γ T τ T n 1 {τ γ<},ω τ,γ+1 {τ γ } V n,ω + g,ω d. 3.5

obu Dynkin Game 8 Conveely, we only need o how he upe-oluion ide of dynamic pogamming pinciple fo V = V. Popoiion 3.2. Fo any T and ω Ω, V ω inf inf up 1 {τ γ<},ω τ,γ+1 {τ γ } V,ω P P,ω γ T + τ T g,ω d. A a conequence of Popoiion 3.1 and 3.2, he uppe value poce V of Playe 1 aifie a ue dynamic pogamming pinciple. We ely on anohe condiion o fuhe how he convegence of V n o V and hei pah egulaiie in he nex wo popoiion. Aumpion 3.2. Fo any α >, hee exi a modulu of coninuiy funcion ρ α uch ha fo any,t up ρ 1 δ + up B B ζ ρ α δ, δ,t. 3.6 ζ T up ω O α up P P,ω ζ,ζ+δ T Popoiion 3.3. Le n N,,T and α >. I hold fo any ω O α ha V ω V n ω+ρ α 2 n +2 n g ω +ρ α T. 3.7 Popoiion 3.4. 1 Fo any n N { }, all pah of poce V n ae boh lef-uppe-emiconinuou and ighlowe-emiconinuou. In paicula, he poce V ha all coninuou pah. 2 Fo any,ω,t Ω and P P,ω, V,ω SF,P. 4 Main eul In hi ecion, we ae ou fi main eul on obu Dynkin game. Le A, P1 P3 and Aumpion 2.1, 3.1, 3.2 hold houghou he ecion. Given,T, e L :={andom vaiable ξ on Ω : ξ,ω L 1 F T,P, ω Ω, P P,ω}. Clealy, L i cloed unde linea combinaion: i.e. fo any ξ 1,ξ 2 L and α 1,α 2, α 1 ξ 1 +α 2 ξ 2 L. Then we define on L a nonlinea expecaion: Fo any n N { } and τ T, E ξω := inf P P,ω ξ,ω, ω Ω, ξ L. boh V n τ and τ g d belong o L. 4.1 We demonae hi claim in Secion 7.3. Simila o he claic Dynkin game, we will how ha V coincide wih V a he value poce V of Playe 1 in he obu Dynkin game and ha V plu g d i a ubmaingale wih epec o he nonlinea expecaion E. Theoem 4.1. Le A, P1 P3 and Aumpion 2.1, 3.1, 3.2 hold. 1 Fo any,ω,t Ω, V ω:=v ω=v ω 4.2 in he obu Dynkin game aing fom ime given he hioical pah ω,. Moeove, V ω = inf inf γ T P P,ω,ω τ,ω,γ, whee τ,ω :=inf{,t: V,ω } =L,ω T. 4.3 2 The F adaped poce wih all coninuou pah Υ := V + g d,,t i an E ubmaingale up o ime τ :=τ, =inf{,t: V =L } T in ene ha fo any ζ T Υ τ ζ ω E Υτ ζ ω,,ω,t Ω. 4.4

5. Example: Conolled Pah-dependen SDE 9 5 Example: Conolled Pah-dependen SDE In hi ecion, we povide an example of he pobabiliy cla {P,ω},ω,T Ω in cae of pah-dependen ochaic diffeenial equaion wih conol. Le κ> and le b:,t Ω d d d be a P B d d / B d meauable funcion uch ha b,ω,u b,ω,u κ ω ω, and b,,u κ1+ u, ω,ω Ω,,u,T d d. Fix,T. We le U collec all S > d valued, F pogeively meauable pocee {µ },T uch ha µ κ, d dp a.. Le ω Ω, b,ω, ω,u:= b,ω ω,u,, ω,u,t Ω d d i clealy a P B d d / B d meauable funcion ha aifie b,ω, ω,u b,ω, ω,u κ ω ω, and b,ω,,u κ 1+ ω, + u, ω, ω Ω,,u,T d d. Given µ U, a ligh exenion of Theoem V.12.1 of 53 how ha he following SDE on he pobabiliy pace Ω,FT,P : X = b,ω,x,µ d+ µ db,,t, 5.1 admi a unique oluion X,ω,µ, which i an F adaped coninuou poce aifying E X,ω,µ p < fo any p 1 o ee he complee AXiv veion of 5 fo i poof. Noe ha he SDE 5.1 depend on ω, via he geneao b,ω. Wihou lo of genealiy, we aume ha all pah of X,ω,µ ae coninuou and aing fom. Ohewie, by eing N := {ω Ω : X,ω,µ ω o he pah X,ω,µ ω i no coninuou} N,ω,µ, one can ake X :=1 N cx,ω,µ,,t. I i an F adaped poce ha aifie 5.1 and whoe pah ae all coninuou and aing fom. Applying he Bukholde-Davi-Gundy inequaliy, Gonwall inequaliy and uing he Lipchiz coninuiy of b in ω vaiable, one can eaily deive he following eimae fo X,ω,µ : fo any p 1 and E E up, X,ω,µ up ζ,ζ+δ T X,ω,µ X,ω,µ C p p ω ω p, p, ω Ω,,T, 5.2 X,ω,µ ζ ϕ p p ω, δ p/2, fo any F opping ime ζ and δ>, 5.3 whee C p i a conan depending on p,κ,t and ϕ p : + + i a coninuou funcion depending on p,κ,t ee he complee AXiv veion of 5 fo he poof of 5.2 and 5.3 {. Fo any,t, we ee fom 5 ha F GX,ω,µ := A Ω : X,ω,µ } 1 A F, i.e., X,ω,µ 1 A F, A F. 5.4 Namely, X,ω,µ i F / F meauable a a mapping fom Ω o Ω. Define he law of X,ω,µ unde P by p,ω,µ A := P X,ω,µ 1 A, A G X,ω,µ T, and denoe by P,ω,µ he eicion of p,ω,µ on Ω,F T. Now, le u e P,ω:= { P,ω,µ : µ U } P. Popoiion 5.1. Le be a modulu of coninuiy funcion uch ha fo ome 1, δ κ1+δ, δ>. Aume ha g, L, U aify A wih epec o and ha T g d<. Then fo any,ω,t Ω, we have P,ω P. And he pobabiliy cla {P,ω},ω,T Ω aifie P1 P3, Aumpion 3.1 3.2. emak 5.1. 1 When b, Popoiion 5.1 and he eul 4.2 veify Aumpion 5.7 of 45 paiculaly fo =. Then we know fom Theoem 5.8 heein ha in cae of conolled pah-dependen SDE wih null dif, Playe 1 value V i cloely elaed o he oluion of a econd-ode doubly efleced backwad ochaic diffeenial equaion.

obu Dynkin Game 1 2 Simila o 5, he eaon we conide he law of X,ω,µ unde P ove GT X,ω,µ he lage σ field o induce P unde he mapping X,ω,µ ahe han FT lie in he fac ha he poof of Popoiion 5.1 elie heavily on he invee mapping W,ω,µ of X,ω,µ. Accoding o he poof of Popoiion 6.2 and 6.3 in 5, ince W,ω,µ i an F pogeively meauable pocee ha ha only p,ω,µ a.. coninuou pah, i hold fo p,ω,µ a.. ω Ω ha he hifed pobabiliy P,ω,µ, ω i he law of he oluion o he hifed SDE and hu P,ω,µ, ω P,ω ω. Thi explain why ou aumpion P2 need an exenion Ω,F,P of he pobabiliy pace Ω,FT,P. 6 The Opimal Tiple In hi ecion, we idenify an opimal iple fo Playe 1 value in he obu Dynkin game unde he following addiional condiion on he payoff pocee and he pobabiliy cla. A Le g and le L, U be wo eal-valued pocee bounded by ome M > uch ha hey ae unifomly coninuou on,t Ω wih epec o he ame ρ M, ha L ω U ω,,ω,t Ω, and ha L T ω=u T ω, ω Ω. Alo, le a family {P },T of ube P of P = P,,T aify: H1 P := P i a weakly compac ube of P. H2 Fo any ρ M, hee exi anohe ρ of M uch ha up P,ζ P T ρ δ + up ζ,ζ+δ T B Bζ ρδ,,t, δ,. In paicula, we equie ρ o aify 1.7 wih ome C > and 1 < p 1 p 2. H3 Fo any < T, ω Ω and P P, hee exi an exenion Ω,F,P of Ω,F T,P i.e. F T F and P F T =P and Ω F wih P Ω = 1 uch ha P, ω belong o P fo any ω Ω. H4 Moeove, le he finie abiliy unde paing aed in emak 2.2 3 hold. The nex example how ha conol of weak fomulaion i.e. P conain all emimaingale meaue unde which B ha unifomly bounded dif and diffuion coefficien aifie H1 H4. Example 6.1. Given l >, le {P l},t be he family of emimaingale meaue conideed in 2 uch ha P l collec all coninuou emimaingale meaue on Ω,FT whoe dif and diffuion chaaceiic ae bounded by l and 2l epecively. Accoding o Lemma 2.3 heein, {P} l,t aifie H1, H3 and H4. Alo, one can deduce fom he Bukholde-Davi-Gundy inequaliy ha {P l},t aifie H2, ee he poof of 7, Example 3.3 fo deail. emak 2.2 3 and a evii of emak 3.1 poof how ha he pah-independen pobabiliy cla {P },T aifie P1 P3 and Aumpion 3.1 wih ρ 1 = ρ, while Aumpion 3.2 i clealy implied by H2 wih ρ α ρ, α>. So Theoem 4.1 ill hold fo he obu Dynkin game ove {P },T. In addiion, H1 enable u o apply he eul of 7 o olve 1.2. Theoem 6.1. Unde Aumpion A and H1 H4, hee exi a pai P,γ P T uch ha V = τ,γ. emak 6.1. Theoem 4.1 1 and Theoem 6.1 imply ha V = τ,γ inf E P τ,γ inf inf E P τ,γ =V, P P γ T P P τ,γ =E τ,γ. Hence, we ee ha he pai τ,γ i obu wih epec o which how ha V = inf P P P P, o τ,γ i a addle poin of he Dynkin game unde he nonlinea expecaion E. 7 Poof 7.1 Poof of echnical eul in Secion 1.1, 2 and 3 Poof of Popoiion 1.1 2: Le n N and τ T n. Aume ha τω Ω,T fo ome,t. Fo any i=,,2 n uch ha n i = i2 n T, ince, one ha := i2 n T= i2 n T = i2 n T.

7.1 Poof of echnical eul in Secion 1.1, 2 and 3 11 Seing A:={ω Ω : τω } F, we can deduce fom Lemma 2.2 of 5 ha { ω Ω : τ,ω ω } = { ω Ω : τω ω } = { ω Ω : ω ω A} = A,ω F. So τ,ω i an F opping ime valued in { i2 n T,T: i=,,2 n } { i2 n T,T: i=,,2 n }, i.e. τ,ω T n. Fo he cae of n=, ee Coollay 2.1 of 5. Poof of 2.4: Le,T and ω 1,ω 2 Ω. We ee fom 1.6 ha L ω 1 L ω 2 + L ω 1 L ω 2 Ψ ω 2 +ρ ω1 ω 2,, and U ω 1 U ω 2 + U ω 1 U ω 2 Ψ ω 2 +ρ ω1 ω 2,. I follow ha Ψ ω 1 = L ω 1 U ω 1 Ψ ω 2 +ρ ω1 ω 2,. Then exchanging he ole of ω1 and ω 2 pove 2.4. Poof of Lemma 2.1: Le,T and P P. Suppoe ha Ψ,ω SF,P and T g,ω d < fo ome ω Ω. Le ω Ω. Fo any, ω,t Ω, 1.6 implie ha g,ω ω g,ω ω = g ω ω g ω ω ρ ω ω ω ω, =ρ ω ω,, 7.1 T T o g,ω d g,ω d+t ρ ω ω, <. Popoiion 1.1 4 how ha boh L,ω and U,ω ae F adaped pocee wih all coninuou pah, o i he poce Ψ,ω I follow ha = L,ω Ψ,ω Theefoe, Ψ,ω S F,P. U,ω,,T. Simila o 7.1, we ee fom 2.4 ha Ψ,ω ω Ψ,ω ω ρ ω ω,,, ω,t Ω. = up,t Ψ,ω up Ψ,ω,T +ρ ω ω, =EP Ψ,ω +ρ ω ω, <. Poof of emak 2.1 1: Le,T. Popoiion 1.2 implie ha fo P a.. ω Ω, Ψ,ω S F,P,ω = S F,P and T T,ω T,ω T d=,ω g d,ω g d = g d F ω<. g,ω I hen follow fom Lemma 2.1 ha Ψ, S F,P T and EP g, d<. Hence, P P. Poof of emak 2.2: 2 Fix,T and le ω 1,ω 2 Ω, τ,γ T. By 2.3 and 2.1,,ω1 τ,γ ω,ω2 τ,γ ω =,τ ω,γ ω,ω1 ω,τ ω,γ ω,ω 2 ω 1+Tρ ω1 ω ω 2 ω,t =1+Tρ ω1 ω 2,, ω Ω. 7.2 Now, le ω Ω,,T, n N { }, P P and T. Given ω 1, ω 2 Ω and ς T n, imila o 7.2,,ω ω1 ς,,ω ω2 ς, 1+Tρ ω ω 1 ω ω 2, = 1+Tρ ω1 ω 2,. 7.3 I followha E P,ω ω 1 ς, E P,ω ω 2 ς, +1+Tρ ω1 ω 2,. Takingupemum oveς T n yield ha up E P,ω ω 1 ς, up E P,ω ω 2 ς, +1+Tρ ω1 ω 2,T. Exchanging he ole of ω1 and ς T n ς T n ω 2 how ha he mapping ω up E P,ω ω ς, i coninuou unde nom,t and hu FT meauable. ς T n Nex, le u how ha boh ide of 2.8 ae finie: Le A F, τ T n and,,λ. By 2.5 and 2.6, E P 1A Aj,ω τ, n j E P,ω τ n τ, n j j E P g,ω d+ψ,ω τ n j E P T g,ω d+ψ,ω <.

obu Dynkin Game 12 On he ohe hand, given ω A A j and ς T n, aking ω 1, ω 2 = ω, ω j in 7.3, we can deduce fom 2.5 and 2.6 again ha j,ω ω ς, EPj,ω ωj ς, T +1+Tρ ω ωj, EPj +1+Tρ δ:=α j <. I hen follow ha 1 { ω A Aj} up j,ω ω ς, + ς T n a well a ha 1 { ω A Aj} up j,ω ω ς, + ς T n g,ω ωj T g,ω ωd 1 A Aj d+ψ,ω ωj g,ω d +α j PA A j <, T g,ω ωd 1 A Aj g,ω d α j PA A j >. Summing boh up ove j {1,,λ} how ha he igh-hand-ide of 2.8 i finie. 3 The poof of emak 3.3 2 in 5 ha hown ha he pobabiliy P defined in 2.9 aifie P3 i and ii: PA A =PA A, A FT, and PA A j =PA A j,,,λ, A F. To ee P aifying 2.8, le u fix n N { } and T. We e n j := Π,,,λ, which ae of T by 1.3. Le A F and τ T n. Given ω Ω, Popoiion 1.1 2 how ha τ, ω T n. Since he F adapne of g and 1.8 imply ha g ω Ω = g ω,, and g ω ω Ω = g ω ω,,, 7.4 we ee fom 2.3 ha fo any ω Ω,ω τ, n j, ω ω =,ω τ, n j ω ω =,τ ω ω, Π ω ω,ω ω ω =,τ, ω ω, ω,ω ω ω + g ω ω ω d=,ω ω τ, ω, ω+ By Lemma 1.1, A A j, ω = Ω ep. = if ω A A j ep. / A A j. Then 7.5 lead o ha E P 1A Aj,ω τ, n j = = 1 1A Aj { ω Aj }j,ω τ, n j, ω j =1 1 { ω A Aj}1 { ω Aj }E,ω Pj τ, n j, ω = j =1 1 { ω A Aj} up j,ω ω ς, + ς T n Taking ummaion ove j {1,,λ} yield 2.8. g,ω ωd. 1 { ω A Aj} j,ω ω τ, ω, + Poof of 3.3: Le,ω,T Ω. Since he F meauabiliy of L, U and 1.8 how ha g ω ωd. 7.5 g,ω ωd L,ω ω = L ω ω = L ω and U,ω ω = U ω ω = U ω, ω Ω. 7.6 i hold fo any τ T n ha,ω τ,=1 {τ=} L,ω τ +1 {<τ} U,ω =1 {τ=} L,ω +1 {<τ} U,ω U,ω =U ω. So V n ω inf up,ω τ, inf E P U ω = U ω Ψ ω. P P,ω P P,ω τ T n On he ohe hand, ince T n and ince,ω,γ=1 { γ} L,ω +1 {γ<} U,ω γ =L,ω V n ω inf inf P P,ω γ T,ω,γ = inf P P,ω =L ω fo any γ T, L ω = L ω Ψ ω. Poof of emak 3.1: Fix n N { }. Le,T, ω 1,ω 2 Ω, P P and τ,γ T. By 7.2,,ω 1 τ,γ,ω 2 τ,γ +1+Tρ ω1 ω 2,. Taking upemum ove τ T n, aking infimum ove γ T and hen aking infimum ove P P yield ha V nω 1 V nω 2+1+Tρ ω1 ω 2,. Exchanging he ole of ω1 and ω 2, we obain 3.4 wih ρ 1 =1+Tρ fo each n N { }.

7.2 Poof of he Dynamic Pogamming Pinciple 13 7.2 Poof of he Dynamic Pogamming Pinciple Poof of Popoiion 3.1: Fix n N { }, T and ω Ω. 1 When =, ince V n i F adaped by emak 3.2, an analogy o 7.6 how ha V n,ω ω=v n,ω ω= V nω, ω Ω. Then inf inf P P,ω γ T up τ T n 1 {τ γ<},ω τ,γ+1 {τ γ } V n,ω = inf E P V n ω = V n ω. P P,ω 2 To demonae 3.5 fo cae <, we hall pae he local appoximaing P minimize of V n,ω accoding o P3 and hen make ome eimaion. 2aUndenom,T, inceω iaepaablecompleemeicpace, heeexiacounabledeneube { ω } j of j N Ω. Fix ε> and le δ Q + aify ρ 1 δ ρ δ 1+Tρ δ <ε/5. Le j N. By 1.4, A j :=Oδ ω j j <j O δ ω j F. We can find a P j P,ω ω j and a γ j T uch ha V n ω ω j inf up γ T τ T n Given ω O δ ω j, an analogy o 7.3 how ha fo any τ T n j,ω ω 1 j τ,γ 5 ε up j,ω ω j τ,γj 2 ε. 7.7 τ T n 5,ω ω τ,γ j,ω ω j τ,γj 1+Tρ ω ω j, 1+Tρ δ 1 5 ε, o j,ω ω τ,γ j j,ω ω j τ,γj +ε/5. Taking upemum ove τ T n, we ee fom 7.7 and 3.4 ha up j,ω ω τ,γ j up j,ω ω j τ,γj + 1 τ T n τ T n 5 ε V n ω ω j + 3 5 ε V n ω ω+ρ 1 ω ω ω ω j 3, + 5 ε =V n,ω ω+ρ 1 ω ω 3 j, + 5 ε V n,ω ω+ρ 1 δ+ 3 5 ε V n,ω ω+ 4 ε. 7.8 5 Nex, fix P P,ω, λ N and le P λ be he pobabiliy of P,ω in P3 fo { A j,δ j, ω j,p j } λ = { Aj,δ, ω j,p j } λ λ c F := and A A j. Then we have E Pλ ξ= ξ, ξ L 1 F, P λ L 1 F,P and E Pλ 1 A ξ= 1 A ξ, ξ L 1 F T, P λ L 1 F T,P. 7.9 Alo, in ligh of 2.8 and 7.8, hee exi n j T,,,λ, uch ha fo any A F and τ T n E Pλ 1A Aj,ω τ, n j 1 { ω A Aj} 1 A A c V n,ω + up j,ω ω ς,γ j + ς T n g,ω ωd + ρ δ g,ω d +ε. 7.1 2b Now, le γ T and τ T n. Applying 7.1 wih A = {τ γ } F, one can how ha E Pλ 1{τ γ } Aj,ω τ, n j 1 {τ γ } A c V n,ω + We glue γ wih { n j }λ o fom a new F opping ime γ λ :=1 {γ<} γ+1 {γ } 1 A γ+ Since γ λ >τ on {γ } {τ<}, 2.2 how ha 1 {τ γ<},ω τ, γ λ =1 {γ<},ω τ,γ+1 {γ } {τ<} τ 1 Aj n j g,ω d +ε. 7.11*. 7.12* g,ω d+l,ω τ =1 {τ γ<},ω τ,γ F.

obu Dynkin Game 14 Then one can deduce fom 7.9, 7.11, 2.5 and 3.3 ha E Pλ,ω τ, γ λ =E Pλ 1{τ γ<} +1 {τ γ } A,ω τ,γ + 1 {τ γ<},ω τ,γ+1 {τ γ } V n,ω + 1 {τ γ<},ω τ,γ+1 {τ γ } V n,ω + Taking upemum ove τ T n yield ha g,ω d V n ω up 1 {τ γ<},ω τ,γ+1 {τ γ } V n,ω + τ T n E Pλ 1{τ γ } Aj,ω τ, n j +1 {τ γ } A,ω τ,γ V n g,ω d +1 A 2 Then aking infimum ove γ T on he igh-hand-ide, we obain V n ω inf up γ T τ T n 1 {τ γ<},ω τ,γ+1 {τ γ } V n Since j N A j = j N O δ ω j j N OT δ ω j =Ω and ince T g,ω,ω + d +Ψ,ω g,ω d T g,ω d +2Ψ,ω T +2 1 A,ω +ε. g,ω g,ω d +2 1 λ c A j by 2.6, leing λ, one can deduce fom he dominaed convegence heoem ha V n ω inf up γ T τ T n 1 {τ γ<},ω τ,γ+1 {τ γ } V n,ω + d+ψ,ω T g,ω g,ω d +ε +ε. d+ψ,ω +ε. < 7.13 g,ω d +ε. Evenually, aking infimum ove P P,ω on he igh-hand-ide and hen leing ε yield 3.5. Poof of Popoiion 3.2: Le T and ω Ω. I uffice o how fo a given P P,ω ha inf up,ω τ,γ inf up 1 {τ γ<},ω τ,γ+1 {τ γ } V,ω γ T τ T γ T + τ T Fix ε>. Thee exi a γ= γε T uch ha g,ω d. 7.14 up,ω τ, γ inf up,ω τ,γ +ε/5. 7.15 τ T γ T τ T 1 Se γ := γ T. In he fi ep, we ue a dene counable ube of T and Popoiion 1.2 o how ha V,ω + g,ω d eup τ T,ω τ, γ F 3 + ε, P a.. 7.16 5 A in he poof of 5, Popoiion 4.1 ee pa 2a and 2c heein, we can conuc a dene counable ube Γ of T in ene ha fo any δ >, ζ T and P P, {ς n } n N Γ uch ha lim n ς n ω=ζ ω, ω Ω and ha P{ς n ζ n }<δ, n N, 7.17 whee ζ n := 2 n T i= 2 n 1 i+1 {i2 n ζ<i+12 n } 2 T T. n Since ζπ T fo any ζ T by 1.3, i hold excep on a P null e N ha,ω ζπ, γ F eup,ω τ, γ F, ζ Γ. 7.18 τ T

7.2 Poof of he Dynamic Pogamming Pinciple 15 By Popoiion 1.1 2, γ ω := γ, ω T. In ligh of 1.9, hee exi a P null e Ñ uch ha fo any ω Ñc,,ω ζπ, γ F ω=ep, ω,ω ζπ, γ, ω =, ω,ω ω ζ,γ ω + g,ω ωd, ζ Γ. 7.19 Hee we ued an analogy o 7.5 ha,ω ζπ, γ, ω =,ω ω ζ,γ ω + g,ω ωd. By P2, hee exi an exenion Ω,F,P of Ω,FT,P and Ω F wih P Ω = 1 uch ha fo any ω Ω, P, ω P,ω ω. Le N be he FT meauable e conaining N Ñ and wih PN =. Now, fix ω Ω N c F. Thee exi a ζ ω T uch ha A P, ω P,ω ω, 2.6 how ha So fo ome δ ω >,, ω 1 T A up, ω,ω ω ζ,γ ω, ω,ω ω ζ ω,γ ω +ε/5. 7.2 ζ T g,ω ω, ω T d+ψ,ω ω g,ω ω d+ψ,ω ω <. 7.21 < ε/5 fo any A F T wih P, ω A < δ ω. 7.22 Applying 7.17 wih δ,ζ, P= δ ω,ζ ω,p, ω, hee exi { } ς k ω Γ uch ha lim k N k ςk ω ω=ζ ω ω, ω Ω and ha P, ω {ς k ω ζk ω }<δ ω, k N, whee ζ k ω := 2 k T i= 2 k 1 i+1 {i2 k ζ ω <i+12 k } 2 T T. k Given k N, 7.22 and 2.5 imply ha,ω, ω ω ζ k ω,γ ω,ω ω ς k ω,γ ω =, ω 1 {ζ ς k ω k ω },ω ω ζ k ω,γ ω,ω ω ς k ω,γ ω 2, ω 1 T < 2 {ζk ω ςk ω} 5 ε, which ogehe wih 7.18 and 7.19 how ha, ω,ω ω ζ k ω,γ ω <EP, ω,ω ω 2 ς k ω,γ ω + 5 ε eup τ T A one can deduce fom ζ ω = lim k ζk ω and he coninuiy of L ha 2.5, 7.21, he dominaed convegence heoem and 7.2 imply ha g,ω ω d+ψ,ω ω,ω τ, γ F ω g,ω ωd+ 2 5 ε.,ω ω ζ ω,γ ω lim k,ω ω ζ k ω,γ ω, 7.23* V,ω ω=v ω ω up, ω,ω ω ζ,γ ω, ω,ω ω ζ ω,γ ω +ε/5 ζ T = lim E P,ω ω ζ k ω k, ω,γ ω +ε/5 eup,ω τ, γ F τ T { Thi how Ω N c A:= V,ω + g,ω d eup τ T ω g,ω ωd+ 3 5 ε, ω Ω N c,,ω τ, γ F + 3 5 ε }. A emak 3.2 and Popoiion 1.1 1 imply ha V,ω + g,ω d= V + g d,ω F, we ee ha A F and hu PA=P A P Ω N c =1. Theefoe, 7.16 hold. Moeove, one can find a equence {τ n } n N in T uch ha eup,ω τ, γ F = lim,ω τ n, γ F τ T n, P a.. 7.24*

obu Dynkin Game 16 2 Nex, le τ T and n N. Since define an F opping ime, 7.16 and 3.3 how ha 1 {τ γ<},ω τ, γ+1 {τ γ } V,ω + g,ω d { whee A n := eup τ T τ n :=1 {τ γ<} τ+1 {τ γ } τ n 7.25* 1 {τ γ<},ω τ n, γ+1 An {τ γ },ω τ n, γ F 4 + 5 ε +α n, 7.26,ω τ, γ F <EP,ω τ n, γ } F +ε/5 F and α T n:= 1 A c n g,ω d+ψ,ω Alo, we can deduce fom 2.5 ha 1 An {τ γ },ω τ n, γ F = 1An {τ γ },ω τ n, γ F = 1An {τ γ },ω τ n, γ = 1{τ γ },ω τ n, γ 1 A c n {τ γ },ω τ n, γ 1{τ γ },ω τ n, γ +α n, which ogehe wih 7.26 and 7.15 lead o ha 1 {τ γ<},ω τ, γ+1 {τ γ } V,ω + g d,ω,ω τ n, γ +2α n + 4 5 ε up,ω τ, γ +2α n + 4 τ T 5 ε inf γ T up τ T,ω τ,γ +2α n +ε. Since lim PA n=1 by 7.24, we ee fom 7.13 and he dominaed convegence heoem ha lim α n= n n and hu 1 {τ γ<},ω τ, γ+1 {τ γ } V,ω + g d,ω inf up,ω τ,γ +ε, τ T. 7.27 γ T τ T U,ω Taking upemum ove τ T on he lef-hand-ide and hen leing ε lead o 7.14. Poof of Popoiion 3.3: Le n N,,T, α > and ω O α. We fix P P,ω and γ,τ T. Se { n i }2n i= a in 1.5 and define τ n:=1 {τ=} + can deduce ha,ω τ,γ,ω τ n,γ = L,ω = τn γ τ γ τn γ τ γ 2 n i=1. 1 { n i 1 <τ n i } n i T n. One g,ω d+1 {τ γ} L,ω τ 1 {τn γ}l,ω τ n 1 {γ<τn}uγ,ω +1{γ<τ} Uγ,ω Uγ,ω g,ω d+ Given i = 1,,2 n, 1.6 how ha fo any ω { n i 1 < τ n i γ} τ ω L,ω n i 2 n i=1 1 { n i 1 <τ n i γ} L,ω τ L,ω n +1{ n i i 1 <τ γ<n i } L,ω τ Uγ.,ω 7.28 ω = L τ ω,ω ω L n i,ω ω n ρ i τ ω + up ω ω τ ω ω ω n i,t ρ 2 n + up ω ωτ ω ρ 2 n + up τ ω, n i τ ω τ ω+2 n T Similaly, i hold fo any ω { n i 1 < τ γ < n i } ha τ Uγ,ω ω ρ γ ω τ ω + up τ ω,γ ω ω ωτ ω Moeove, anohe analogy o 7.29 how ha fo any, ω,t Ω B ω B τ ω. 7.29 ρ 2 n + up B ω B τ ω. 7.3 τ ω τ ω+2 n T g,ω ω g ω g,ω ω g,ω ρ + up ω ρ T + up B ω B ω, 7.31,,T

7.2 Poof of he Dynamic Pogamming Pinciple 17 whee we ued he fac ha B = in he la inequaliy. Plugging 7.29 7.31 back ino 7.28 lead o ha,ω τ,γ,ω τ n,γ 2 n g ω +ρ T + up B ω B ω +ρ 2 n + up B B τ.,t τ,τ+2 n T Taking expecaion, we ee fom 3.6 ha,ω τ,γ,ω τ n,γ +Iα n up,ω τ,γ +Iα, n τ T n whee I n α:=ρ α 2 n +2 n g ω +ρ α T. Taking upemum ove τ T on he lef-hand-ide yield ha up,ω τ,γ up,ω τ,γ +Iα n. τ T τ T n Evenually, aking infimum ove γ T and P P,ω lead o 3.7. Poof of Popoiion 3.4: Fix n N { }, ω Ω and e α := 1+ ω,t. Le < T uch ha δ, := up ω ω T. < 1a We fi uilize Popoiion 3.1 and 3.6 o how ha V n ω V n ω up g ω +2+ ρ α δ,. 7.32,T Le P P,ω. Applying 3.5 and aking γ = how ha V n ω V n ω up 1 {τ<},ω τ,+1 {τ } V n,ω + τ T n = up 1 {τ<} L,ω τ +1 {τ } V n,ω V n ω+ τ T n g,ω d V n ω τ Then, le τ T n. Fo any ω {τ < }, 1.6 implie ha L,ω τ ω L,ω ω = L τ ω,ω ω L,ω ω ρ + up ω τ ω ω,t ρ + up ω ωτ ω ρ + up τ ω, τ ω,τ ω+ T Similaly, uing 1.6 again and applying 1.8 wih η = g F yield ha fo any ω Ω τ ω g,ω Alo, 3.4 how ha fo any ω Ω ωd g,ω ω d g ω +ρ + up, V n ω V n,ω ω = V n ω V n,ω ω ρ 1 ω ω ω, =ρ1 ρ 1 up, ω ω + up, ω g,ω ω + g,ω ω g,ω ω d g,ω d. 7.33 B ω B τ ω. 7.34 B ω B ω d. 7.35 up, ρ 1 δ, + up,+δ, T ω ω ω Since ω, ω,t < α, we can deduce fom 7.34, 7.35, 3.3, 3.6 and 7.36 ha τ 1 {τ<} L,ω τ +1 {τ } V n,ω V n ω+ g,ω d g ω 1 {τ<} L,ω +1 {τ } V n,ω V n ω+ρ 1 + up τ,τ+ T V n,ω V n ω +1+ ρ α 2+ ρ α δ,. B Bτ B ω B ω. 7.36 + ρ 1 + up, B B

obu Dynkin Game 18 Taking upemum ove τ T n on he lef-hand-ide, we obain 7.32 fom 7.33. 1b Nex, we how ha fo V he inequaliy 7.32 can be enghened a V ω V ω up g ω +2+ ρ α δ,. 7.37,T Fix ε>. We can find a P=Pε P,ω uch ha V ω+ε/2 inf ome γ= γε T uch ha 1 {τ γ<},ω τ, γ+1 {τ γ } V,ω + In paicula, aking τ= on he lef-hand-ide give ha V ω+ε 1 { γ<},ω, γ+1 { γ } V,ω + g,ω d An analogy o 7.34 and 7.35 how ha U,ω γ ω U,ω ω ρ + up γ ω g,ω γ T up τ T,ω τ,γ. By 7.27, hee exi g,ω d inf γ T up τ T,ω τ,γ +ε/2, τ T. γ ω, γ ω+ T ωd g ω +ρ + up = γ, g,ω d+1 { γ<} U,ω γ +1 { γ } V,ω. 7.38 B ω B ṱ γ ω, ω { γ < } and B ω B ω, ω Ω. A ω, ω,t <α, plugging hem back o 7.38 and applying 7.36 wih n=, we can deduce fom 3.6 and 3.3 ha V ω V ω+ε+ g ω 1 { γ<} U,ω +1 { γ } V,ω V ω 1+ ρ α V,ω V ω 1+ ρ α 2+ ρ α δ,. Leing ε and aking 7.32 wih n= yield 7.37. Since lim δ, = lim δ, =, we can deduce fom 7.32 and 7.37 ha each pah of V n i boh lef-uppeemiconinuou and igh-lowe-emiconinuou, in paicula, each pah of V i coninuou. ր ց 2 Given,ω,T Ω, emak 3.2, Popoiion 1.1 4 and Pa 1 how ha V,ω i an F adaped poce wih all coninuou pah. Fo any P P,ω, 3.3 and 2.6 imply ha V,ω Ψ,ω,ω <. So V SF,P. 7.3 Poof of he eul in Secion 4 Poof of 4.1: Fix n N { } and τ T. We le,ω,t Ω and P P,ω. Since Vτ n F T and τ g d F T by emak 3.2, Popoiion 1.1 1 how ha boh Vτ n,ω τ and g d,ω belong o F T. 1 If := τω, Popoiion 1.1 3 how ha τω Ω. Applying 1.8 o η = V n F F and o η= g d F F yield ha fo any ω Ω V n τ,ω ω=v n τω ω,ω ω =V n,ω ω =V n,ω, 7.39 and τ g d,ω τω ω ω= g ω ωd= g ω ωd= g ωd. Boh only depend on ω. 2 Nex, uppoe ha τ >. Popoiion 1.1 3 alo how ha τω ω >, ω Ω and ha ζ := τ,ω i a T opping ime. I follow ha Vτ,ω ω n =V n τω ω,ω ω =V n τ,ω ω,ω ω =V n,ω ζ ω, ω, ω Ω. Byhe fiequaliyof 7.4, wealohave τ g d,ω τω ω ω= g ω ωd= g ωd+ ζ ω g,ω ωd. Then 3.3 and 2.6 imply ha V n τ,ω + τ,ω g d V n,ω ζ + ζ g,ω d + g ω d T + Ψ,ω g,ω d + g ω d<.

7.4 Poof of Popoiion 5.1 19 Poof of Theoem 4.1: Define Υ :=V + g d,,t a in Lemma A.1. Given,ω,T Ωandn N, inceemak3.2, Popoiion1.14andPopoiion3.4howhaV n,ω L,ω i an F adaped poce wih lef-uppe-emiconinuou pah and ha V,ω L,ω i an F adaped poce wih all coninuou pah, we can deduce fom 3.2 ha ae all F opional ime and ha τ n,δ,ω :=inf{,t: V n,ω <L,ω +δ }, δ> τ,ω :=inf{,t: V,ω =L,ω } {,ω =inf,t: V L,ω } i an F opping ime. 1 Le,ω,T Ω and γ T. Since γπ T by 1.3, Taking = and ζ=γπ in A.1 of Lemma A.1 how ha V ω+ g ωd = Υ ω inf Υ,ω. 7.4 P P,ω τ,ω Π γπ Fo any ω Ω, 3.3 and he fi equaliy in 7.4 imply ha Υ,ω ω=υ τ τ,ω Π γπ,ω Π ω ω γ Π ω ω,ω ω =Υ τ,ω ω γ ω,ω ω =V,ω τ,ω ω γ ω, ω + τ,ω ω γ ω g ω ωd 1 {τ,ω ω γ ω} L,ω τ,ω ω, ω +1 {γ ω<τ,ω ω} U,ω γ ω, ω + =,ω τ,ω,γ ω+ g ωd. τ,ω ω γ ω g ωd+ g,ω ωd Plugging hi ino 7.4 yield ha V ω inf,ω τ,ω,γ. Taking infimum ove γ T lead o ha P P,ω V ω inf inf γ T P P,ω,ω τ,ω,γ up inf τ T γ T inf P P,ω,ω τ,γ =V ω V ω, poving 4.3. 2 Le ζ T and,ω,t Ω. If :=τ ω ζω, imila o 7.39, we can deduce fom Popoiion 1.1 3, he F adapedne of Υ by emak 3.2 a well a 1.8 ha Υ τ ζ,ω ω=υ,ω, ω Ω. Then Υτ ζ E Υτ ζ ω = inf E,ω P = inf E P Υ,ω = Υ,ω = Υ τ ω ζω,ω. 7.41 P P,ω P P,ω On he ohe hand, if τ ω ζω>, applying Popoiion 1.1 3 once again how ha ω Ω {τ ζ>}. So i hold foany ω Ω ha,ω ω=υτ ζ Υ τ ζ ω ω =Υ τ ζ ω ω = Υ τ ζ,ω ω. A τ =τ, =τ,ω, aking = in A.1 yield ha Υτ ζ Υ τ ζ ω = Υ ω inf E,ω P P P,ω Υτ ζ = inf E,ω P = E Υτ ζ ω, P P,ω which ogehe wih 7.41 pove 4.4. 7.4 Poof of Popoiion 5.1 Fo any α,δ,, we define Φα,δ := δ+δ 1/4 +κ1+2 1 δ ϕ 1 αδ 1/4 +κ2 1 ϕ +1 αδ /2+1/4. 1 we fi how ha he pobabiliy cla {P,ω},ω,T Ω aifie P1 and P2. Le,ω,T Ω and µ U. We e P,p,X:= P,ω,µ,p,ω,µ,X,ω,µ. Given ω Ω, 2.4 how ha Ψ, X ω Ψ = Ψ X ω Ψ X ω, κ 1+ X ω,,,t. 7.42

obu Dynkin Game 2 I follow ha Ψ, X ω = up Ψ, X ω κ 1+ X ω,t +M Ψ, whee M Ψ := up Ψ < by he,t,t coninuiy of pah Ψ. Since Ψ, i an F adaped poce by Popoiion 1.1 4, applying 5.3 yield ha Ψ, =Ep Ψ, =E Ψ, X κ 1+E X,T +M Ψ κ 1+ϕ ω, T /2 +M Ψ <. Namely, Ψ, SF,P. Simila o 7.42, one can deduce fom 1.6 ha g, X ω g κ 1+ X ω, fo any,t. Then Fubini Theoem and 5.3 imply ha T T g, d=e p g, d=e T κt 1+ϕ ω, T /2 + T g, X d κ T 1+E X,T d+ g d T g d<. Hence P P. 7.43 Fo any,t and ω 1,ω 2 Ω wih ω 1, =ω 2,, ince he SDE 5.1 depend only on ω, fo a given pah ω Ω, we ee ha X,ω1,µ = X,ω2,µ and hu P,ω1,µ = P,ω2,µ fo any µ U. I follow ha P,ω 1 = P,ω 2. So Aumpion P1 i aified. Alo, Popoiion 6.3 of 5 ha aleady hown ha he pobabiliy cla {P,ω},ω,T Ω aifie P2. 2 The veificaion ha he pobabiliy cla {P,ω},ω,T Ω aifie P3 i elaively lenghy. We pli i ino eveal ep. 2a Le u fi quoe ome knowledge on he invee mapping of X,ω,µ fom 5, which ha aleady veified P3 i, ii fo {P,ω},ω,T Ω. Given,ω,T Ω and µ U, accoding o 5 ee he conex aound 7.62 and 7.63 heein, hee exi an F pogeively meauable poce W,ω,µ uch ha fo all ω Ω excep on a P null e N,ω,µ B ω = W,ω,µ X,ω,µ ω,,t, and ha he p,ω,µ pobabiliy of e A,ω,µ :={ ω Ω : N,ω,µ c X,ω,µ 1 ω } i 1, i.e., A,ω,µ c N p,ω,µ := { A GT X,ω,µ : p,ω,µ A= }. Foany,T, 5.4 andlemmaa.32of5howhaf,ω,µ :=σ F N p,ω,µ G X,ω,µ. We ee fom he conex aound 7.67 7.69 of 5 ha ω:=1 { ω A,ω,µ}W,ω,µ ω,, ω,t Ω i an {F,ω,µ and ha W,ω,µ },T adaped poce uch ha all i pah belong o Ω, ha ω = B ω = W,ω,µ X,ω,µ ω = W,ω,µ X,ω,µ ω, ω N c,ω,µ, 7.44 W,ω,µ 1 A F,ω,µ, A F,,T. 7.45 Fix < T, ω Ω and µ U, δ Q + and λ N. We conide a F paiion {A j} λ j= of Ω uch ha fo,,λ, A j O δ j ω j fo ome δ j,δ Q {δ} and ω j Ω, and le {µ j } λ U. We will imply e P,p,X,W,F := P,ω,µ,p,ω,µ,X,ω,µ, W,ω,µ,F,ω,µ. 7.46 Given j = 1,,λ, 5.4 how ha A X j :=X 1 A j F. So hee exi an A j F uch ha A X j A j N ee e.g. Poblem 2.7.3 of 36. Following imila agumen o hoe ued in he poof of Popoiion 6.3 of 5, one can how ha u1 The e Ãj:=A j A j j <j F aifie AX j Ãj N ee 7.7 of 5. u2 The paed conol µ ω := 1 {,} µ ω+1 {,T} 1 { ω à µ } ω+ λ 1 { ω Ãj}µj Π ω,, ω λ c,t Ω belong o U, whee à := à j F ee 7.71 of 5. Se P, p, X, Ŵ, F, N := P,ω, µ,p,ω, µ,x,ω, µ, W,ω, µ,f,ω, µ,n,ω, µ. u3 Thee exi a P null e Ñj uch ha fo any ω Ãj Ñc j, N ω := { ω Ω : X ω ω X ω X,ω X ω,µj ω fo ome,t } belong o N ee 7.78 of 5.

7.4 Poof of Popoiion 5.1 21 u4 Fo any A F, X 1 A X 1 A N ee 7.74 of 5. Alo, analogou o pa 2b of 5, Popoiion 6.3, we can ue he uniquene of conolled SDE 5.1 o how ha he equaliy µ = µ ove, Ω,T Ã implie he equaliy X = X ove, Ω,T Ã, and hu ha P aifie P3 i, ii. 2b To how ha P aifie 2.8, we make ome echnical eing and pepaaion fi. Popoiion 1.1 4 how ha Y 1 := g,ω, Y 2 := L,ω and Y 3 := U,ω,,T ae hee F adaped pocee wih all coninuou pah. Fo l = 1,2,3, 5.4 implie ha Y l X i an F adaped poce wih all coninuou pah. Applying Lemma A.2 3 of 5 wih P,X = P,B how ha Y l X ha an F,P veion Y l. Moe peciely, Y l ae F pogeively meauable pocee uch ha N := 3 l=1 { ω Ω : Y l ω Y l X ω fo ome,t } N. 7.47 By Lemma 1.2, i hold fo all ω Ω excep on an Ñ N ha N N, ω N. We ee fom Popoiion 1.1 4 ha he andom vaiable ξ m := up,t +2 m T g,ω d, m N 7.48 ae FT meauable. Since lim ξ m=, 2.6 and he dominaed convegenceheoem how ha lim E Pξ m =. m m So hee exi m N uch ha E Pξ m δ/2 and Φ ω,,2 m δ/2. Se a:=2 m. Now, fix n N { }, T and le,,λ. We e P j,p j,x j,w j,f j,n X j:= P,ω ωj,µj,p,ω ωj,µj,x,ω ωj,µj, W,ω ωj,µj,f,ω ωj,µj,n,ω ω j,µ j and define i <i j := X j T, ν j := j Π T, γ j:=ν j Ŵ, 7.49* whee γ j i a F opping ime ha ake value in,t. Given i=,,2 m, we e i := i2 m T and D i :={ i 1 < γ j i } F i wih 1 := 1. By e.g. Poblem 2.7.3 of 36, hee exi an D i F i uch ha D i D i N p. Define D i := D i \ D i F i <i i and D:= 2m D i = 2 m D i F i= i= T. Then γ j := 2 m i= 1 D i i i a F opping ime while γ j := 2 m i= 1 D i i +1 D ct define an T opping ime. Clealy, γ j coincide wih γ j ove 2m m 2 Di D i, whoe complemen Di \D i belong o N p becaue i=1 i=1 c D i \D i =D i Di D i = D i \ D i Di D i D i D i Di Di c Di D i N p. i i fo i=1,,2 m. To wi, we have i <i i <i γ j = γ j, p a.. 7.5 2c Now, fix A F, τ T n and e τ:=τ X. We how an auxiliay inequaliy: E P 1A Aj,ω τ,γ j E 1 X 1 A A Ξ j j +δ, 7.51 whee Ξ j := τ ν j Y 1 d+1 { τ νj}y 2 τ +1 {ν j< τ}y 3 ν j. Fo any,t, an analogy o A.19 how ha { τ }= X 1 {τ } F, So τ T. By Lemma 2.5 3 in he AXiv veion of 5, i hold fo all ω Ω excep on a N τ N ha τ, ω T. Fo,,λ, ince Y l ae F pogeively meauable pocee and ince ν j i a T opping ime, we ee ha Ξ j i an F T meauable andom vaiable.

obu Dynkin Game 22 Le,,λ. By 7.5, E P 1A Aj,ω τ,γ j =E p 1A Aj,ω τ,γ j =E p 1A Aj,ω τ,γ j =E 1 X 1 A A,ω j τ,γ j X. 7.52 Given ω Ω, ince γ j ω γ j ω<a, 1.6 implie ha,ω τ,γ j ω,ω τ ω γ j ω τ, γ j ω= g,ω ωd+1 { γj ω<τ ω γ j ω} L,ω τ ω, ω U,ω γ j ω, ω τ ω γ j ω U,ω γ j ω, ω U,ω γ j ω, ω +1 {γ j ω<τ ω} ξ m ω+1 { γj ω<τ ω γ j ω} +1 {γ j ω<τ ω} γ j ω γ j ω+ up τ ω γ j ω+ up,t,t ξ m ω+1 { γj ω<τ ω γ j ω} a+ up ξ m ω+ a+ up γ j ω,τ ω ν j Ŵ ω, ν j Ŵ ω +a T ω ω τ ω ω ω γ j ω ω ω γ j ω ω ω γ j ω Taking ω= X ω, one can deduce fom 7.44 ha fo P a.. ω Ω,,ω τ,γ j X ω,ω τ, γ j X ω ξ m X ω + Alo, 7.44 and 7.47 how ha fo any ω N N c,ω τ, γ j X ω = = τ ω ν j ω Y 1 τ ω ν j ω ω ω γj ω +1 {γ j ω<τ ω} a+ up ω ω γj ω γ j ω,γ j ω ω ω ν j Ŵ ω. a+ up ν j ω,ν j ω +a T X ω X νj ω. 7.53 X ω d+1 { τ ω ν j ω }Y 2 τ ω, X ω +1 {νj ω < τ ω }Y 3 ν j ω, X ω Y 1 ω d+1 { τ ω ν j ω }Y 2 τ ω, ω +1 {νj ω < τ ω }Y 3 ν j ω, ω =Ξ j ω. 7.54 Since X 1 A A j F, j =,,λ by 5.4 and ince ν j ae T opping ime, ν := 1 X 1 A T + λ 1 X 1 A ν j j i alo a T opping ime. Se η := X X ν. Uing he inequaliy a+b up ν,ν+a T 2 1 a +b, a,b>, one can deduce fom 7.54, 7.53 and 5.3 ha E 1 X 1 A A j,ω τ,γ j X Ξj = E 1 X 1 A A j ξ m X + E 1 X 1 A A j ξ m X + a+η E ξ m X + a+η a+ up ν j,ν j+a T X X νj 1+a+η E p ξ m +E 1{η a 1 4} a+a 1 4 +κ1{η>a 1 E Pξ 4} m + a+a 1 4 +κa 1/4 E 1+2 1 a η+2 1 η +1 δ/2+ a+a 1 4 +κ1+2 1 a ϕ 1 ω, a 1 4 +κ2 1 ϕ +1 ω, a /2+1/4 =δ/2+φ ω,,2 m δ. 7.55 Then we ee fom 7.52 ha E P 1A Aj,ω τ,γ j = E 1 X 1 A A,ω j τ,γ j X E 1 X 1 A A Ξ j j +δ, poving 7.51. 2d We ae eady o ue 2.1 and he eimae 5.2 o veify 2.8 fo P. Le,,λ again. A P P by 7.43, 7.54, 2.5 and 2.6 imply ha E Ξj T E g,ω X d+ψ,ω T T X = E p g,ω d +Ψ,ω = E P g,ω d +Ψ,ω <.

7.4 Poof of Popoiion 5.1 23 Since X 1 A A j F, applying Lemma A.2 1 of 5 wih P,X,ξ= P,B,Ξ j, uing u4 wih A=A Aj and applying Popoiion 2.3 in he AXiv veion of 5 wih P,ξ= P,Ξ j, we can deduce fom Popoiion 1.2 1 and u1 ha E 1 X 1 A A Ξ j j =E 1 X 1 A A E j ΞjF =E 1 X 1 A A E j ΞjF =E 1 X 1 A A je ΞjF =E 1 { ω X 1 A A X j } E Ξ, ω = E 1 { ω X 1 A A X Ãj}E Ξ, ω. 7.56 j j Le ω A X j Ãj Ñc j Ñc Nc τ. A τ, ω T, imila o γ j =ν j Ŵ, ζ ω:= τ, ω W j i a F j opping ime. Le ω Ω uchha ω inoinhep nulle N N, ω NX j N ω, anddefine X j ω ω:= X,ω X ω,µ j ω X j ω,t. Taking ω = ω ω N N c in 7.54, we ee fom 2.3, 7.44, u3, 2.1 a well a an analogy o he econd equaliy of 7.4 ha Ξ, ω j ω=,ω τ, γ j X ω ω =,τ X ω ω, γ j X ω ω,ω X ω ω =, τ ω ω,ν j ω ω,ω X ω ω =, τ, ω ω, j ω,ω X ω ω =,ζ ω X j ω, X j ω,ω X ω X,ω X ω,µj ω,ζ ω X j ω, X j ω, ω X ω X j ω +1+T X j ω ω =,ζ ω X j ω, X j ω, ω X ω X j ω + g ω X ω X j ω d+1+t X j ω ω =,ω X ω ζ ω, X j ω + g ω X ω d+1+t X j ω ω. Since X j ω ω 1 { } δ 1/2 +1 { } κδ 1/2 X j ω ω+ X j ω ω +1, 5.2 how ha X j ω ω δ1/2 X j ω ω>δ1/2 E Ξ, ω j,ω X ω E ζ ω, X j + g,ω X ω d+1+t δ 1/2 +1+Tκδ 1/2 C 1 T ω X ω ω ω j, +C +1 T +1 ω X ω ω ω j +1, j. 7.57 Se δ:=δ+1+t δ 1/2 +1+Tκ C 1 Tδ 1/2 +C +1 T +1 δ +1/2. A ω A X j =X 1 A j, i.e. X ω A j O δ j ω j, one ha ω X ω ω ω j, = X ω ω j, <δ j δ. I follow fom 7.57 ha E Ξ, ω j Ep j,ω X ω ζ ω, + up j,ω X ω ς, + ς T n Plugging hi back ino 7.56, we ee fom 7.51 and u1 ha E P 1A Aj,ω τ,γ j E 1 { ω X 1 A X 1 A j} = = E p 1 { ω A Aj} 1 { ω A Aj} up ς T n up ς T n j j up ς T n g,ω X ω d+ δ δ j g,ω,ω ω ς, +,ω ω ς, + In he la equaliy, we ued he fac ha he mapping ω up j ς T n X ω d+ δ δ. 7.58*,ω X ω ς, + g,ω X ω d+ δ δ +δ g,ω ωd+ δ δ +δ g,ω ωd +PA A c δ δ+δ.,ω ω ς, i coninuou unde nom,t and hu F T meauable by emak 2.2 2. Theefoe, 2.8 hold fo n j = γ j,, λ. 3 In hi pa, we ill ue 2.1 and he eimae 5.2 o how ha {P,ω},ω,T Ω aifie Aumpion 3.1.

obu Dynkin Game 24 Fix n N { },,T, ω,ω Ω, µ U and e δ := ω ω,. We ill ake he noaion 7.46 and e P,p,X,W,F := P,ω,µ,p,ω,µ,X,ω,µ, W,ω,µ,F,ω,µ. Fix ε >. We ill define ξ m a in 7.48 and can find a k N uch ha ξ k ε/2 and Φ ω,,2 k ε/2. Alo, fix γ T and τ T n. Simila o τ=τ X in pa 2c, τx belong o T Ŵ ; and analogou o γ j =ν j, 7.45 implie ha τ :=τ X W i a F opping ime. Symmeically, γx belong o T and γ :=γ XW define a F opping ime. Se i := i2 k T, i=,,2 k. Then γ k := 2 k i= 1 { i 1< γ i} i define a F opping ime, whee 1 := 1. By imila agumen o hoe ha lead o 7.5, one can conuc a T opping ime γ k valued in { i } 2k i= uch ha γ k = γ k, p a.. Analogou o 7.53, we can deduce ha fo P a.. ω Ω,,ω τ, γ k X ω,ω τ, γ X ω ξ k X ω + 2 k +η ω, whee η := up X X γx. And imila o 7.55, 5.3 implie ha γx,γx+2 k T E p,ω τ, γ k,ω τ, γ = E p,ω τ, γ k,ω τ, γ =E,ω τ, γ k X,ω τ, γ X E ξk X + 2 k +η ξ k +Φ ω,,2 k ε. 7.59 Since 7.44 how ha τ X ω =τ X WX ω = τ X ω and γx ω=γ X W X ω =γ X ω hold fo P a.. ω Ω, we ee fom 2.3 and 2.1 ha fo P a.. ω Ω,ω τ, γ X ω,ω τ,γ X ω =,τx ω, γx ω,ω X ω, τx ω,γx ω,ω X ω =, τx ω,γx ω,ω X ω, τx ω,γx ω,ω X ω 1+T ω X ω ω X ω,t 1+T ω ω, + X ω X ω,t =1+T δ+ X ω 1 { X ω δ 1/2 }1+T δ+δ 1/2 +1 { X ω>δ 1/2 }κ1+tδ 1/2 1+2 1 δ X ω+2 1 X ω +1, wih X ω := X ω X ω,t. Then 7.59 and 5.2 how ha,ω τ, γ k = Ep,ω τ, γ k Ep,ω τ, γ +ε=e,ω τ, γ X +ε E,ω τ,γ X + 1δ+ε=E p,ω τ,γ + 1δ+ε, 7.6 whee 1δ:=1+T δ+δ 1/2 +κ1+t 1+2 1 δ C 1 Tδ 1/2 +2 1 C +1 T +1δ +1/2 δ. Simila o 7.58, one can deduce ha E p,ω τ,γ up,ω ς,γ. So i follow fom 7.6 ha ς T n,ω τ, γ k up,ω ς,γ + 1δ+ε. ς T n Taking upemum ove τ T n on he lef-hand-ide yield ha inf up ζ T τ T n,ω τ,ζ up τ T n,ω τ, γ k up ς T n Then aking infimum ove γ T on he igh-hand-ide, we obain ha inf up ζ T τ T n,ω,µ,ω τ,ζ inf up γ T ς T n Leing ε and aking infimum ove µ U on boh ide lead o ha V n ω = inf µ U inf up ζ T τ T n,ω,µ,ω τ,ζ inf inf up µ U γ T ς T n,ω ς,γ + 1δ+ε.,ω,µ,ω ς,γ + 1δ+ε.,ω,µ,ω ς,γ + 1 ω ω, =V n Exchanging he ole of ω and ω how ha {P,ω},ω,T Ω aifie 3.4. 4 To veify Aumpion 3.2 fo {P,ω},ω,T Ω, we fix α> and δ,t. ω+ 1 ω ω,.