On Zero-Sum Stochastic Differential Games

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "On Zero-Sum Stochastic Differential Games"

Transcript

1 O Zeo-Sum Sochac Dffeeal Game Eha Bayaka, Sog Yao Abac We geealze he eul of Flemg ad Sougad 13 o zeo-um ochac dffeeal game o he cae whe he cool ae ubouded. We do h by povg a dyamc pogammg pcple ug a coveg agume ead of elyg o a dcee appoxmao whch ued alog wh a compao pcple 13. Alo, coa wh 13, we defe ou pay-off hough a doubly efleced backwad ochac dffeeal equao. he value fuco he degeeae cae of a gle coolle cloely elaed o he ecod ode doubly efleced BSDE. Keywod: Zeo-um ochac dffeeal game, Ello-Kalo aege, dyamc pogammg pcple, ably ude pag, doubly efleced backwad ochac dffeeal equao, vcoy oluo, obacle poblem fo fully o-lea PDE, hfed pocee, hfed SDE, ecod-ode doubly efleced backwad ochac dffeeal equao. Coe 1 Ioduco 1.1 Noao ad Pelmae Doubly Refleced Backwad Sochac Dffeeal Equao Doubly Refleced Zeo-Sum Sochac Dffeeal Game wh Squae-Iegable Cool 6 3 A Obacle Poblem fo Fully o-lea PDE 1 4 Shfed Pocee Cocaeao of Sample Pah Meauably of Shfed Pocee Iegably of Shfed Pocee Shfed Sochac Dffeeal Equao Pag of Cool ad Saege Opmzao Poblem wh Squae-Iegable Cool Geeal Reul Coeco o Secod-Ode Doubly Refleced BSDE Poof Poof of Seco 1 & Poof of Dyamc Pogammg Pcple Poof of Seco Poof of Seco Poof of Seco Depame of Mahemac, Uvey of Mchga, A Abo, MI 48109; emal: eha@umch.edu. E. Bayaka uppoed pa by he Naoal Scece Foudao ude appled mahemac eeach ga ad a Caee ga, DMS , DMS , ad DMS , epecvely, ad pa by he Sua M. Smh Pofeohp. Depame of Mahemac, Uvey of Pbugh, Pbugh, PA 1560; emal: ogyao@p.edu.

2 O Zeo-Sum Sochac Dffeeal Game 1 Ioduco I h pape we ue doubly efleced backwad ochac dffeeal equao DRBSDE o geeae payoff fo a zeo-um ochac dffeeal game oduced by he emal wok of Flemg ad Sougad 13. I ou eg, he wo playe compee by choog quae-egable cool. Sce Hamadèe ad Lepele 16, 17, BSDE ad doubly efleced BSDE have bee bough o he aaly of zeo-um ochac dffeeal game o olve vaou poblem uch a deemg addle po ee e.g. 16, 17, 30, k-eve cool poblem ee e.g. 11, ad mxed cool ad oppg poblem ee e.g. 18, 19, 14. All hee wok followed 13 aumg ha cool pace compac. Amog hem, Buckdah ad L 4, 6, 5 ad Hamadèe e al. 1 eemble 13 he mo by codeg coolled dffuo coeffce ad Ello-Kalo aege. Howeve, he aaly dffee ha 13 ad ou ha hey wok wh a ufom caocal pace Ω ω C0, ; R d : ω0 0 } egadle of he ag me of he game. Fo he developme of ochac dffeeal game ohe aea, ee he efeece e.g. 4. Cvać ad Kaaza 8 aed he eeach of DRBSDE ad howed ha he oluo of a DRBSDE he value of a cea Dyk game, a zeo-um ochac game of opmal oppg ee he efeece he oduco hee fo hocal ude o Dyk game. he Hamadèe ad Lepele 18 ad Hamadèe e al. 19 added cool o DRBSDE o udy mxed cool ad oppg game wh applcao valuao of Iael opo o Ameca game opo. Oe ecoue emedou echcal dffcule whe he compace aumpo of he cool pace emoved, ce he appoxmao ool of 13 alo ee Flemg ad Heádez Heádez 1 o applcable ay loge. hee ae ome excepo o h ule: Squae-egable cool wa codeed by Bowe 3 fo a pecfc zeo-um veme game bewee wo mall veo whoe cool ae fom of he pofolo. he PDE h pecal cae have mooh oluo, heefoe he poblem ca be olved by elyg o a vefcao heoem ead of he dyamc pogammg pcple. I a moe geeal eg, Chape 6 of Kylov 4 codeed quae-egable cool. Howeve, he aaly wa doe oly fo coopeave game.e. he o called up up cae. I alo woh meog ha ped by ug-of-wa a dcee-me adom u game, ee e.g. 31 ad 5, Aa ad Budhaja 1 uded a zeo-um ochac dffeeal game wh U V x R : x 1} 0, played ul he ae poce ex a gve doma. he auho howed ha he value of uch a game he uque vcoy oluo o he homogeou fy Laplace equao. A Chape 6 of 4, hey deped o a appoxmag he game wh ubouded cool wh a equece of game wh bouded cool. hey pove a dyamc pogammg pcple fo he lae cae ad pove he equcouy of he appoxmag equece o coclude ha he value fuco a vcoy oluo o he fy Laplace equao. Iead of elyg o appoxmao agume, we decly pove a dyamc pogammg pcple fo he game wh quae-egable cool. I h pape, he cool of epecve playe ake value wo epaable mec pace U ad V. We follow he pobablc eg of 13 ad ely o he exece of he egula codoal pobably dbuo. Whe he game a fom me 0,, we code he caocal pace Ω ω C, ; R d : ω 0 }, whoe coodao poce B a Bowa moo ude he Wee meaue P0. Deoe by U ep. V he e of all U valued ep. V valued quae-egable poce. If playe I chooe a µ U ad playe II elec a ν V a cool, he ae poce X,x,µ,ν ag fom x wll evolve accodg o he followg SDE: X x + b, X, µ, ν d + σ, X, µ, ν db,,, 1.1 whee he df b ad he dffuo σ ae Lpchz x ad have lea gowh µ, ν. Ad he payoff playe I wll eceve fom playe II deemed by he f compoe of he oluo Y,x,µ,ν, Z,x,µ,ν, K,x,µ,ν, K,x,µ,ν o he followg DRBSDE: Y h X,x,µ,ν + f, X,x,µ,ν l, X,x,µ,ν Y l, X,x,µ,ν,,, Y l, X,x,µ,ν dk l, X,x,µ,ν Y dk 0,, Y, Z, µ, ν d+k K K K Z db,,, 1.

3 1. Ioduco 3 wh wo epaae obacle fuco l < l afyg l, h l,. Whe l, h, l, f ae all /q Hölde couou x fo ome q 1,, Y,x,µ,ν q egable by El A e al. 10. A we ee fom 1.1 ad 1. ha he cool µ ad ν fluece he game wo apec: ehe affec 1. va he ae poce X,x,µ,ν o appea decly he geeao f of 1. a paamee. We ue Ello-Kalo aege a 13. I h game, oe playe e.g. Playe I ha poy ad chooe a cool ad oppoe e.g. Playe II wll eac by elecg a coepodg aegy. We pecfy Playe II aegy by a meauable mappg β :, Ω U V f he game a fom me. h addoal pecfcao o accommodae a pacula meauably ue, ee Remak.. Ude a lea gowh codo o he µ vaable, β duce a mappg β : U V by β µ ω β, ω, µ ω, µ U,, ω, Ω, whch exacly a Ello-Kalo aegy. he w 1, x f β B up µ U Y,x,µ,β µ epee Playe I poy value of he game ag fom me ad ae x, whee B collec all admble aege fo Playe II. Playe II poy value w, x defed mlaly. Alhough value fuco w 1, x, w, x ae ll /q Hölde couou x, hey ae o loge 1/q Hölde couou a he cae of compac cool pace. Hece we ae o able o ue he appoach of 13 o how he dyamc pogammg pcple fo w 1 ad w, ee Remak.. Iead, we ue he couy of Y,x,µ,ν cool µ, ν, popee of hfed pocee epecally hfed SDE a well a ably ude pag of cool/aege a led below o pove a dyamc pogammg pcple, ay fo w 1 : w 1, x f β B up Y,x,µ,β µ µ U τ µ,β, w 1 τµ,β, X,x,µ,β µ τ µ,β 1.3 fo ay famly τ µ,β : µ U, β B } of Q valued oppg me. he cucal gede of he poof of dyamc pogammg pcple 1.3 ae: Whe b, σ ae λ Hölde couou µ o ν ad f λ Hölde couou µ o ν fo ome λ 0, 1, applyg a a po emae 1.7 fo DRBSDE, we oba a couou depedece eul of X,x,µ,ν ad Y,x,µ,ν o cool µ o ν, ee Lemma.1 ad Lemma.. h depedece ogehe wh wo ce opologcal popee of he caocal pace Ω, amely epaably ad Lemma 6.3 ae cucal he coveg agume whch ued o couc ε opmal aege ag a ay oppg me. Le 0. Fo ay adom vaable ξ o Ω we defe a hfed adom vaable ξ,ω ω ξω ω, ω Ω a a pojeco of ξ oo Ω alog a gve pah ω of Ω, whee ω ω he cocaeao of pah ω ad ω a me, ee 4.1. I dcee-me fe-ae couepa a eco of a bomal/omal ee of ae pce o oe of bache. Smlaly, oe ca oduce hfed pocee ad hfed adom feld, pacula, hfed cool ad hfed aege. Soe e al. 37, 40 a well a ou geealzao Subeco 4. & 4.3 how ha hee hfed adom objec almo uely he meauably ad egably. I Popoo 4.7, we exed a eul of 13 o hfed fowad SDE: Fo P0 a.. ω Ω, he hfed poce of X,x,µ,ν olve 1.1 wh paamee, X,x,µ,ν ω, µ,ω, ν,ω o he pobably pace Ω, F, P 0. Smlaly, he hfed pocee of Y,x,µ,ν, Z,x,µ,ν, K,x,µ,ν, K,x,µ,ν olve 1. wh he paamee, X,x,µ,ν ω, µ,ω, ν,ω o Ω, F, P 0, ee Popoo 4.8. hee wo popoo ae alo cucal demoag 1.3. I coucg he ε opmal aege above, we ue pag of cool ad aege. Ou e of cool ad aege ae cloed ude pag, ee Popoo 4.9 & I he lae poof we how ha a addoal pah-couy o aege fo povg he dyamc pogammg pcple alo cloed ude pag. Ug he dyamc pogammg pcple, he couy of Y,x,µ,ν cool µ, ν a well a he epaably of U, V we ca deduce ha he value fuco w 1 ad w ae dcouou vcoy oluo of he coepodg obacle poblem of fully o-lea PDE, ee heoem 3.1. Whe V become a gleo, he zeo-um ochac dffeeal game degeeae o a clacal ochac cool poblem cludg oly oe playe. I pacula, whe U all ymmec d dmeoal mace}, b, x, u b, x ad σ, x, u u, he value fuco w of he opmzao poblem cocde wh ha of

4 O Zeo-Sum Sochac Dffeeal Game 4 he ecod-ode doubly efleced BSDE ad elaed o he oe Nuz 7 va a pobably afomao of og fom 5.1. Movaed by applcao facal mahemac ad pobablc umecal mehod, Chedo e al. 7 oduced ecod-ode BSDE. Lae, Soe e al. 40 efed h oo ad Soe e al. 38 elaed o G expecao of Peg 9, 8. Amog he ece developme of ecod-ode BSDE ee e.g. 3, 6, 33, Maou e al. 6 uded he efleced veo, whch ca be exeded o he doubly-efleced cae a uual. he e of he pape ogazed a follow: Afe lg he oao ued, we wll pee wo bac popee of DRBSDE Seco 1. I Seco, we e up he zeo-um ochac dffeeal game baed o DRBSDE ad pee a dyamc pogammg pcple, heoem.1, fo poy value of boh playe defed va Ello- Kalo aege. Ug he dyamc pogammg pcple, we how Seco 3 ha he poy value ae dcouou vcoy oluo of he coepodg obacle poblem of fully o-lea PDE, ee heoem 3.1. I Seco 4, we exploe he popee of hfed pocee cludg he meauably/egably, hfed SDE ad pag of cool/aege. he coe of h eco ae all echcal ecee povg ou ma eul, heoem.1 ad 3.1. I Seco 5, we wll dcu he clacal ochac cool poblem a a degeeae cae ad coec o ecod ode doubly efleced BSDE. he poof of ou eul ae gve Seco Noao ad Pelmae We le M be a geec mec pace wh mec ρ M ad deoe by BM he Boel σ feld o M. Fo ay x M ad δ > 0, O δ x x M : ρ M x, x < δ} deoe he ope ball ceeed a x wh adu δ ad cloue O δ x x M : ρ M x, x δ}. Fo ay fuco φ : M R, we defe lm φx lm x x f x O 1/ x φx ad lm x x φx lm up φx, x M. x O 1/ x Alo, we le E deoe a geec Euclda pace. Fx d N. Fo ay 0 <, we e Q,, Q } ad le Ω, ω C, ; R d : ω0 } be he caocal pace ove he peod,, whch equpped wh he ufom om ω, up ω., We le O δ ω ω Ω, : ω ω, < δ} deoe he ope ball ceeed a ω Ω, wh adu δ > 0, ad le BΩ, be he coepodgly Boel σ feld of Ω,. We deoe by B, he caocal poce o Ω,, ad by P, 0 he Wee meaue o Ω,, BΩ, ude whch B, a d dmeoal Bowa moo. Le F, F, σ B, ;, } be he flao geeaed by B, ad le C, collec all cylde e, } 1E : m N, < 1 < < m, E } m 1 BRd. I well-kow ha B BΩ, σc,, 1E σ :,, E BR } d F,. 1.4 F,,.e. C, m 1 B, Fo ay F, oppg me τ, we defe wo ochac eval, τ, ω, Ω : < τω }, τ,, ω, Ω : τω } ad e τ, A, ω, A : τω } fo ay A F, τ. he followg wo eul ae bac, ee fo poof. Lemma 1.1. Le 0 <, fo ay,, he σ feld F, C, couably geeaed by m B, 1 Oλ 1 x : m N, Q wh 1 < < m, x Q d, λ Q + }. Lemma 1.. Le 0 S <. he ucao mappg Π,S, Π,S couou ude ufom om ad F,, ω ω ω, ω Ω,,, S P, 0 Π,S, : Ω, Ω,S defed by / F,S meauable fo ay, S. Moeove, we have 1A P,S 0 A, A F,S S.

5 1. Doubly Refleced Backwad Sochac Dffeeal Equao 5 Fom ow o, we fx a me hozo 0, ad hall dop fom he above oao,.e. Ω,,,, B,, F,, P, 0, C, Ω,, B, F, P0, C. he expecao ude P 0 wll be deoed by E. Whe S we mply deoe Π,, by Π, Lemma 1.. Gve 0,, we le P deoe he e of all pobably meaue o Ω, BΩ Ω, F by 1.4. Fo ay P P, we e N P N Ω : N A fo ome A F wh P A 0} a he colleco of all P ull e. he P augmeao F P of F co of F P σ F N P,,. I pacula, we wll we F } F }, fo FP 0 F P 0. he compleo of Ω, F, P he pobably pace Ω, F P, P, wh P P. Fo coveece, we wll mply we P fo P. F Smla o Lemma.4 of 39, we have he followg eul: Lemma 1.3. Le 0, ad P P. 1 Fo ay ξ L 1 F P, P ad,, E P ξ F P EP ξ F, P a.. Coequely, a magale ep. local magale o em-magale wh epec o F, P alo a magale ep. local magale o em-magale wh epec o F P, P. Fo ay E valued, F P adaped couou poce X },, hee ex a uque ee of P evaecece E valued, F adaped couou poce X }, uch ha P X X,, 1. Fo ay E valued, F P pogevely meauable poce X },, hee ex a uque d dp a.. ee E valued, F pogevely meauable poce X }, uch ha X ω X ω fo d dp a.., ω, Ω. I boh cae, we call X he F veo of X. Fo ay p 1,, 0, ad P P, we oduce ome pace of fuco: 1 Fo ay ub σ feld F of F P, le Lp F, E, P be he pace of all E valued, F meauable adom vaable ξ uch ha ξ L p F,P E } 1/p P ξ p <. Fo ay flao F F }, o Ω, F P, PF wll deoe he F pogevely meauable σ feld of, Ω. Le C 0 F,, E, P be he pace of all E valued, F adaped pocee X }, wh P a.. couou pah. We defe he followg ubpace of C 0 F,, E, P : C p F,, E, P X C 0F,, E, P : X C pf, E,P P up, } C ±,p F,, P X C 0 F,, R, P : X± ±X 0 C pf,, P ; V F,, P X C 0 F,, R, P : X ha P a.. fe vaao} ; } 1/p } X p < ; K F,, P X C 0 F,, R, P : X 0 ad X ha P a.. ceag pah } ; K p F,, P X K F,, P : E P X p } <. 3 Le H p,loc F,, E, P be he pace of all E valued, F pogevely meauable pocee X }, wh X p d <, P0 a.. Ad fo ay p 1,, we le H p, p F,, E, P deoe he pace of all E valued, F pogevely meauable pocee X }, wh X H p, p F,,E,P E P X p d p/p } 1/ p <. Alo, we e G q F,, P C q F,, R, P H,q F,, Rd, P K q F,, P Kq F,, P. If E R ep. P P 0, we wll dop fom he above oao. Moeove, we ue he coveo f. 1. Doubly Refleced Backwad Sochac Dffeeal Equao Le 0,. A paamee e ξ, f, L, L co of a adom vaable ξ L 0 F, a fuco f :, Ω R R d R, ad wo pocee L, L C 0, uch ha f P F BR BR d /BR meauable ad F ha L ξ L, P 0 a.. I pacula, ξ, f, L, L called a, q paamee e f ξ L q F ad L C,q F,., L C +,q F,

6 O Zeo-Sum Sochac Dffeeal Game 6 Defo 1.1. Gve 0, ad a paamee e ξ, f, L, L, a quaduple Y, Z, K, K C 0 F, H,loc,, R d K F F, K F, called a oluo of he doubly efleced backwad ochac dffeeal equao o he pobably pace Ω, F, P0 wh emal codo ξ, geeao f, lowe obacle L ad uppe obacle L DRBSDE P0, ξ, f, L, L fo ho f hold P0 a.. ha Y ξ+ f, Y, Z d+k K K K Z db,,, L Y L,, ad Y L dk L Y dk 0. he la wo equale 1.5 ae kow a he fla-off codo coepodg o L ad L epecvely, ude whch he wo ceag pocee K, K keep poce Y bewee L ad L a he mmal effo:.e., Oly whe Y ed o dop below L ep. e above L, K ep. K wll geeae a upwad ep. dowwad momeum. We f have he followg compao eul ad a po emae fo DRBSDE, whch geealze hoe 5 ad 15. Popoo 1.1. Gve 0, ad wo, q paamee e ξ 1, f 1, L 1, L 1, ξ, f, L, L wh P 0 ξ 1 ξ P0 L 1 L, L 1 L,, 1, le Y, Z, K, K C q, H,q,, R d K F F F, K F,, 1, be a oluo of DRBSDE P0, ξ, f, L, L. Fo ehe 1 o, f f Lpchz couou y, z:.e. fo ome γ > 0, hold fo d dp0 a.., ω, Ω ha f, ω, y, z f, ω, y, z γ y y + z z, y, y R, z, z R d, 1.6 ad f f 1, Y 3, Z 3 f, Y 3, Z 3, d dp0 a.., he hold P0 a.. ha Y 1 Y fo ay,. Popoo 1.. Gve 0, ad wo, q paamee e ξ 1, f 1, L 1, L 1, ξ, f, L, L wh P 0 L 1 L, L1 L,, 1, le Y, Z, K, K C q, H,q,, R d K F F F, K F,, 1, be a oluo of DRBSDE P0, ξ, f, L, L. If f1 afe 1.6, he fo ay ϖ 1, q E up Y 1 Y C, ϖ ϖ ϖ, γ E ξ1 ξ ϖ +E f 1, Y, Z f, Y, Z d }. 1.7, Gve a, q paamee e ξ, f, L, L uch ha f Lpchz couou y, z. If E f, 0, 0 q d < ad f P0L < L,, 1, he we kow fom heoem 4.1 of 10 ha he DRBSDE P0, ξ, f, L, L adm a uque oluo Y, Z, K, K G q,. F 1.5 Doubly Refleced Zeo-Sum Sochac Dffeeal Game wh Squae-Iegable Cool Le U, ρ U ad V, ρ V be wo epaable mec pace, whoe Boel σ feld wll be deoed by BU ad BV epecvely. Fo ome u 0 U ad v 0 V, we defe u U ρu u, u 0, u U ad v V ρv v, v 0, v V. Fx a o-empy U 0 U ad a o-empy V 0 V. We hall udy a zeo-um ochac dffeeal game bewee wo playe, playe I ad playe II, who chooe quae-egable U valued cool ad V valued cool epecvely o compee: Defo.1. Gve 0,, a admble cool poce µ µ }, fo playe I ove peod, a U valued, F pogevely meauable poce uch ha µ U 0, d dp0 a.. ad ha E µ d <. U Admble cool pocee fo playe II ove peod, ae defed mlaly. he e of all admble cool fo playe I ep. II ove peod, deoed by U ep. V.

7 . Doubly Refleced Zeo-Sum Sochac Dffeeal Game wh Squae-Iegable Cool 7 Ou zeo-um ochac dffeeal game fomulaed va a decoupled SDE DRBSDE yem wh he followg paamee: Fx k N, γ > 0 ad q 1,. 1 Le b : 0, R k U V R k be a B0, BR k BU BV/BR k meauable fuco ad le σ : 0, R k U V R k d be a B0, BR k BU BV/BR k d meauable fuco uch ha fo ay, u, v 0, U V ad ay x, x R k b, 0, u, v + σ, 0, u, v γ 1 + u U + v V ad b, x, u, v b, x, u, v + σ, x, u, v σ, x, u, v γ x x ;. Le l, l : 0, R k R be wo jo couou fuco uch ha l, x<l, x,, x 0, R k ad ha l, x l, x l, x l, x γ x x /q, 0,, x, x R k ;.3 3 Le h: R k R be a /q Hölde couou fuco wh coeffce γ uch ha l, x hx l, x, x R k ; 4 Le f : 0, R k R R d U V R be B0, BR k BR BR d BU BV/BR meauable fuco uch ha fo ay, u, v 0, U V ad ay x, y, z, x, y, z R k R R d f, 0, 0, 0, u, v γ 1 + u /q U + v/q V ad f, x, y, z, u, v f, x, y, z, u, v γ x x /q + y y + z z..5 Fo ay λ 0, we le c λ deoe a geec coa, depedg o λ,, q, γ, l up l, 0 ad l, l, 0, whoe fom may vay fom le o le. I pacula, c0 ad fo a geec coa depedg o up,, q, γ, l ad l. Fx 0,. Aume ha whe playe I ep. II elec admble cool µ U ep. ν V, he coepodg ae poce ag fom me a po x R k dve by he SDE 1.1 o he pobably pace Ω, F, P0. Clealy, he meauably of b ad σ mple ha fo ay x R k, boh b, x, µ, ν }, ad σ, x, µ, ν } ae, F pogevely meauable pocee. Alo, we ee fom. ha fo ay, ω, Ω, boh b,, µ ω, ν ω ad σ,, µ ω, ν ω ae Lpchz wh coeffce γ. Sce E b, 0, µ, ν + σ, 0, µ, ν d c 0 + c 0 E µ + ν U V d <.6 by.1, well-kow ee e.g. heoem.5.7 of 4 ha 1.1 adm a uque oluo X,x,µ,ν }, C F,, R k. Applyg heoem.5.9 of 4 wh ξ, ξ, b 0, σ 0 x, 0, 0, 0 hu x 0 hee ad ug.1 yeld E up, up, X,x,µ,ν c x + E.1.4 µ + ν U V d <..7 Lemma.1. Le ϖ 1,, 0, ad x, µ, ν R k U V. 1 Fo ay,, E up X,x,µ,ν x c 0 1+ x +c 0 E µ +ν U V d..8, Fo ay x R k, E X,x,µ,ν X,x,µ,ν ϖ c ϖ x x ϖ..9 3 If b ad σ ae λ Hölde couou u fo ome λ 0, 1,.e., fo ay, x, v 0, R k V ad u 1, u U b, x, u1, v b, x, u, v + σ, x, u1, v σ, x, u, v γ ρ λ u1, u U,.10

8 O Zeo-Sum Sochac Dffeeal Game 8 he fo ay µ U E up X,x,µ,ν X,x,µ,ν, ϖ c ϖ E ϖ/ ρ λ µ U, µ d..11 Smlaly, f b ad σ ae λ Hölde couou u fo ome λ 0, 1,.e., fo ay, x, u 0, R k U ad v 1, v V b, x, u, v1 b, x, u, v + σ, x, u, v1 σ, x, u, v γ ρ λ v1, v V,.1 he fo ay ν V E up X,x,µ,ν X,x,µ,ν, ϖ c ϖ E ϖ/ ρ λ ν V, ν d..13 By Lemma 1.3, X,x,µ,ν adm a uque F veo X,x,µ,ν, whch clealy belog o C F,, R k ad alo afe.7,.8,.9,.11 ad.13. If µ, ν aohe pa of U V uch ha µ, ν µ, ν d dp0 a.. o, τ fo ome F oppg me τ, he boh Xτ,x,µ,ν }, ad X,x, µ, ν } τ afy he ame SDE: X x +, b τ, X d + σ τ, X db,,,.14 wh b τ, ω, x 1 <τω} b, x, µ ω, ν ω ad σ τ, ω, x 1 <τω} σ, x, µ ω, ν ω,, ω, x, Ω R k. Clealy, fo ay x R k boh b τ,, x ad σ τ,, x ae F pogevely meauable pocee, ad fo ay, ω, Ω boh b τ, ω, ad σ τ, ω, ae Lpchz couou wh coeffce γ. hu.14 ha a uque oluo C F,, R k,.e. P0 X,x,µ,ν τ Xτ,x, µ, ν,, Le Θ ad fo he quaduple, x, µ, ν. By he couy of l ad l, L Θ l, X Θ ad L Θ l, XΘ,, ae wo eal valued, F adaped couou pocee uch ha L Θ < L Θ,,. Gve a F oppg me τ, he meauably of f, X Θ, µ, ν ad.5 mply ha fτ Θ, ω, y, z 1 <τω} f, X Θ ω, y, z, µ ω, ν ω,, ω, y, z, Ω R R d a P F BR BR d /BR meauable fuco ha Lpchz couou y, z wh coeffce γ. Ad oe ca deduce fom.3,.4,.5, Hölde equaly ad.7 ha E up L Θ τ q + up L Θ τ q + f τ Θ, 0, 0 q d c 0 +c 0 E XΘ + d <..16,, up, µ U +ν V hu, fo ay Fτ meauable adom vaable ξ wh L Θ τ ξ LΘ τ, P0 a.., follow ha E ξ q <,.e. ξ L q Fτ. he heoem 4.1 of 10 how ha he DRBSDE P 0, ξ, fτ Θ, L Θ τ, Lτ Θ adm a uque oluo Y Θ τ, ξ, Z Θ τ, ξ, K Θ τ, ξ, K Θ τ, ξ G q,. Clealy, F veo Ỹ Θ τ, ξ, Z Θ τ, ξ, K Θ τ, ξ, F K Θ τ, ξ by Lemma 1.3 belog o G q F,. A F, Ω }, Ỹ Θ τ, ξ a coa. Gve aohe F oppg me ζ uch ha ζ τ, P0 a.., Θ oe ca ealy how ha Ỹζ τ, ξ, 1 <ζ} ZΘ τ, ξ, K Θ ζ τ, ξ, K } ζ τ, Θ ξ G q F, olve he DRBSDE P0, Ỹ Θ ζ τ, ξ, f ζ Θ, LΘ ζ, L ζ Θ. o w, we have, Θ Ỹ ζ, Ỹζ Θ τ, ξ, Z Θ ζ, Ỹζ Θ τ, ξ, K Θ ζ, Ỹζ Θ τ, ξ, K Θ ζ, Ỹ Θ Ỹ Θ ζ τ, ξ, 1 <ζ} ZΘ τ, ξ, K Θ ζ τ, ξ, K Θ ζ τ, ξ ζ τ, ξ,,..17

9 . Doubly Refleced Zeo-Sum Sochac Dffeeal Game wh Squae-Iegable Cool 9 he couy of fuco h mple ha h XΘ a eal valued, F meauable adom vaable uch ha L Θ l, X Θ Θ h XΘ l, XΘ L. Hece, we ca ue 1.5 o oba ha l, x l, X Θ Y Θ, h XΘ l, XΘ l, x, P 0 a.., whch lead o ha Y,x,µ,ν l, x Ỹ Θ, h XΘ l, x..18 Iped by Popoo 6.1 of 5, we have he followg a po emae abou he depedece of, h X,x,µ,ν o al ae x ad o cool µ, ν. Lemma.. Le ϖ 1, q, 0, ad x, µ, ν R k U V. 1 Fo ay x R k, E up, h X,x,µ,ν Y,x,µ,ν Le l, l ad h afy Y,x,µ,ν,, h X,x,µ,ν ϖ c ϖ x x ϖ q..19 l, x l, x l, x l, x hx hx γ ψ x x, 0,, x, x R k.0 fo a ceag C R + fuco ψ uch ha fo ome 0 < R 1 < 1 < R ψa 1 a f a 0, R 1, ψa a /q f a R 1, R, ad ψa a /q f a > R. Clealy, ψa a /q fo ay a 0. So.0 mple.3 ad he /q Hölde couy of h. Le λ 0, 1. If b, σ ae λ Hölde couou u ee.10 ad f f λ Hölde couou u,.e., fo ay, x, y, z, v 0, R k R R d V ad u 1, u U f, x, y, z, u1, v f, x, y, z, u, v γ ρ λ u U 1, u,.1 he fo ay µ U E up Y,x,µ,ν,, h X,x,µ,ν c ϖ κ ϖ ψ Y,x,µ,ν E, h X,x,µ,ν ϖ ρ λ U µ, µ d ϖ + E } ϖ ρ λ U µ, µ d,. whee κ ψ + R1 1 up 1 ψ a + up ψ a R q. a R 1,R a R 1,R Smlaly, f b, σ ae λ Hölde couou v ee.1 ad f f addoally λ Hölde couou v,.e., fo ay, x, y, z, u 0, R k R R d U ad v 1, v V f, x, y, z, u, v1 f, x, y, z, u, v γ ρ λ v V 1, v,.3 he fo ay ν V E up Y,x,µ,ν,, h X,x,µ,ν c ϖ κ ϖ ψ Y,x,µ,ν E, h X,x,µ,ν ϖ ρ λ V ν, ν d ϖ + E } ϖ ρ λ ν V, ν d..4 Now, we ae eady o oduce value of he zeo-um ochac dffeeal game va he followg oo of admble aege.

10 O Zeo-Sum Sochac Dffeeal Game 10 Defo.. Gve 0,, a admble aegy α fo playe I ove peod, a U valued fuco α o, Ω V ha P F BV / BU meauable ad afe: α, V 0 U 0, d dp0 a.. Fo a κ > 0 ad a o-egave meauable poce Ψ o Ω, F wh E Ψ d <, hold d dp0 a.. ha α, ω, v U Ψ ω + κv V, v V..5 Admble aege β :, Ω U V fo playe II ove peod, ae defed mlaly. he e of all admble aege fo playe I ep. II o, deoed by A ep. B. Gve 0,, a admble aegy α A duce a mappg α : V U by α ν ω α, ω, ν ω, ν V,, ω, Ω. o ee h, le ν V. Clealy, α ν a U valued, F pogevely meauable poce. Sce, ω } }, Ω : ν ω V 0, ω, Ω : α, ω, V 0 U 0, ω, Ω : α ν ω U 0}, hold d dp0 a.. ha α ν U 0. O he ohe had, oe ca deduce ha E α ν U d E Ψ d + κ E ν d <. V hu, α ν U. If ν 1 V equal o ν V, d dp 0 a.. o, τ fo ay F oppg me τ, he α ν 1 α ν, d dp 0 a.. o, τ. So α exacly a Ello Kalo aegy codeed e.g. 13. Smlaly, ay β B gve e o a mappg β : U V. Defo.3. Gve 0,, a A aegy α ad o be of  f fo ay ε > 0, hee ex a δ > 0 ad a cloed ube F of Ω wh P 0 F >1 ε uch ha fo ay ω, ω F wh ω ω < δ We defe B B mlaly. w 1, x f β B up µ U Ỹ,x,µ,β µ up, v V Fo ay, x 0, R k, we defe, h up ρ U α, ω, v, α, ω, v < ε..6 X,x,µ,β µ ad ŵ 1, x f β B up µ U Ỹ,x,µ,β µ, h X,x,µ,β µ a playe I poy value ad c poy value of he zeo-um ochac dffeeal game ha a fom me ad ae x. Coepodgly, we defe w, x up f, h X,x,α ν,ν ad ŵ, x up f Ỹ,x,α ν,ν, h X,x,α ν,ν α A ν V Ỹ,x,α ν,ν ν V α  a playe II poy value ad c poy value of he zeo-um ochac dffeeal game ha a fom me ad ae x. By.18, oe ha l, x w 1, x ŵ 1, x l, x ad l, x ŵ, x w, x l, x..7 he wo obacle fuco l, l a well a he DRBSDE ucue peve he value fuco. he value w 1, x ad ŵ 1, x, ohewe, mgh blow up ule we mpoe addoal egably codo o U ad B aalogou o e.g. Aumpo 5.7 of 40. Remak.1. Gve 0,, we ca egad µ U a a membe of A ce ν V µ U α µ, ω, v µ ω,, ω, v, Ω V clealy a P F BV BU meauable fuco uch ha α µ, V 0 µ U 0, d dp0 a.. ad ha.5 hold fo Ψ α µ U ad ay κ α > 0. Smlaly, V ca be embedded o B. he follow ha w 1, x f up Ỹ,x,µ,ν, h X,x,µ,ν ad w, x up f Ỹ,x,µ,ν, h X,x,µ,ν. Howeve, he fac ha up f µ U ν V mply ha w, x w 1, x. Ỹ,x,µ,ν, h X,x,µ,ν f up ν V µ U µ U ν V Ỹ,x,µ,ν, h X,x,µ,ν doe o ecealy

11 . Doubly Refleced Zeo-Sum Sochac Dffeeal Game wh Squae-Iegable Cool 11 Le 0, ad x 1, x R k. Fo ay β B ad µ U,.19 how ha E up Ỹ,x1,µ,β µ, h X,x 1,µ,β µ Ỹ,x,µ,β µ, h X,x,µ,β µ q c 0 x 1 x., I he follow ha Ỹ,x,µ,β µ, h X,x,µ,β µ c0 x 1 x /q Ỹ,x1,µ,β µ, h X,x 1,µ,β µ Ỹ,x,µ,β µ, h X,x,µ,β µ akg upemum ove µ U ad he akg fmum ove β B yeld ha +c0 x 1 x /q..8 w 1, x c 0 x 1 x /q w 1, x 1 w 1, x + c 0 x 1 x /q. hu w 1, x 1 w 1, x c 0 x 1 x /q, ad oe ca deduce he mla equale fo ŵ 1, w ad ŵ : Popoo.1. Fo ay 0, ad x 1, x R k, we have w1, x 1 w 1, x + ŵ1, x 1 ŵ 1, x + w, x 1 w, x + ŵ, x 1 ŵ, x c0 x 1 x /q. Howeve, hee value fuco ae geeally o 1/q Hölde couou a he cae of compac cool pace. Remak.. Whe yg o decly pove he dyamc pogammg pcple, 13 ecoueed a eou meauably poblem, ee page 99 hee. o ovecome h echcal dffculy, hey f poved ha he value fuco ae uque vcoy oluo o he aocaed Bellma-Iaac equao by a me-dcezao appoach aumg ha he lmg Iaac equao ha a compao pcple, whch ele o he followg egulay of he appoxmag value v π v π, x v π, x C 1/ + x x, x,, x 0, R k wh a ufom coeffce C > 0 fo all pao π of 0,. Sce ou value fuco ae o 1/ Hölde couou gve q, h mehod doe o wok geeal ude ou aumpo. Iead, we pecfy Ello Kalo aege a meauable adom feld fom oe cool pace o aohe ode o avod mla meauably ue whe pag aege ee Popoo h a cucal gede he poof of he upeoluo de of he dyamc pogammg pcple heoem.1. Gve 1,, ce w, couou fo ay 0,, oe ca deduce ha fo ay F oppg me τ wh couably may value } N,, ad ay R k valued, F τ meauable adom vaable ξ w τ, ξ N 1 τ}w, ξ F τ meauable..9 Smlaly, ŵ τ, ξ alo F τ meauable. he we have he followg dyamc pogammg pcple fo value fuco. heoem.1. Le, x 0, R k. Fo ay famly τ µ,β : µ U, β B } of Q, valued, F oppg me,x,µ,β µ τ µ,β, w 1 τµ,β, X w 1, x f β B ad ŵ 1, x f β B he evee equaly of.31 hold f up µ U up µ U Ỹ,x,µ,β µ Ỹ,x,µ,β µ τ µ,β.30,x,µ,β µ τ µ,β, ŵ 1 τµ,β, X τ µ,β ;.31 V λ l, l ad h afy.0; b, σ ae λ Hölde couou v ee.1 ; ad f λ Hölde couou v ee.3 fo ome λ 0, 1.

12 O Zeo-Sum Sochac Dffeeal Game 1 O he ohe had, fo ay famly τ ν,α : ν V, α A } of Q, valued, F oppg me,x,α ν,ν w, x up f τ ν,α, w τν,α, X ad ŵ, x up α A ν V f ν V α Â Ỹ,x,α ν,ν Ỹ,x,α ν,ν τ ν,α.3,x,α ν,ν τ ν,α, ŵ τν,α, X τ ν,α ;.33 he evee equaly of.33 hold f l, l ad h afy.0; b, σ ae λ Hölde couou u ee.10 ; ad U λ f λ Hölde couou u ee.1 fo ome λ 0, 1. Noe ha each Ỹ,x,µ,β µ,x,µ,β µ τ µ,β, w 1 τµ,β, X,x,µ,β µ τ µ,β.30 well-poed ce w 1 τ µ,β, X τ µ,β Fτ µ,β meauable by.9 ad ce,x,µ,β µ,x,µ,β µ,x,µ,β µ l τ µ,β, X τ µ,β w 1 τ µ,β, X τ µ,β l τ µ,β, X τ µ,β L,x,µ,β µ τ µ,β L,x,µ,β µ τ µ,β by.7. he poof of heoem.1 ee Subeco 6. ele o.,.4, popee of hfed pocee epecally hfed SDE a well a ably ude pag of cool/aege, he lae wo of whch wll be dcued Seco 4. 3 A Obacle Poblem fo Fully o-lea PDE I h eco, we how ha he c poy value ae dcouou vcoy oluo of he followg obacle poblem of a PDE wh a fully o-lea Hamloa H: m w l, x, max w, x H, x, w, x, D x w, x, Dxw, x }}, w l, x 0,, x 0, R k. 3.1 Defo 3.1. Le H : 0, R k R R k S k, be a uppe ep. lowe emcouou fuco wh S k deog he e of all R k k valued ymmec mace. A uppe ep. lowe emcouou fuco w : 0, R k R called a vcoy uboluo ep. upeoluo of 3.1 f w, x ep. hx, x R k, ad f fo ay 0, x 0, ϕ 0, R k C 1, 0, R k uch ha w 0, x 0 ϕ 0, x 0 ad ha w ϕ aa a c local maxmum ep. c local mmum a 0, x 0, we have m ϕ l 0, x 0, max ϕ 0, x 0 H 0, x 0, ϕ 0, x 0, D x ϕ 0, x 0, Dxϕ 0, x 0 }}, ϕ l 0, x 0 ep. 0. Alhough he fuco H Defo 3.1 may ake ± value, he lef-had-de of he equaly above bewee w l 0, x 0 ad w l 0, x 0 ad hu fe. Fo ay, x, y, z, Γ, u, v 0, R k R R d S k U 0 V 0, we e H, x, y, z, Γ, u, v 1 ace σσ, x, u, v Γ + z b, x, u, v + f, x, y, z σ, x, u, v, u, v ad code he followg Hamloa fuco: H 1 Ξ up u U 0 lm Ξ Ξ f HΞ, u, v, v V 0 H 1 Ξ lm up u U 0 f v O u lm U 0 u u up HΞ, u, v, Ξ O 1/ Ξ ad H Ξ f v V 0 lm Ξ Ξ up u U 0 HΞ, u, v, H Ξ lm f up v V 0 u Ov lm f U 0 u u Ξ O 1/ Ξ HΞ, u, v, whee Ξ, x, y, z, Γ, Ou } v V 0 : v V + u U ad O } v u U0 : u U + v V. Fo ay, x 0, R k, Popoo.1 mple ha w1, x lm w 1, x lm w 1, x ad w, x lm,x,x w, x lm w, x.,x,x

13 4. Shfed Pocee 13 I fac, w 1 he malle uppe emcouou fuco above w 1 alo kow a he uppe emcouou evelope of w 1, whle w he lage lowe emcouou fuco below w alo kow a he lowe emcouou evelope of w. Smlaly, fo 1,, w, x lm ŵ, x ad w, x lm, x,, x 0, R k ŵ ae he lowe ad uppe emcouou evelope of ŵ epecvely. Gve x R k, hough w, x ŵ, x hx, pobably ehe of w x, w x, w x equal o hx a he value fuco w, ŵ may o be couou. heoem If U 0 ep. V 0 a couable uo of cloed ube of U ep. V, he w 1 ad w 1 ep. w ad w ae wo vcoy uboluo ep. upeoluo of 3.1 wh he fully olea Hamloa H 1 ep. H. O he ohe had, f V λ ep. U λ hold fo ome λ 0, 1, he w 1 ep. w a vcoy upeoluo ep. uboluo of 3.1 wh he fully olea Hamloa H 1 ep. H. 4 Shfed Pocee I h eco, we fx 0 ad wll exploe popee of hf pocee fom Ω o Ω, whch ae eceay fo Seco ad Seco Cocaeao of Sample Pah We cocaeae a ω Ω ad a ω Ω a me by: ω ω ω 1,} + ω + ω 1, },,, 4.1 whch ll of Ω. Clealy, h cocaeao a aocave opeao:.e., fo ay, ad ω Ω ω ω ω ω ω ω. Gve ω Ω. we e ω ad ω à ω ω : ω Ã} fo ay o-empy à Ω. he ex eul how ha A F co of all bache ω Ω wh ω A. Lemma 4.1. Le A F. If ω A, he ω Ω A.e. A,ω Ω. Ohewe, f ω / A, he ω Ω A c.e. A,ω. Alo, fo ay A Ω we e A,ω ω Ω : ω ω A} a he pojeco of A o Ω alog ω. I pacula,,ω. Fo ay A Ã Ω ad ay colleco A } I of ube of Ω, Oe ca deduce ha A c,ω ω Ω : ω ω A c } Ω ω Ω : ω ω A} Ω A,ω A,ω c, 4. ad A,ω ω Ω : ω ω A} ω Ω : ω ω Ã} Ã,ω, 4.3,ω } A ω Ω : ω ω A ω Ω } : ω ω A A,ω. 4.4 I I I I Lemma 4.. Le ω Ω. Fo ay ope ep. cloed ube A of Ω, A,ω a ope ep. cloed ube of Ω. Moeove, gve,. we have A,ω F fo ay A F ad ω à F fo ay à F. Fo ay D, Ω, we accodgly e D,ω, ω, Ω :, ω ω D }. Smla o , fo ay D D, Ω ad ay colleco D } I of ube of, Ω, oe ha, Ω D,ω, Ω D,ω D,ω c, D,ω D,ω ad,ω D I I D,ω. 4.5

14 O Zeo-Sum Sochac Dffeeal Game Meauably of Shfed Pocee Fo ay M valued adom vaable ξ o Ω, we defe a hfed adom vaable ξ,ω o Ω by ξ,ω ω ξω ω, ω Ω. Ad fo ay M valued poce X X },, coepodg hfed poce wh epec o ad ω co of X,ω X,ω,,. I lgh of Lemma 4., hfed adom vaable ad hfed pocee he meauably he followg way: Popoo 4.1. If ξ F meauable fo ome,, he ξ,ω F meauable. Moeove, fo ay M valued, F adaped poce X },, he hfed poce } X,ω, F adaped. Popoo 4.. Gve 0,, D,ω B, 0 F 0 fo ay D B, 0 F 0. Coequely, f X }, a M valued, meauable poce o Ω, F ep. a M valued, F pogevely meauable poce, he he hfed poce } X,ω a meauable poce o Ω, F, ep. a F pogevely meauable poce. Moeove, we have D,ω P F fo ay D P F. Fo ay J, Ω M, we e J,ω, ω, x, Ω M :, ω ω, x J }. Coollay 4.1. Fo ay J P F BM, J,ω P F BM. Le M be aohe geec mec pace. If a fuco f :, Ω M M P F BM/B M meauable, he he fuco f,ω, ω, x f, ω ω, x,, ω, x, Ω M P F BM/B M meauable. Whe τω fo ome F oppg me τ, we hall mplfy he above oao by: ω τ ω ω τω ω, A τ,ω A τω, ω, D τ,ω D τω, ω, ξ τ,ω ξ τω, ω ad X τ,ω X τω, ω. he followg lemma how ha gve a F oppg me τ, a F τ meauable adom vaable oly deped o wha happe befoe τ: Lemma 4.3. Fo ay F oppg me τ ad ξ F τ, ξ τ,ω ξω. I pacula, τ ω τ Ω τω τω. 4.3 Iegably of Shfed Pocee I h ubeco, le τ be a F oppg me wh couably may value. I vue of egula codoal pobably dbuo by 41, we have he followg heace of egably fo hfed adom vaable: Popoo 4.3. Fo ay ξ L 1 F, hold fo P 0 a.. ω Ω ha ξ τ,ω L 1 F τω, P τω 0 ad E τω ξ τ,ω E ξ F τ ω R, 4.6 whee E τω ad fo E τω P. Coequely, fo ay p 1, ad ξ L p F, hold fo P 0 a.. ω Ω ha 0 ξ τ,ω L p F τω, P τω 0. Coollay 4.. Fo ay P0 ull e N, hold fo P0 a.. ω Ω ha N τ,ω a P τω 0 ull e. Coequely, fo ay wo eal-valued adom vaable ξ 1 ad ξ, f ξ 1 ξ, P0 a.., he hold fo P0 a.. ω Ω ha ξ τ,ω 1 ξ τ,ω, P τω 0 a.. Nex, le u exed Popoo 4.3 o E valued meauable pocee. Popoo 4.4. Le X }, be a E valued meauable poce o Ω, F fo ome p, p 1,. I hold fo P0 a.. ω Ω ha X τ,ω wh E τω p d p/p <. τω X τ,ω uch ha E X p p/p τ d < } τω, a meauable poce o Ω τω, F τω Coollay 4.3. Gve p, p 1,, f X }, H p, p F,, E ep. C p F,, E, he hold fo P0 a.. ω Ω, X τ,ω } τω, H p, p τω F τω,, E, P τω 0 ep. C p F τω τω τω,, E, P 0.

15 4.4 Shfed Sochac Dffeeal Equao 15 Smla o Coollay 4., a hfed d dp 0 ull e ll ha zeo poduc meaue: Popoo 4.5. Fo ay D B, F wh d dp 0 D τ, 0, hold fo P0 a.. ω Ω ha D τ,ω B τω, F τω wh d dp τω 0 D τ,ω 0. Cool ad aege ca alo be hfed. Popoo Fo ay µ U ep. ν V, hold fo P0 a.. ω Ω ha µ τ,ω µ τ,ω } τω, U τω ep. ν τ,ω ν τ,ω } τω, V τω. Fo ay α A ep. α Â, β B ad β B, hold fo P 0 a.. ω Ω ha α,ω A ep. α,ω Â, β,ω B ad β,ω B. 4.4 Shfed Sochac Dffeeal Equao I h ubeco, we ll code a F oppg me τ wh couably may value. Fx x R k, µ U, ν V ad e Θ, x, µ, ν. Fo P0 a.. ω Ω, Popoo how ha µ τ,ω, ν τ,ω U τω V τω, ad hu we kow fom Seco ha he followg SDE o he pobably pace Ω τω, F τω, P τω 0 : X X Θ τω ω + τω adm a uque oluo below, he F τω veo of X Θω τ b, X, µ τ,ω, ν τ,ω d + τω } X Θω τ } τω, τω, σ, X, µ τ,ω, ν τ,ω db τω, τω, 4.7 C τω,, R k wh Θ ω F τω τ τω, X Θτω ω, µτ,ω, ν τ,ω. A how exacly he hfed poce τ,ω} XΘ. τω, Popoo 4.7. I hold fo P 0 a.. ω Ω ha X Θω τ XΘ τ,ω, τω,. h eul ha appeaed 13 fo cae of compac cool pace ee he paagaph below 1.16 hee ad appeaed Lemma 3.3 of 7 whee oly oe ubouded cool codeed. he poof of Popoo 4.7 deped o he followg eul abou he covegece of hfed adom vaable pobably. Lemma 4.4. Fo ay ξ } N L 1 F ha covege o 0 pobably P 0, we ca fd a ubequece ξ } N of uch ha fo P0 a.. ω Ω, ξ τ,ω τω covege o 0 pobably P0. } N Fo ay F meauable adom vaable ξ wh LΘ ξ LΘ, P0 a.., Popoo 4.1, Coollay 4. ad Popoo 4.7 mply ha fo P0 a.. ω Ω, ξ τ,ω F τω ad L Θω τ l, X Θω τ l, τ,ω XΘ L Θ τ,ω ξ τ,ω L Θ τ,ω l, τ,ω XΘ l, X Θω τ L Θω τ. he Seco alo how ha fo P0 a.. ω Ω, he DRBSDE pace Ω τω, F τω, P τω 0 adm a uque oluo P τω, Θ LΘω τ, L ω τ o he pobably 0, ξ τ,ω, f Θω τ Y Θω τ, ξ τ,ω, Z Θω τ, ξ τ,ω, K Θω τ, ξ τ,ω, K Θω τ, ξ τ,ω G q τω,. Smla o Popoo 4.7, he F τω veo of Y Θω F τω τ, ξ τ,ω cocde wh he hfed poce Ỹ Θ, ξ } τ,ω. τω, Popoo 4.8. I hold fo P0 a.. ω Ω ha Ỹ Θω τ, ξ τ,ω Ỹτ Θ, ξ ω fo P0 a.. ω Ω. Ỹ Θω τ τω, ξ τ,ω Ỹ Θ, ξ τ,ω, τω,. I pacula, Popoo 4.8 ca alo be how by Pcad eao, ee 4.15 of 37 fo a BSDE veo.

16 O Zeo-Sum Sochac Dffeeal Game Pag of Cool ad Saege We defe Π,, ω, Π, ω,, ω, Ω. Aalogou o Lemma 1., oe ha Lemma 4.5. Le,. Fo ay D B, F 1, Π, D B, F ad d dp0 Π 1, D d dp 0 D. Coequely, he mappg Π, :, Ω, Ω P F /PF meauable, whee P F D PF : D, Ω } a σ feld of, Ω. Now, we ae eady o dcu pag of cool ad aege. Popoo 4.9. Le µ U fo ome 0, ad le τ be a F oppg me akg value a couable ube } N of,. Gve N N, le A }l 1 F be djo ube of τ } fo 1,, N ad e A 0 Ω N l A. he fo ay µ }l 1 1 U, 1,, N 1 µ ω µ Π, ω, f, ω τ, A, A fo 1, N ad 1,, l, 4.8 µ ω, f, ω, τ τ, A0 defe a U cool uch ha fo ay, ω τ, µ µ τ,ω, f ω A fo 1, N ad 1,, l, µ τ,ω, f ω A 0. We ca pae ν }l 1, 1,, N o a ν V wh epec o A V }l 1, 1,, N he ame mae. Popoo Le α A ep. Â fo ome 0, ad le τ be a F oppg me akg value a couable ube } N of Q,. Gve N N, le A }l 1 F be djo ube of τ } fo 1,, N ad e A 0 Ω N l A. he fo ay α }l 1 1 ep. Â A, 1,, N 1 α, ω, v α, Π, ω, v, f, ω τ, A, A fo 1, N ad 1,, l, α, ω, v, f, ω, τ τ, A0, v V 4.9 a A aegy ep. Â aegy uch ha gve ν V, hold fo P 0 a.. ω Ω ha fo ay τω, α ν τ,ω α ν,ω, f ω A fo 1, N ad 1,, l, α ν τ,ω, f ω A We ca pae β }l 1 B ep. B, 1,, N o a β B ep. B wh epec o A }l 1, 1,, N he ame mae. 5 Opmzao Poblem wh Squae-Iegable Cool I h eco, we wll emove v cool o ake V V 0 v 0 } o ha he zeo-um ochac dffeeal game dcued above degeeae a a oe-cool opmzao poblem fo playe I. 5.1 Geeal Reul We wll follow he eg of Seco excep ha we ake away he v cool fom all oao ad defo. I pacula, V, B ad B dappea o become gleo whle A equvale o U. he fo ay, x 0, R k, w 1, x, ŵ 1, x, w, x cocde a w, x up µ U Ỹ,x,µ, h X,x,µ. 5.1 A V λ vally hold fo ay λ 0, 1, he oe-cool veo of heoem.1 ead a:

17 5. Coeco o Secod-Ode Doubly Refleced BSDE 17 Popoo 5.1. Le, x 0, R k. Fo ay famly τ µ : µ U } of Q, valued, F oppg me up u U 0 w, x up µ U Ỹ,x,µ τ µ, w,x,µ τ µ, X τ µ. 5. Moeove, fo Ξ, x, y, z, Γ 0, R k R R d S k, HΞ ad HΞ mplfy epecvely a HΞ lm HΞ, u ad Ξ Ξ HΞ lm up u U 0 lm lm U 0 u u up Ξ O 1/ Ξ up HΞ, u lm up Ξ O 1/ Ξ u U 0 up HΞ, u lm u U 0 Ξ Ξ up u U 0 HΞ, u, up HΞ, u Ξ O 1/ Ξ whee we ued he fac ha up lm up he ecod equaly. he we have he followg oe-cool u U 0 U 0 u u u U 0 veo of heoem 3.1: Popoo 5.. he lowe emcouou evelope of w: w, x lm w, x,, x 0, R k a vcoy upeoluo of 3.1 wh he fully olea Hamloa H. O he ohe had, f U 0 a couable uo of cloed ube of U, he he uppe emcouou evelope of w: w, x lm w, x,, x 0, R k a vcoy uboluo of 3.1 wh he fully olea Hamloa H. Remak 5.1. Smla o 40, we oly eed o aume he meauably ep. lowe em-couy of he emal fuco h fo he ep. equaly of 5. ad hu fo he vcoy uboluo ep. upeoluo pa of Popoo Coeco o Secod-Ode Doubly Refleced BSDE Now le u fuhe ake k d, U S d, u 0 0 ad U 0 S >0 d Γ S d : deγ > 0}. Lemma 5.1. S d a epaable omed veco pace o whch he deema de couou. I follow ha U 0 S >0 d co of cloed ube of U: F u U : deu 1/}, N. We alo pecfy: b, x, u b, x ad σ, x, u u,, x, u 0, R d U. 5.3 fo a fuco b, x : 0, R d R d ha B0, BR d /BR d meauable ad Lpchz couou x wh coeffce γ > 0. Va he afomao 5.1, we wll how ha he value fuco w defed 5.1 he value fuco of ecod-ode doubly efleced BSDE. Gve 0,, we ay ha a P P a em-magale meaue f B a couou em-magale wh epec o F, P. Le Q be he colleco of all em-magale meaue o Ω, F. Lemma 5.. Le 0,. Fo, j 1,, d}, hee ex a R } valued, F pogevely meauable poce â,,j uch ha fo ay P Q, hold P a.. ha â,,j â,j, lm m B,, B,j P B,, B,j, P,, 5.4 m 1/m + whee B,, B,j P deoe he P co vaace bewee he h ad j h compoe of B. Smla o 39, we le Q W collec all P Q uch ha P a.. B P aboluely couou ad â S >0 d fo a.e.,. 5.5 I geeal, wo dffee pobable P 1, P of Q W ae muually gula, ee Example.1 of 39.

18 O Zeo-Sum Sochac Dffeeal Game 18 Lemma 5.3. Fo ay 0,, hee ex a uque S >0 d valued, F pogevely meauable poce ˆq uch ha fo ay P Q W, hold P a.. ha ˆq ˆq ˆq â fo a.e.,. Fo ay P Q W, we defe IP P 1dB ˆq,,,, whch a couou em-magale wh epec o F P, P. Sce he f pa of 5.5 ad 5.4 mply ha P a.., B P oe ca deduce fom Lemma 5.3 ha P a.. I P P â d,,, 5.6 ˆq 1 ˆq 1d B P ˆq 1 ˆq 1 â d I d d,,. I lgh of Lévy chaacezao, he magale pa W P of I P a Bowa moo ude P. Le G P G P }, deoe he P augmeed flao geeaed by he P Bowa moo W P,.e. G P σ σ W P,, N P,,. Le, x 0, R d ad µ U. Accodg o ou pecfcao 5.3, X,x,µ }, C,, R k ad F fo he uque oluo of he followg SDE o he pobably pace Ω, F, P 0 : Smla o.7, we have E X x + up, X,x,µ b, X d + c x + E µ db,,. 5.7 µ d <. 5.8 By Lemma 1.3, X,x,µ adm a uque F veo X,x,µ C F,, R k whch alo afe 5.8. A ha couou pah excep o ome Nµ,x F wh P 0 N,x µ 0, we ca vew X,x,µ 1 X, x, µ c x Nµ,x X,x,µ 5.9 a a mappg fom Ω o Ω. We clam ha X,x,µ acually a meauable mappg fom Ω, F o Ω, F : o ee h, we pck up a abay pa, E, BR d. he F adape of X,x,µ mple ha X,x,µ 1 B 1E ω Ω : X,x,µ ω B 1E } ω Ω : X,x,µ N,x µ N,x µ c ω Ω : ω E }, x, µ } X ω E x F, f 0 E, Nµ,x c ω Ω, x, µ } 5.10 : X ω E x F, f 0 / E, whee E x x + x : x E} BR d. hu 1E B Λ A Ω : X,x,µ } 1 A F. Clealy, Λ a σ feld of Ω. I follow ha B F 1E; σ,, E BR d Λ, 5.11 povg he meauably of he mappg X,x,µ. Coequely, we ca duce a pobably meaue P,x,µ P 0 X,x,µ o Ω, F,.e. P,x,µ P. Smla o 39, we e Q,x S P,x,µ } µ U.

19 5. Coeco o Secod-Ode Doubly Refleced BSDE 19 Lemma 5.4. Gve, x 0, R d ad µ U, le X,x,µ : Ω Ω be he mappg defed 5.9. I hold fo ay, ha X,x,µ 1 F P,x,µ F. Moeove, we have P,x,µ P 0 X,x,µ 1 Popoo 5.3. Fo ay, x 0, R d, we have Q,x S Q W. he followg eul abou Q,x S ped by Lemma 8.1 of 39. o F P,x,µ Popoo 5.4. Le, x 0, R d. Fo ay P Q,x S, FP cocde wh G P, he P augmeed flao geeaed by he P Bowa moo W P. Fx, x 0, R d ad e B,x x + B. By he couy of l ad l, L,x l, B,x,x ad L l, B,x,, ae wo eal-valued, F adaped couou pocee uch ha L,x < L,x,,. he meauably of f, B,x, he meauably of ˆq by Lemma 5.3 a well a he Lpchz couy of f y, z mply ha ˆf,x, ω, y, z f, B,x ω, y, z, ˆq ω,, ω, y, z, Ω R R d a P F BR BR d /BR meauable fuco ha alo Lpchz couou y, z. Gve µ U, oe ca deduce fom.3, he veo of.4 ad.5 whou ν cool, Hölde equaly, ad 5.8 ha E P,x,µ L,x q,x + up L q +,x ˆf τ, 0, 0 q d c 0 +c 0 E P,x,µ B,x + ˆq d, up, c 0 +c 0 E up, B,x X,x,µ + ˆq X,x,µ d c 0 +c 0 E up, up, X,x,µ + µ d <. A L,x hb,x L,x, follow ha E P,x,µ hb,x q <,.e. ξ L q Fτ, P,x,µ. he Popoo 5.4 ad heoem 4.1 of 10 how ha he followg Doubly efleced BSDE o he pobably pace Ω, F P,x,µ, P,x,µ Y hb,x + L,x ˆf,x, Y, Z d+k K K K P,x,µ Y L,x,,, ad Y L,x, dk Z dw P,x,µ,,, L,x Y dk 0 adm a uque oluo Y,x,P,x,µ, hb,x, Z,x,P,x,µ, hb,x, K,x,P,x,µ, hb,x, K,x,P,x,µ, hb,x G q F,, P,x,µ. P,x,µ Popoo 5.5. Fo ay, x 0, R d ad µ U P0 Y,x,µ,x,P, hb,x X,x,µ Y,x,µ, h X,x,µ,, 1. Le Ỹ,x,P,x,µ, hb,x be he F veo of Y,x,µ,x,P, hb,x F, oe ca deduce fom 5.13 ha 1 P0 Y,x,µ,x,P, hb,x X,x,µ y,x,µ} P,x,µ Y I follow ha y,x,µ Ỹ,x,P,x,µ, hb,x. Hece,, h w, x up Ỹ,x,µ µ U X,x,µ up P Q,x S. Fo he coa y,x,µ Ỹ,x,µ Ỹ,x,P,x,µ,x,P, hb,x y,x,µ}., h B,x, h, 5.14 whch exeded he value fuco of 40 ee 5.9 hee o he cae of doubly efleced BSDE baed o moe geeal fowad SDE. hu ou value fuco w cloely elaed o he ecod-ode doubly efleced BSDE. O he ohe had, whe he geeao f 0, he gh-had-de of 5.14 a doubly efleced veo of he value fuco codeed 7.,x,µ X

20 O Zeo-Sum Sochac Dffeeal Game 0 6 Poof 6.1 Poof of Seco 1 & Poof of Lemma 1.1: Fo ay,, clea ha σ C, B σ, 1E :,, E BR } d F,. o ee he evee, we fx,. Fo ay x Q d ad λ Q +, le j } j N Q, wh lm j j. Sce Ω, he e of R d valued couou fuco o, ag fom 0, we ca deduce ha whch mple ha B, 1 Oλ x λ m N B, 1 j m j Oλ 1 x σ C,. O O λ x : x Q d }, λ Q + Λ E R d : B, 1E } σ C,. Clealy, O geeae BR d ad Λ a σ feld of R d. hu, oe ha BR d Λ. he follow ha F, B, σ 1E :,, E BR } d σ C,. Poof of Lemma 1.: Fo mplcy, le u deoe Π,S, up,s by Π. We f how he couy of Π. Le A be a ope ube of Ω,S. Gve ω Π 1 A, ce Πω A, hee ex a δ > 0 uch ha O δ Πω ω Ω,S : } ω Πω < δ A. Fo ay ω O δ/ ω, oe ca deduce ha up Πω Πω ω ω + up ω ω up ω ω < δ,,s,s, whch how ha Πω O δ Πω A o ω Π 1 A. Hece, Π 1 A a ope ube of Ω,. Now, le, S. Fo ay, ad E BR d, oe ca deduce ha Π 1 B,S 1E ω Ω, : B,S } Πω E hu all he geeag e of F,S I follow ha F,S Λ,.e., Π 1 A F, ω Ω, : ω ω E } B, B, 1 E F,. 6.1 belog o Λ } A Ω,S : Π 1 A F,, whch clealy a σ feld of Ω,S. fo ay A F,S. Nex, we how ha he he duced pobably P P, 0 Π 1 equal o P,S 0 o F,S S : Sce he Wee meaue o Ω,S, BΩ,S uque ee e.g. Popoo I.3.3 of 35, uffce o how ha he caocal poce B,S a Bowa moo o Ω,S ude P : Le S. Fo ay E BR d, mla o 6.1, oe ca deduce ha hu, P B,S B,S Π 1 B,S 1E P, 0 B,S Π 1 B,S 1E B, B, B,S 1E P, 0 he dbuo of B,S B,S ude P he ame a ha of B, dbuo wh mea 0 ad vaace max I d d. O he ohe had, fo ay A F,S 0 ad 6. yeld ha fo ay E BR d P, P A B,S P, 0 B,S Π 1 A 1E P, P, 0, ce Π 1 A belog o F, 0 Π 1 B,S Π 1 A Π 1 B,S B,S 1 E. 6. B, B, 1 E, whch how ha B, ude P, 0 a d dmeoal omal, depedece fom B, B, 1E B,S 1E P A P B,S 1E B,S. Hece, B,S B,S depede of F,S ude P. ude

21 6.1 Poof of Seco 1 & 1 Poof of Lemma 1.3: 1 F, le ξ L 1 F P, P ad,. Fo ay A F P, hee ex a à F uch ha A à N P ee e.g. Poblem.7.3 of 3. hu we have ha A ξdp à ξdp à E P ξf dp A E P ξf dp, whch mple ha E P ξ F P EP ξ F, P a he ealy follow ha ay magale X wh epec o F, P alo a magale wh epec o F P, P. Nex, le X X }, be a local magale wh epec o F, P. hee ex a ceag equece τ } N of F oppg me wh P lm τ 1 uch ha Bτ, N ae all magale wh epec o F, P. Fo ay m N, ν m f, : X > m} defe a F oppg me. I lgh of he Opoal Samplg heoem, X τ ν m a magale wh epec o F, P. hu, fo ay <, oe ha E P X τ ν m E P X τ ν m X τ ν m, P a F P Sce P lm τ 1, whe 6.4, he bouded covegece heoem mple ha E P X νm F P X νm, P a.. Namely, X νm a bouded magale wh epec o F P, P. Clealy, ν m } k N ae F P oppg me wh lm ν m. Hece, X a local magale wh epec o F P, P, Moe geeal, k ay em-magale wh epec o F, P alo a em-magale wh epec o F P, P. he uquee obvou ad uffce o how he exece fo cae E R: Le X }, be a eal-valued, F P adaped couou poce. Fo each Q,, we ee fom 6.3 ha F X EP X F EP X F P X, Se N ω Ω : he pah X ω o couou } 1+ 1 X P a.. X X } N P. Q, Sce X,+ },, a eal-valued, F pogevely meauable poce fo ay N, We ee ha X lm X 1 lm X < } alo defe a eal-valued, F pogevely meauable poce. Le ω N c ad,. Fo ay N, ce, + 1 wh +, oe ha X ω X ω X ω. Clealy, lm, A, he couy of X how ha lm X ω lm X ω X ω, whch mple ha N c ω Ω : X ω X ω,, }. heefoe, X P dguhable fom X, ad follow ha X alo ha P a.. couou pah. Nex, le X }, be a eal-valued, F P pogevely meauable poce ha bouded. Sce X X d,, defe a eal-valued, F P adaped couou poce, we kow fom pa 1 ha X ha a uque F veo X. Fo ay N, X X X 1/ clealy a eal-valued, F adaped couou poce ad hu a F pogevely meauable poce. I follow ha X lm X 1 lm X < } aga defe a eal-valued, F pogevely meauable poce. Se N ω Ω : X ω X ω fo ome, } N P. Fo ay ω N c, oe ca deduce ha lm X ω lm X X 1/ lm X d X, fo a.e.,, 1/ whch mple ha X ω X ω fo d dp a.., ω, Ω. Moeove, fo geeal eal-valued, F P pogevely meauable poce X },, le X m be he F veo of X m m X m }, fo ay m N. he X lm X m 1 m lm X m m < } defe a eal-valued, F pogevely meauable poce. Le D, ω, Ω : X m ω X m ω }. Clealy, d dp D m N 0 ad hold fo ay, ω, Ω \D ha X ω X ω.

22 O Zeo-Sum Sochac Dffeeal Game Lemma 6.1. Gve 0, ad wo, q paamee e ξ 1, f 1, L 1, L 1, ξ, f, L, L wh P 0 L 1 L, L1 L,, 1, le Y, Z, K, K C q, H,q,, R d K F F F, K F,, 1, be a oluo of DRBSDE P0, ξ, f, L, L. Fo ehe 1 o, f f afe 1.6, he fo ay ϖ 1, q E up Y 1 + ϖ C, ϖ, γ E ξ1 ξ + ϖ +E f1, Y 3, Z 3 f, Y 3, Z 3 ϖ } + d., Y Poof: Whou lo of geealy, le f 1 afy 1.6. Fx ϖ 1, q. We aume ha E ohewe, he eul hold auomacally. f1, Y, Z f, Y, Z + d ϖ <, 6.5 Fo X ξ, Y, Z, we e X X 1 X. Applyg aaka fomula o poce Y + yeld ha Y + ξ Y>0} f1, Y 1, Z 1 f, Y, Z d Y>0} dk 1 dk dk 1 + dk dl 1 Y>0} Z db,, whee L a eal-valued, F adaped, ceag ad couou poce kow a local me. he we ca deduce fom Lemma.1 of 10 ha Y + ϖ Y + ϖ ϖϖ 1 + ϖ 0 1 Y>0} ϖ Y + ϖ 1 f1, Y 1, Z 1 f, Y 1 Y>0} Y + ϖ 1 Z db ϖ 1 Y>0} Y + ϖ Z d, Z d+ϖ 1 Y>0} Y + ϖ 1 dk 1 dk dk 1 +dk 1 Y>0} Y + ϖ 1 dl,. 6.6 By he lowe fla-off codo of DRBSDE P 0, ξ 1, f 1, L 1, L 1, hold P 0 a.. ha 1 Y>0} Y + ϖ 1 dk 1 1 L 1 Y 1 >Y } L 1 Y + ϖ 1 dk 1 Smlaly, he uppe fla-off codo of DRBSDE P 0, ξ, f, L, L mple ha P 0 a Y>0} Y + ϖ 1 dk 1 Y 1 >Y L } Y 1 L + ϖ 1 dk 1 L 1 >L } L 1 Y + ϖ 1 dk L 1 >L } Y 1 L + ϖ 1 dk 0. Pug hee wo equaly back o 6.6 ad ug Lpchz couy of f 1 y, z, we oba Y + ϖ ϖϖ 1 + Y + ϖ +ϖ 1 Y>0} Y + ϖ Z d 1 Y>0} Y + ϖ 1 γ Y +γ Z + f + d Z db,, 6.7 whee f + f1, Y, Z f, Y, Z +. Sce C q, C ϖ, ad H,q,, R d H,ϖ,, R d by Jee equaly, he Bukholde- F F F F Dav-Gudy equaly ad Hölde equaly mply ha fo ome c > 0 E up 1 Y>0} Y + ϖ 1 Z db ce Y + ϖ 1/ Z d, ce up, Y ϖ 1 Z d 1/ c Y ϖ 1 C ϖ F, Z H,ϖ F,,Rd <,

23 6.1 Poof of Seco 1 & 3 whch how ha 1 Y >0} Y + ϖ 1 } Z db, a ufomly egable magale wh epec o F, P he, leg, ad akg he expecao E 6.7, we ca deduce fom Hölde equaly, Youg equaly ad 6.5 ha ϖϖ 1 E E ξ ϖ +ϖe 1 Y>0} Y + ϖ Z d up, Y ϖ 1 γ up Y + γ, ϖ 1 + γ Y ϖ C ϖ F, +γϖ ϖ/ Z ϖ H,ϖ F,,Rd +E Hece, we ca defe a ceag equece of F oppg me τ f, : 1 Y>0} uch ha lm τ, P 0 a.. Fx N. Sce 1 Y>0} Y + ϖ 1 Z γ ϖ 1 leg τ ad τ 6.7 yeld ha + Y τ ϖ ϖϖ 1 + τ 4 τ + ϖγ + ϖγ τ ϖ 1 1/ Z d + f + d ϖ f + d <. Y + ϖ } Z d >, N Y + ϖ + ϖ 1 4γ Y + ϖ 1 Y>0} Z d Y τ + ϖ +ϖ τ Y + ϖ τ d ϖ τ 1 Y >0} Y + ϖ Z d,,, τ τ Y + ϖ 1 f + d 1 Y>0} Y + ϖ 1 Z db,,. 6.9 akg he expecao E, we ca deduce fom Fub heoem, 6.8 ad Opoal Samplg heoem ha + E Yτ ϖ + ϖϖ 1 τ E 1 Y>0} Y + ϖ Z d 4 τ E η + ϖγ + ϖγ + E Yτ ϖ d,,, 6.10 ϖ 1 whee η Yτ + ϖ + ϖ τ Y + ϖ 1 f + d. Le C, ϖ, γ deoe a geec coa, depedg o, ϖ, γ, whoe fom may vay fom le o le. A applcao of Gowall equaly o 6.10 yeld ha + E Yτ ϖ + ϖϖ 1 τ E 4 τ whch ogehe wh Fub heoem how ha 1 Y>0} Y + ϖ Z d C, ϖ, γe η,, τ E Y + ϖ d E + Y τ ϖ + d E Yτ ϖ d C, ϖ, γe η. he we ca deduce fom 6.9 ha E up,τ Y + ϖ C, ϖ, γe η + ϖe up, τ τ 1 Y>0} Y + ϖ 1 Z db.

24 O Zeo-Sum Sochac Dffeeal Game 4 he Bukholde-Dav-Gudy equaly aga mple ha fo ome c > 0 E up, ce + ϖc E 1 τ}1 Y>0} Y + ϖ 1 Z db ce 1 τ}1 Y>0} Y + ϖ 1/ Z d up,τ τ Y + ϖ/ τ 1 Y>0} Y + ϖ 1/ Z d 1 1 Y>0} Y + ϖ Z 1 d ϖ E up,τ whee we ued 6.11 wh he la equaly. Sce E follow fom Youg equaly ha E up,τ Hece, we have ϖ E up,τ Y + ϖ Y + ϖ +C, ϖ, γe η, up,τ Y + ϖ Y + ϖ + C, ϖ, γ E η C, ϖ, γ E Yτ ϖ +E E,τ C, ϖ, γe Yτ + ϖ + 1 E up,τ Y + ϖ up,τ Y ϖ <, C ϖ F, Y + ϖ 1 τ } f + d τ ϖ +C, ϖ, γe f + d. up Y + ϖ + ϖ C, ϖ, γ E Yτ ϖ + E f + d }. 6.1 Sce Y C ϖ, ad ce lm τ F, P0 a.., he Domaed Covegece heoem mple ha + lm Yτ ϖ E ξ + ϖ. Leg 6.1 ad applyg he Moooe Covegece heoem E o lef-had-de lead o ha E up, Y 1 Y + ϖ C, ϖ, γ E ξ1 ξ + ϖ +E f1, Y, Z f, Y, Z + d ϖ } Poof of Popoo 1.1: Fo ehe 1 o, f f afe 1.6, applyg Lemma 6.1 wh ϖ q yeld ha E up Y 1 + q 0. Hece, hold P0 a.. ha Y + 0, o Y 1 Y fo ay,., Y Poof of Popoo 1.: Fo ay ϖ 1, q, follow fom Lemma 6.1 ha E up, Y 1 Y + ϖ C, ϖ, γ E ξ1 ξ + ϖ +E f1, Y, Z f, Y, Z + d ϖ }.6.14 Exchagg he ode of Y 1, Y ad applyg Lemma 6.1 aga gve ha E up Y Y 1 + ϖ C, ϖ, γ E ξ ξ 1 + ϖ +E f, Y, Z f 1, Y, Z ϖ } + d,, whch ogehe wh 6.14 mple 1.7. Poof of Lemma.1: 1 Se Θ, x, µ, ν ad fx,. Fo ay,, oe ca deduce fom 1.1,. ad.1 ha up X Θ x γ, 1+ x + up X Θ x +µ U +ν V d + up,, σ, X Θ, µ, ν db, P 0 a..

25 6.1 Poof of Seco 1 & 5 he Hölde equaly, Doob magale equaly,.,.1 ad Fub heoem mply ha E up X Θ x c 0 E 1+ x + up X Θ x +µ +ν, U d + c V 0 E σ, X Θ, µ, ν d, c 0 1+ x + c 0 E up, X Θ x d+ c 0 E µ U +ν V A applcao of Gowall equaly yeld ha E up X Θ x c 0 e c0 1+ x + c 0 e c0 E µ +ν, U V d,,. akg gve.8. d,,. Gve x R k, we e X X,x,µ,ν X,x,µ,ν,,. By., up X x x +γ X d+ up σ, X,x,µ,ν, µ, ν σ, X,x,µ,ν, µ, ν db,,.,, he he Bukholde-Dav-Gudy equaly ad. mply ha E up X ϖ c ϖ x x ϖ + c ϖ E, ϖ ϖ/ X d + X d ϖ c ϖ x x ϖ + c ϖ E X d + up X ϖ/ c ϖ x x ϖ + c ϖ E, ϖ X d + 1 E ϖ/ X d up X, ϖ,., A E up X ϖ 1 + E up X,x,µ,ν + up X,x,µ,ν < by.7, follow fom Hölde,,, equaly ad Fub heoem ha E up X ϖ c ϖ x x ϖ +c ϖ E X ϖ d cϖ x x ϖ +c ϖ E up X d, ϖ,. 6.15, A applcao of Gowall equaly yeld.9., 3 Nex, Le u aume.10 fo ome λ 0, 1. Gve µ U, we e X X,x,µ,ν X,x,µ,ν,,. By. ad.10, up X γ, X +ρ λ U µ, µ d+ up, σ, X,x,µ,ν, µ, ν σ, X,x,µ,ν, µ, ν db,,. he oe ca deduce fom he Bukholde-Dav-Gudy equaly,.,.10 ad Hölde equaly ha ϖ ϖ E up X ϖ c ϖ E X d + ρ λ U µ, µ d + X +ρ λ U µ, µ ϖ/ d, c ϖ E c ϖ E ϖ X d + ϖ X d + ρ λ µ, µ ϖ/ U d + up, ρ λ µ, µ ϖ/ U d + 1 E X ϖ/ ϖ/ X d up X, ϖ,., Smla o 6.15, follow fom Hölde equaly ad Fub heoem ha E up X ϖ c ϖ E up X ϖ d+c ϖ E ρ λ µ, µ ϖ/ U d,,.,,

26 O Zeo-Sum Sochac Dffeeal Game 6 he a applcao of Gowall equaly yeld.11. Smlaly, wh.1 we ca deduce.13 fo each ν V. Lemma 6.. Le M be a epaable mec pace wh mec ρ M. Fo ay wo M valued, F adaped ep. F pogevely meauable pocee Y, Z, he oegave-valued poce ρ M Y, Z alo F adaped ep. F pogevely meauable. Poof: Le x } N be he couable dee ube of M ad deoe by BM he Boel σ feld of M. We f clam ha fo ay y, z M ad λ > 0, ρ M y, z<λ f ad oly f hee ex N ad Q 0, λ uch ha ρ M y, x < ad ρ M x, z<λ : h deco obvou due o he agle equaly. : If ρ M y, z < λ, we le be a pove aoal umbe ha le ha 1 λ ρm y, z. hee ex a N, uch ha ρ M y, x <. By he agle equaly, ρ M x, z ρ M x, y + ρ M y, z < + ρ M y, z < λ. So we poved he clam Now, gve wo M valued, F adaped pocee Y ad Z, fo ay, ad λ>0, 6.16 mple ha ω Ω : ρ Y M ω, Z ω <λ } ω Ω : Y ω O x } ω Ω : Z ω O λ x } F, N Q 0,λ whch how ρ M Y, Z alo F adaped. If Y ad Z ae fuhe F pogevely meauable, he fo ay, ad λ>0, we ee fom 6.16 ha, ω, Ω : ρ M Y ω, Z ω <λ } N Q 0,λ, ω, Ω : Y ω O x }, ω, Ω : Z ω O λ x } B, F. Namely, ρ M Y, Z F pogevely meauable a well. Poof of Lemma.: We e Θ, x, µ, ν. 1 Fo ay x R k, le Θ, x, µ, ν ad X X Θ X Θ. he meauably of f Θ, X ad.5 how ha f ±, ω, y, z f Θ, ω, y, z ± γ X ω /q,, ω, y, z, Ω R R d defe wo P F BR BR d /BR meauable fuco ha ae Lpchz couou y, z wh coeffce γ. We ee fom Hölde equaly,.16 ad.7 ha E f±, 0, 0 q d c 0 E f Θ, 0, 0 q d + up X <. 6.17, Fx ε > 0. he fuco φx x + ε 1/q, x R k ha he followg devave: fo ay, j 1,, k} φx q φ1 q x x ad j φx q φ1 q x δ j + 4 q 1 qφ1 q x x x j. I eay o emae ha x /q φx x /q + ε 1/q, Dφx q φ1 q x x q x q 1, x R k Fo ay z R k d, ce ace D φxzz q φ1 q x z + 4 q 1 qφ 1 q x z x, we alo have q x q z 4 q 1 q x q z ace D φxzz q x q z, x R k. 6.19

George S. A. Shaker ECE477 Understanding Reflections in Media. Reflection in Media

George S. A. Shaker ECE477 Understanding Reflections in Media. Reflection in Media Geoge S. A. Shake C477 Udesadg Reflecos Meda Refleco Meda Ths hadou ages a smplfed appoach o udesad eflecos meda. As a sude C477, you ae o equed o kow hese seps by hea. I s jus o make you udesad how some

Διαβάστε περισσότερα

arxiv: v1 [math.pr] 13 Jul 2010

arxiv: v1 [math.pr] 13 Jul 2010 L Soluo of Bacward Sochac Dffereal quao wh Jum Sog Yao arv:17.6v1 mah.pr 13 Jul 1 Abrac I h aer, we udy a mul-dmeoal bacward ochac dffereal equao wh jum BSDJ ha ha o-lchz geeraor ad ubouded radom me horzo.

Διαβάστε περισσότερα

Chapter 15 Identifying Failure & Repair Distributions

Chapter 15 Identifying Failure & Repair Distributions Chape 5 Idefyg Falue & Repa Dsbuos Paamee Esmao maxmum lkelhood esmao C. Ebelg, Io o Relably & Maaably Chape 5 Egeeg, d ed. Wavelad Pess, Ic. Copygh 00 Maxmum Lkelhood Esmao (MLE) Fd esmaes fo he dsbuo

Διαβάστε περισσότερα

Finite Integrals Pertaining To a Product of Special Functions By V.B.L. Chaurasia, Yudhveer Singh University of Rajasthan, Jaipur

Finite Integrals Pertaining To a Product of Special Functions By V.B.L. Chaurasia, Yudhveer Singh University of Rajasthan, Jaipur Global Joal of Scece oe eeac Vole Ie 4 Veo Jl Te: Doble Bld Pee eewed Ieaoal eeac Joal Pble: Global Joal Ic SA ISSN: 975-5896 e Iegal Peag To a Podc of Secal co B VBL Caaa Ydee Sg e of aaa Ja Abac - A

Διαβάστε περισσότερα

A NOTE ON ENNOLA RELATION. Jae Moon Kim and Jado Ryu* 1. INTRODUCTION

A NOTE ON ENNOLA RELATION. Jae Moon Kim and Jado Ryu* 1. INTRODUCTION TAIWANESE JOURNAL OF MATHEMATICS Vol 8, No 5, pp 65-66, Ocober 04 DOI: 0650/m804665 Th paper avalable ole a hp://ouralawamahocorw A NOTE ON ENNOLA RELATION Jae Moo Km ad Jado Ryu* Abrac Eola ve a example

Διαβάστε περισσότερα

LAPLACE TRANSFORM TABLE

LAPLACE TRANSFORM TABLE LAPLACE TRANSFORM TABLE Th Laplac afom of am mpl fuco a gv h Tabl. Fuco U mpul U Sp U Ramp Expoal Rpad Roo S Co Polyomal Dampd Dampd co f δ u -a -a co,,... -a -a co F / / /a /a / /!/ /a a/a Thom : Shf

Διαβάστε περισσότερα

Derivation of the Filter Coefficients for the Ramp Invariant Method as Applied to Base Excitation of a Single-degree-of-Freedom System Revision B

Derivation of the Filter Coefficients for the Ramp Invariant Method as Applied to Base Excitation of a Single-degree-of-Freedom System Revision B Dervao of he Fler Coeffce for he Ramp Ivara Meho a Apple o Bae Excao of a Sgle-egree-of-Freeom Sem Revo B B om Irve Emal: om@vbraoaa.com Aprl, 0 Irouco Coer he gle-egree-of-freeom em Fgure. m &&x k c &&

Διαβάστε περισσότερα

On Quasi - f -Power Increasing Sequences

On Quasi - f -Power Increasing Sequences Ieaioal Maheaical Fou Vol 8 203 o 8 377-386 Quasi - f -owe Iceasig Sequeces Maheda Misa G Deae of Maheaics NC College (Auooous) Jaju disha Mahedaisa2007@gailco B adhy Rolad Isiue of echoy Golahaa-76008

Διαβάστε περισσότερα

) 2. δ δ. β β. β β β β. r k k. tll. m n Λ + +

) 2. δ δ. β β. β β β β. r k k. tll. m n Λ + + Techical Appedix o Hamig eposis ad Helpig Bowes: The ispaae Impac of Ba Cosolidaio (o o be published bu o be made available upo eques. eails of Poofs of Poposiios 1 ad To deive Poposiio 1 s exac ad sufficie

Διαβάστε περισσότερα

arxiv: v3 [math.pr] 12 Sep 2016

arxiv: v3 [math.pr] 12 Sep 2016 On he obu Dynkin Game Ehan Bayaka, Song Yao axiv:156.9184v3 mah.p 12 Sep 216 Abac We analyze a obu veion of he Dynkin game ove a e P of muually ingula pobabiliie. We fi pove ha conevaive playe lowe and

Διαβάστε περισσότερα

( ) ( t) ( 0) ( ) dw w. = = β. Then the solution of (1.1) is easily found to. wt = t+ t. We generalize this to the following nonlinear differential

( ) ( t) ( 0) ( ) dw w. = = β. Then the solution of (1.1) is easily found to. wt = t+ t. We generalize this to the following nonlinear differential Periodic oluion of van der Pol differenial equaion. by A. Arimoo Deparmen of Mahemaic Muahi Iniue of Technology Tokyo Japan in Seminar a Kiami Iniue of Technology January 8 9. Inroducion Le u conider a

Διαβάστε περισσότερα

RG Tutorial xlc3.doc 1/10. To apply the R-G method, the differential equation must be represented in the form:

RG Tutorial xlc3.doc 1/10. To apply the R-G method, the differential equation must be represented in the form: G Tuorial xlc3.oc / iear roblem i e C i e C ( ie ( Differeial equaio for C (3 Thi fir orer iffereial equaio ca eaily be ole bu he uroe of hi uorial i o how how o ue he iz-galerki meho o fi ou he oluio.

Διαβάστε περισσότερα

FORMULAE SHEET for STATISTICS II

FORMULAE SHEET for STATISTICS II Síscs II Degrees Ecoomcs d Mgeme FOMULAE SHEET for STATISTICS II EPECTED VALUE MOMENTS AND PAAMETES - Vr ( E( E( - Cov( E{ ( ( } E( E( E( µ ρ Cov( - E ( b E( be( Vr( b Vr( b Vr( bcov( THEOETICAL DISTIBUTIONS

Διαβάστε περισσότερα

MATH 38061/MATH48061/MATH68061: MULTIVARIATE STATISTICS Solutions to Problems on Matrix Algebra

MATH 38061/MATH48061/MATH68061: MULTIVARIATE STATISTICS Solutions to Problems on Matrix Algebra MATH 38061/MATH48061/MATH68061: MULTIVARIATE STATISTICS Solutios to Poblems o Matix Algeba 1 Let A be a squae diagoal matix takig the fom a 11 0 0 0 a 22 0 A 0 0 a pp The ad So, log det A t log A t log

Διαβάστε περισσότερα

Probability theory. Distributions. Inequalities. Convergence. E, Var, E k k. f[ ] (2 ) k ~ [, ] E[ [ ]( )] E[ [ ]]

Probability theory. Distributions. Inequalities. Convergence. E, Var, E k k. f[ ] (2 ) k ~ [, ] E[ [ ]( )] E[ [ ]] Pobably heoy Mgf of s [ E M e h: E M [ If Y eee he M + Y[ M[ MY[ Chaacesc fuco: φ [ E e fomaos: Y g If scee he fy[ y f[ x I[ g[ x y If couous v he ao Ξ A A ( P[ A ) efe g[ x g[ x x A so ha each g s moooous

Διαβάστε περισσότερα

Parts Manual. Trio Mobile Surgery Platform. Model 1033

Parts Manual. Trio Mobile Surgery Platform. Model 1033 Trio Mobile Surgery Platform Model 1033 Parts Manual For parts or technical assistance: Pour pièces de service ou assistance technique : Für Teile oder technische Unterstützung Anruf: Voor delen of technische

Διαβάστε περισσότερα

Déformation et quantification par groupoïde des variétés toriques

Déformation et quantification par groupoïde des variétés toriques Défomation et uantification pa goupoïde de vaiété toiue Fédéic Cadet To cite thi veion: Fédéic Cadet. Défomation et uantification pa goupoïde de vaiété toiue. Mathématiue [math]. Univeité d Oléan, 200.

Διαβάστε περισσότερα

= e 6t. = t 1 = t. 5 t 8L 1[ 1 = 3L 1 [ 1. L 1 [ π. = 3 π. = L 1 3s = L. = 3L 1 s t. = 3 cos(5t) sin(5t).

= e 6t. = t 1 = t. 5 t 8L 1[ 1 = 3L 1 [ 1. L 1 [ π. = 3 π. = L 1 3s = L. = 3L 1 s t. = 3 cos(5t) sin(5t). Worked Soluion 95 Chaper 25: The Invere Laplace Tranform 25 a From he able: L ] e 6 6 25 c L 2 ] ] L! + 25 e L 5 2 + 25] ] L 5 2 + 5 2 in(5) 252 a L 6 + 2] L 6 ( 2)] 6L ( 2)] 6e 2 252 c L 3 8 4] 3L ] 8L

Διαβάστε περισσότερα

Latent variable models Variational approximations.

Latent variable models Variational approximations. CS 3750 Mache Learg Lectre 9 Latet varable moel Varatoal appromato. Mlo arecht mlo@c.ptt.e 539 Seott Sqare CS 750 Mache Learg Cooperatve vector qatzer Latet varable : meoalty bary var Oberve varable :

Διαβάστε περισσότερα

The Neutrix Product of the Distributions r. x λ

The Neutrix Product of the Distributions r. x λ ULLETIN u. Maaysia Math. Soc. Secod Seies 22 999 - of the MALAYSIAN MATHEMATICAL SOCIETY The Neuti Poduct of the Distibutios ad RIAN FISHER AND 2 FATMA AL-SIREHY Depatet of Matheatics ad Copute Sciece

Διαβάστε περισσότερα

!"!# ""$ %%"" %$" &" %" "!'! " #$!

!!# $ %% %$ & % !'!  #$! " "" %%"" %" &" %" " " " % ((((( ((( ((((( " %%%% & ) * ((( "* ( + ) (((( (, (() (((((* ( - )((((( )((((((& + )(((((((((( +. ) ) /(((( +( ),(, ((((((( +, 0 )/ (((((+ ++, ((((() & "( %%%%%%%%%%%%%%%%%%%(

Διαβάστε περισσότερα

Lecture 6. Goals: Determine the optimal threshold, filter, signals for a binary communications problem VI-1

Lecture 6. Goals: Determine the optimal threshold, filter, signals for a binary communications problem VI-1 Lecue 6 Goals: Deemine e opimal esold, file, signals fo a binay communicaions poblem VI- Minimum Aveage Eo Pobabiliy Poblem: Find e opimum file, esold and signals o minimize e aveage eo pobabiliy. s s

Διαβάστε περισσότερα

(a,b) Let s review the general definitions of trig functions first. (See back cover of your book) sin θ = b/r cos θ = a/r tan θ = b/a, a 0

(a,b) Let s review the general definitions of trig functions first. (See back cover of your book) sin θ = b/r cos θ = a/r tan θ = b/a, a 0 TRIGONOMETRIC IDENTITIES (a,b) Let s eview the geneal definitions of tig functions fist. (See back cove of you book) θ b/ θ a/ tan θ b/a, a 0 θ csc θ /b, b 0 sec θ /a, a 0 cot θ a/b, b 0 By doing some

Διαβάστε περισσότερα

Note: Please use the actual date you accessed this material in your citation.

Note: Please use the actual date you accessed this material in your citation. MIT OpeCueWae hp://cw.m.eu 6.13/ESD.13J Elecmagec a pplca, Fall 5 Pleae ue he llwg ca ma: Maku Zah, Ech Ippe, a Dav Sael, 6.13/ESD.13J Elecmagec a pplca, Fall 5. (Maachue Iue Techlgy: MIT OpeCueWae). hp://cw.m.eu

Διαβάστε περισσότερα

Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α

Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α Α Ρ Χ Α Ι Α Ι Σ Τ Ο Ρ Ι Α Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α Σ η µ ε ί ω σ η : σ υ ν ά δ ε λ φ ο ι, ν α µ ο υ σ υ γ χ ω ρ ή σ ε τ ε τ ο γ ρ ή γ ο ρ ο κ α ι α τ η µ έ λ η τ ο ύ

Διαβάστε περισσότερα

α ]0,1[ of Trigonometric Fourier Series and its Conjugate

α ]0,1[ of Trigonometric Fourier Series and its Conjugate aqartvelo mecierebata erovuli aademii moambe 3 # 9 BULLETIN OF THE GEORGIN NTIONL CDEMY OF SCIENCES vol 3 o 9 Mahemaic Some pproimae Properie o he Cezàro Mea o Order ][ o Trigoomeric Fourier Serie ad i

Διαβάστε περισσότερα

Α Ρ Ι Θ Μ Ο Σ : 6.913

Α Ρ Ι Θ Μ Ο Σ : 6.913 Α Ρ Ι Θ Μ Ο Σ : 6.913 ΠΡΑΞΗ ΚΑΤΑΘΕΣΗΣ ΟΡΩΝ ΔΙΑΓΩΝΙΣΜΟΥ Σ τ η ν Π ά τ ρ α σ ή μ ε ρ α σ τ ι ς δ ε κ α τ έ σ σ ε ρ ι ς ( 1 4 ) τ ο υ μ ή ν α Ο κ τ ω β ρ ί ο υ, η μ έ ρ α Τ ε τ ά ρ τ η, τ ο υ έ τ ο υ ς δ

Διαβάστε περισσότερα

Cytotoxicity of ionic liquids and precursor compounds towards human cell line HeLa

Cytotoxicity of ionic liquids and precursor compounds towards human cell line HeLa Cytotoxcty of oc lqud ad precuror compoud toward huma cell le HeLa Xuefeg Wag, a,b C. Adré Ohl, a Qghua Lu,* a Zhaofu Fe, c Ju Hu, b ad Paul J. Dyo c a School of Chemtry ad Chemcal Techology, Shagha Jao

Διαβάστε περισσότερα

Vidyalankar. Vidyalankar S.E. Sem. III [BIOM] Applied Mathematics - III Prelim Question Paper Solution. 1 e = 1 1. f(t) =

Vidyalankar. Vidyalankar S.E. Sem. III [BIOM] Applied Mathematics - III Prelim Question Paper Solution. 1 e = 1 1. f(t) = . (a). (b). (c) f() L L e i e Vidyalakar S.E. Sem. III [BIOM] Applied Mahemaic - III Prelim Queio Paper Soluio L el e () i ( ) H( ) u e co y + 3 3y u e co y + 6 uy e i y 6y uyy e co y 6 u + u yy e co y

Διαβάστε περισσότερα

(b) (c) (d) When, where

(b) (c) (d) When, where . Ug Dc delt fucto the ppopte coodte, expe the followg chge dtbuto thee-dmeol chge dete ρ(x). () I phecl coodte, chge ufomly dtbuted ove phecl hell of du R. (b) I cyldcl coodte, chgeλpe ut legth ufomly

Διαβάστε περισσότερα

Latent variable models Variational approximations.

Latent variable models Variational approximations. CS 3750 Mache Learg Lectre 9 Latet varable moel Varatoal appromato. Mlo arecht mlo@c.ptt.e 539 Seott Sqare CS 750 Mache Learg Cooperatve vector qatzer Latet varable : meoalty bary var Oberve varable :

Διαβάστε περισσότερα

Errata (Includes critical corrections only for the 1 st & 2 nd reprint)

Errata (Includes critical corrections only for the 1 st & 2 nd reprint) Wedesday, May 5, 3 Erraa (Icludes criical correcios oly for he s & d repri) Advaced Egieerig Mahemaics, 7e Peer V O eil ISB: 978474 Page # Descripio 38 ie 4: chage "w v a v " "w v a v " 46 ie : chage "y

Διαβάστε περισσότερα

Poularikas A. D. Distributions, Delta Function The Handbook of Formulas and Tables for Signal Processing. Ed. Alexander D. Poularikas Boca Raton: CRC

Poularikas A. D. Distributions, Delta Function The Handbook of Formulas and Tables for Signal Processing. Ed. Alexander D. Poularikas Boca Raton: CRC Pulrik A. D. Diribui, Del Fuci The Hbk f Frmul Tble fr Sigl Prceig. E. Aleer D. Pulrik Bc R: CRC Pre LLC, 999 5 Diribui, Del Fuci 5. Te Fuci 5. Diribui 5.3 Oe-Dimeil Del Fuci 5.4 Emple 5.5 Tw-Dimeil Del

Διαβάστε περισσότερα

Electronic Companion to Supply Chain Dynamics and Channel Efficiency in Durable Product Pricing and Distribution

Electronic Companion to Supply Chain Dynamics and Channel Efficiency in Durable Product Pricing and Distribution i Eleconic Copanion o Supply Chain Dynaics and Channel Efficiency in Duable Poduc Picing and Disibuion Wei-yu Kevin Chiang College of Business Ciy Univesiy of Hong Kong wchiang@ciyueduh I Poof of Poposiion

Διαβάστε περισσότερα

Probabilistic Image Processing by Extended Gauss-Markov Random Fields

Probabilistic Image Processing by Extended Gauss-Markov Random Fields Pobablsc mage Pocessng b Eended Gauss-Makov Random Felds Kauuk anaka Munek asuda Ncolas Mon Gaduae School of nfomaon Scences ohoku Unves Japan and D. M. engon Depamen of Sascs Unves of Glasgow UK 3 Sepembe

Διαβάστε περισσότερα

Υπόδειγµα Προεξόφλησης

Υπόδειγµα Προεξόφλησης Αρτίκης Γ. Παναγιώτης Υπόδειγµα Προεξόφλησης Μερισµάτων Γενικό Υπόδειγµα (Geeral Model) Ταµειακές ροές από αγορά µετοχών: Μερίσµατα κατά την διάρκεια κατοχής των µετοχών Μια αναµενόµενη τιµή στο τέλος

Διαβάστε περισσότερα

List MF19. List of formulae and statistical tables. Cambridge International AS & A Level Mathematics (9709) and Further Mathematics (9231)

List MF19. List of formulae and statistical tables. Cambridge International AS & A Level Mathematics (9709) and Further Mathematics (9231) List MF9 List of fomulae ad statistical tables Cambidge Iteatioal AS & A Level Mathematics (9709) ad Futhe Mathematics (93) Fo use fom 00 i all papes fo the above syllabuses. CST39 *50870970* PURE MATHEMATICS

Διαβάστε περισσότερα

Approximation of the Lerch zeta-function

Approximation of the Lerch zeta-function Approximaion of he Lerch zea-funcion Ramūna Garunkši Deparmen of Mahemaic and Informaic Vilniu Univeriy Naugarduko 4 035 Vilniu Lihuania ramunagarunki@mafvul Abrac We conider uniform in parameer approximaion

Διαβάστε περισσότερα

Supplementary material for: Efficient moment calculations for variance components in large unbalanced crossed random effects models

Supplementary material for: Efficient moment calculations for variance components in large unbalanced crossed random effects models Supplementay mateal fo: Effcent moment calculaton fo vaance component n lage unbalanced coed andom effect model Katelyn Gao Stanfod Unvety At B Owen Stanfod Unvety Augut 015 Abtact Th a upplementay document

Διαβάστε περισσότερα

MICROMASTER Vector MIDIMASTER Vector

MICROMASTER Vector MIDIMASTER Vector s MICROMASTER Vector MIDIMASTER Vector... 2 1.... 4 2. -MICROMASTER VECTOR... 5 3. -MIDIMASTER VECTOR... 16 4.... 24 5.... 28 6.... 32 7.... 54 8.... 56 9.... 61 Siemens plc 1998 G85139-H1751-U553B 1.

Διαβάστε περισσότερα

! "#" "" $ "%& ' %$(%& % &'(!!")!*!&+ ,! %$( - .$'!"

! #  $ %& ' %$(%& % &'(!!)!*!&+ ,! %$( - .$'! ! "#" "" $ "%& ' %$(%&!"#$ % &'(!!")!*!&+,! %$( -.$'!" /01&$23& &4+ $$ /$ & & / ( #(&4&4!"#$ %40 &'(!"!!&+ 5,! %$( - &$ $$$".$'!" 4(02&$ 4 067 4 $$*&(089 - (0:;

Διαβάστε περισσότερα

Estimators when the Correlation Coefficient. is Negative

Estimators when the Correlation Coefficient. is Negative It J Cotemp Math Sceces, Vol 5, 00, o 3, 45-50 Estmators whe the Correlato Coeffcet s Negatve Sad Al Al-Hadhram College of Appled Sceces, Nzwa, Oma abur97@ahoocouk Abstract Rato estmators for the mea of

Διαβάστε περισσότερα

Perturbation Series in Light-Cone Diagrams of Green Function of String Field

Perturbation Series in Light-Cone Diagrams of Green Function of String Field Petuto Sees ht-coe Dms of ee Fucto of St Fel Am-l Te-So Km Chol-M So- m Detmet of Eey Scece Km l Su Uvesty Pyoy DPR Koe E-y Km l Su Uvesty Pyoy DPR Koe Detmet of Physcs Km l Su Uvesty Pyoy DPR Koe Astct

Διαβάστε περισσότερα

Analytical Expression for Hessian

Analytical Expression for Hessian Analytical Expession fo Hessian We deive the expession of Hessian fo a binay potential the coesponding expessions wee deived in [] fo a multibody potential. In what follows, we use the convention that

Διαβάστε περισσότερα

Chapter 1 Fundamentals in Elasticity

Chapter 1 Fundamentals in Elasticity D. of o. NU Fs s ν ss L. Pof. H L ://s.s.. D. of o. NU. Po Dfo ν Ps s - Do o - M os - o oos : o o w Uows o: - ss - - Ds W ows s o qos o so s os. w ows o fo s o oos s os of o os. W w o s s ss: - ss - -

Διαβάστε περισσότερα

Oscillating dipole system Suppose we have two small spheres separated by a distance s. The charge on one sphere changes with time and is described by

Oscillating dipole system Suppose we have two small spheres separated by a distance s. The charge on one sphere changes with time and is described by 5 Radiation (Chapte 11) 5.1 Electic dipole adiation Oscillating dipole system Suppose we have two small sphees sepaated by a distance s. The chage on one sphee changes with time and is descibed by q(t)

Διαβάστε περισσότερα

Byeong-Joo Lee

Byeong-Joo Lee yeg-j ee OTECH - ME alphad@psteh.a.k yeg-j ee www.psteh.a.k/~alphad ufae Tast ad Allyg Effet N.M. Hwag et al., 000. ue W W 0.4wt% N Vau Aealg yeg-j ee www.psteh.a.k/~alphad Abal a wth f N.M. Hwag yeg-j

Διαβάστε περισσότερα

Last Lecture. Biostatistics Statistical Inference Lecture 19 Likelihood Ratio Test. Example of Hypothesis Testing.

Last Lecture. Biostatistics Statistical Inference Lecture 19 Likelihood Ratio Test. Example of Hypothesis Testing. Last Lecture Biostatistics 602 - Statistical Iferece Lecture 19 Likelihood Ratio Test Hyu Mi Kag March 26th, 2013 Describe the followig cocepts i your ow words Hypothesis Null Hypothesis Alterative Hypothesis

Διαβάστε περισσότερα

SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES. Reading: QM course packet Ch 5 up to 5.6

SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES. Reading: QM course packet Ch 5 up to 5.6 SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES Readig: QM course packet Ch 5 up to 5. 1 ϕ (x) = E = π m( a) =1,,3,4,5 for xa (x) = πx si L L * = πx L si L.5 ϕ' -.5 z 1 (x) = L si

Διαβάστε περισσότερα

!"#$ "%&$ ##%&%'()) *..$ /. 0-1$ )$.'-

!#$ %&$ ##%&%'()) *..$ /. 0-1$ )$.'- !!" !"# "%& ##%&%',-... /. -1.'- -13-',,'- '-...4 %. -5"'-1.... /..'-1.....-"..'-1.. 78::8

Διαβάστε περισσότερα

17 Monotonicity Formula And Basic Consequences

17 Monotonicity Formula And Basic Consequences Lectues o Vaifols Leo Sio Zhag Zui 7 Mootoicity Foula A Basic Cosequeces I this sectio we assue that U is oe i R, V v( M,θ) has the geealize ea cuvatue H i U ( see 6.5), a we wite µ fo µ V ( H θ as i 5.).

Διαβάστε περισσότερα

Fourier Series. Fourier Series

Fourier Series. Fourier Series ECE 37 Z. Aliyazicioglu Elecrical & Compuer Egieerig Dep. Cal Poly Pomoa Periodic sigal is a fucio ha repeas iself every secods. x() x( ± ) : period of a fucio, : ieger,,3, x() 3 x() x() Periodic sigal

Διαβάστε περισσότερα

S 5 S 1 S 2 S 6 S 9 S 7 S 3 S 4 S 8

S 5 S 1 S 2 S 6 S 9 S 7 S 3 S 4 S 8 4.9.. HM-..,,.... :, HM-,,,,.... " " - ",.. " ".,,,,,,.,,.,,..,.,. Byfy, Zaa..,,.. W-F-,, (W-F -. :,,, -,,,,,.,, :, (, W-F, (Byfy, Zaa, GSM,..,.,, (...,,,. HM(Howad-Maays- [5, 6, 9, ],. S S 5 S 9 S S 6

Διαβάστε περισσότερα

Analysis of optimal harvesting of a prey-predator fishery model with the limited sources of prey and presence of toxicity

Analysis of optimal harvesting of a prey-predator fishery model with the limited sources of prey and presence of toxicity ES Web of Confeences 7, 68 (8) hps://doiog/5/esconf/8768 ICEIS 8 nalsis of opimal havesing of a pe-pedao fishe model wih he limied souces of pe and pesence of oici Suimin,, Sii Khabibah, and Dia nies Munawwaoh

Διαβάστε περισσότερα

!"#!"!"# $ "# '()!* '+!*, -"*!" $ "#. /01 023 43 56789:3 4 ;8< = 7 >/? 44= 7 @ 90A 98BB8: ;4B0C BD :0 E D:84F3 B8: ;4BG H ;8

Διαβάστε περισσότερα

tel , version 1-7 Feb 2013

tel , version 1-7 Feb 2013 !"## $ %&' (") *+ '#),! )%)%' *, -#)&,-'" &. % /%%"&.0. )%# "#",1 2" "'' % /%%"&30 "'' "#", /%%%" 4"," % /%%5" 4"," "#",%" 67 &#89% !"!"# $ %& & # &$ ' '#( ''# ))'%&##& *'#$ ##''' "#$ %% +, %'# %+)% $

Διαβάστε περισσότερα

arxiv: v1 [math.ap] 22 Dec 2018

arxiv: v1 [math.ap] 22 Dec 2018 Pescbg Mose scala cuvatues: blow-up aalyss Adea Malchod ad Mat Maye Scuola Nomale Supeoe, Pazza de Cavale 7, 56 Psa, ITALY adeamalchod@sst, matmaye@sst axv:89457v [mathap] Dec 8 Decembe 7, 8 Abstact We

Διαβάστε περισσότερα

Approximate System Reliability Evaluation

Approximate System Reliability Evaluation Appoximate Sytem Reliability Evaluation Up MTTF Down 0 MTBF MTTR () Time Fo many engineeing ytem component, MTTF MTBF i.e. failue ate, failue fequency, f Fequency, Duation and Pobability Indice: failue

Διαβάστε περισσότερα

Chapter 3 Diode and Thyristor Rectifiers

Chapter 3 Diode and Thyristor Rectifiers Cher Doe Thyror Recfer Dewe(D) Xu De. of Elecrcl & Comuer Egeerg Ryero Uery Coe Sgle-he hree-he oe recfer Hrmoc oro New efo of ower fcor Dlceme fcor oro fcor Sgle-he hree-he SCR recfer Mcroroceor corol

Διαβάστε περισσότερα

APPENDIX A DERIVATION OF JOINT FAILURE DENSITIES

APPENDIX A DERIVATION OF JOINT FAILURE DENSITIES APPENDIX A DERIVAION OF JOIN FAILRE DENSIIES I his Appedi we prese he derivaio o he eample ailre models as show i Chaper 3. Assme ha he ime ad se o ailre are relaed by he cio g ad he sochasic are o his

Διαβάστε περισσότερα

Homework for 1/27 Due 2/5

Homework for 1/27 Due 2/5 Name: ID: Homework for /7 Due /5. [ 8-3] I Example D of Sectio 8.4, the pdf of the populatio distributio is + αx x f(x α) =, α, otherwise ad the method of momets estimate was foud to be ˆα = 3X (where

Διαβάστε περισσότερα

On transformations groups of N linear connections on the dual bundle of k tangent bundle

On transformations groups of N linear connections on the dual bundle of k tangent bundle Sud Unv Babeş-Boya Mah 572012 o 1 121 133 On anfoaon goup of nea connecon on he dua bunde of k angen bunde Monca Pucau and Mea Tânoveanu bac In he peen pape we udy he anfoaon fo he coeffcen of an nea connecon

Διαβάστε περισσότερα

Homework 4.1 Solutions Math 5110/6830

Homework 4.1 Solutions Math 5110/6830 Homework 4. Solutios Math 5/683. a) For p + = αp γ α)p γ α)p + γ b) Let Equilibria poits satisfy: p = p = OR = γ α)p ) γ α)p + γ = α γ α)p ) γ α)p + γ α = p ) p + = p ) = The, we have equilibria poits

Διαβάστε περισσότερα

INTRODUCTION to BIOMECHANICS for HUMAN MOTION ANALYSIS, THIRD EDITION

INTRODUCTION to BIOMECHANICS for HUMAN MOTION ANALYSIS, THIRD EDITION INTRODUCTION BIOECHANICS HUAN OTION ANALYSIS, THIRD EDITION SOLUTIONS ODD-NUBERED PROBLES b D. Gdn E. Rben, PhD, CSB Schl Humn Knec, Une Ow Cpgh 013 (eed 11 Decembe 013) INTRODUCTION (p. 1) Cnen c e ken

Διαβάστε περισσότερα

Matrix Hartree-Fock Equations for a Closed Shell System

Matrix Hartree-Fock Equations for a Closed Shell System atix Hatee-Fock Equations fo a Closed Shell System A single deteminant wavefunction fo a system containing an even numbe of electon N) consists of N/ spatial obitals, each occupied with an α & β spin has

Διαβάστε περισσότερα

Q π (/) ^ ^ ^ Η φ. <f) c>o. ^ ο. ö ê ω Q. Ο. o 'c. _o _) o U 03. ,,, ω ^ ^ -g'^ ο 0) f ο. Ε. ιη ο Φ. ο 0) κ. ο 03.,Ο. g 2< οο"" ο φ.

Q π (/) ^ ^ ^ Η φ. <f) c>o. ^ ο. ö ê ω Q. Ο. o 'c. _o _) o U 03. ,,, ω ^ ^ -g'^ ο 0) f ο. Ε. ιη ο Φ. ο 0) κ. ο 03.,Ο. g 2< οο ο φ. II 4»» «i p û»7'' s V -Ζ G -7 y 1 X s? ' (/) Ζ L. - =! i- Ζ ) Η f) " i L. Û - 1 1 Ι û ( - " - ' t - ' t/î " ι-8. Ι -. : wî ' j 1 Τ J en " il-' - - ö ê., t= ' -; '9 ',,, ) Τ '.,/,. - ϊζ L - (- - s.1 ai

Διαβάστε περισσότερα

Reflection & Transmission

Reflection & Transmission Rflc & Tasmss 4 D. Ray Kw Rflc & Tasmss - D. Ray Kw Gmc Opcs (M wavs flc fac - asmss cdc.. Sll s Law: s s 3. Ccal agl: s c / 4. Tal flc wh > c ly f > Rflc & Tasmss - D. Ray Kw Pla Wav λ wavfs λ λ. < ;

Διαβάστε περισσότερα

1. For each of the following power series, find the interval of convergence and the radius of convergence:

1. For each of the following power series, find the interval of convergence and the radius of convergence: Math 6 Practice Problems Solutios Power Series ad Taylor Series 1. For each of the followig power series, fid the iterval of covergece ad the radius of covergece: (a ( 1 x Notice that = ( 1 +1 ( x +1.

Διαβάστε περισσότερα

F (x) = kx. F (x )dx. F = kx. U(x) = U(0) kx2

F (x) = kx. F (x )dx. F = kx. U(x) = U(0) kx2 F (x) = kx x k F = F (x) U(0) U(x) = x F = kx 0 F (x )dx U(x) = U(0) + 1 2 kx2 x U(0) = 0 U(x) = 1 2 kx2 U(x) x 0 = 0 x 1 U(x) U(0) + U (0) x + 1 2 U (0) x 2 U (0) = 0 U(x) U(0) + 1 2 U (0) x 2 U(0) =

Διαβάστε περισσότερα

Exercise, May 23, 2016: Inflation stabilization with noisy data 1

Exercise, May 23, 2016: Inflation stabilization with noisy data 1 Monetay Policy Henik Jensen Depatment of Economics Univesity of Copenhagen Execise May 23 2016: Inflation stabilization with noisy data 1 Suggested answes We have the basic model x t E t x t+1 σ 1 ît E

Διαβάστε περισσότερα

Η ΥΠΟΓΡΑΦΗ ΕΝΟΣ ΜΟΝΟΤΟΝΟΥ ΣΥΣΤΗΜΑΤΟΣ

Η ΥΠΟΓΡΑΦΗ ΕΝΟΣ ΜΟΝΟΤΟΝΟΥ ΣΥΣΤΗΜΑΤΟΣ Ελληνικό Στατιστικό Ινστιτούτο Πρακτικά 8 ου Πανελληνίου Συνεδρίου Στατιστικής (00) σελ.373-38 Η ΥΠΟΓΡΑΦΗ ΕΝΟΣ ΜΟΝΟΤΟΝΟΥ ΣΥΣΤΗΜΑΤΟΣ Γιάννης Σ. Τριανταφύλλου, Μάρκος Β. Κούτρας Πανεπιστήμιο Πειραιώς,, Τμήμα

Διαβάστε περισσότερα

Other Test Constructions: Likelihood Ratio & Bayes Tests

Other Test Constructions: Likelihood Ratio & Bayes Tests Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :

Διαβάστε περισσότερα

Αλγόριθμοι και πολυπλοκότητα Maximum Flow

Αλγόριθμοι και πολυπλοκότητα Maximum Flow ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Αλγόριθμοι και πολυπλοκότητα Maximm Flo Ιωάννης Τόλλης Τμήμα Επιστήμης Υπολογιστών Maximm Flo χ 3/5 4/6 4/7 1/9 3/5 5/11/2008 11:05 PM Maximm Flo 1 Oline and Reading

Διαβάστε περισσότερα

Edexcel FP3. Hyperbolic Functions. PhysicsAndMathsTutor.com

Edexcel FP3. Hyperbolic Functions. PhysicsAndMathsTutor.com Eecel FP Hpeolic Fuctios PhsicsAMthsTuto.com . Solve the equtio Leve lk 7sech th 5 Give ou swes i the fom l whee is tiol ume. 5 7 Sih 5 Cosh cosh c 7 Sih 5cosh's 7 Ece e I E e e 4 e te 5e 55 O 5e 55 te

Διαβάστε περισσότερα

.. ntsets ofa.. d ffeom.. orp ism.. na s.. m ooth.. man iod period I n open square. n t s e t s ofa \quad d ffeom \quad orp ism \quad na s \quad m o

.. ntsets ofa.. d ffeom.. orp ism.. na s.. m ooth.. man iod period I n open square. n t s e t s ofa \quad d ffeom \quad orp ism \quad na s \quad m o G G - - -- - W - - - R S - q k RS ˆ W q q k M G W R S L [ RS - q k M S 4 R q k S [ RS [ M L ˆ L [M O S 4] L ˆ ˆ L ˆ [ M ˆ S 4 ] ˆ - O - ˆ q k ˆ RS q k q k M - j [ RS ] [ M - j - L ˆ ˆ ˆ O ˆ [ RS ] [ M

Διαβάστε περισσότερα

The one-dimensional periodic Schrödinger equation

The one-dimensional periodic Schrödinger equation The one-dmensonal perodc Schrödnger equaon Jordan Bell jordan.bell@gmal.com Deparmen of Mahemacs, Unversy of Torono Aprl 23, 26 Translaons and convoluon For y, le τ y f(x f(x y. To say ha f : C s unformly

Διαβάστε περισσότερα

Example 1: THE ELECTRIC DIPOLE

Example 1: THE ELECTRIC DIPOLE Example 1: THE ELECTRIC DIPOLE 1 The Electic Dipole: z + P + θ d _ Φ = Q 4πε + Q = Q 4πε 4πε 1 + 1 2 The Electic Dipole: d + _ z + Law of Cosines: θ A B α C A 2 = B 2 + C 2 2ABcosα P ± = 2 ( + d ) 2 2

Διαβάστε περισσότερα

Fractional Calculus. Student: Manal AL-Ali Dr. Abdalla Obeidat

Fractional Calculus. Student: Manal AL-Ali Dr. Abdalla Obeidat Fracional Calculu Suen: Manal AL-Ali Dr. Aballa Obeia Deignaion Deignaion mean inegraion an iffereniaion of arbirary orer, In oher ereion i mean ealing wih oeraor like,, i arbirary real or Comle value.

Διαβάστε περισσότερα

[ ] ( l) ( ) Option 2. Option 3. Option 4. Correct Answer 1. Explanation n. Q. No to n terms = ( 10-1 ) 3

[ ] ( l) ( ) Option 2. Option 3. Option 4. Correct Answer 1. Explanation n. Q. No to n terms = ( 10-1 ) 3 Q. No. The fist d lst tem of A. P. e d l espetively. If s be the sum of ll tems of the A. P., the ommo diffeee is Optio l - s- l+ Optio Optio Optio 4 Coet Aswe ( ) l - s- - ( l ) l + s+ + ( l ) l + s-

Διαβάστε περισσότερα

2. Α ν ά λ υ σ η Π ε ρ ι ο χ ή ς. 3. Α π α ι τ ή σ ε ι ς Ε ρ γ ο δ ό τ η. 4. Τ υ π ο λ ο γ ί α κ τ ι ρ ί ω ν. 5. Π ρ ό τ α σ η. 6.

2. Α ν ά λ υ σ η Π ε ρ ι ο χ ή ς. 3. Α π α ι τ ή σ ε ι ς Ε ρ γ ο δ ό τ η. 4. Τ υ π ο λ ο γ ί α κ τ ι ρ ί ω ν. 5. Π ρ ό τ α σ η. 6. Π Ε Ρ Ι Ε Χ Ο Μ Ε Ν Α 1. Ε ι σ α γ ω γ ή 2. Α ν ά λ υ σ η Π ε ρ ι ο χ ή ς 3. Α π α ι τ ή σ ε ι ς Ε ρ γ ο δ ό τ η 4. Τ υ π ο λ ο γ ί α κ τ ι ρ ί ω ν 5. Π ρ ό τ α σ η 6. Τ ο γ ρ α φ ε ί ο 1. Ε ι σ α γ ω

Διαβάστε περισσότερα

Edexcel FP3. Hyperbolic Functions. PhysicsAndMathsTutor.com

Edexcel FP3. Hyperbolic Functions. PhysicsAndMathsTutor.com Eeel FP Hpeoli Futios PhsisAMthsTuto.om . Solve the equtio Leve lk 7seh th 5 Give ou swes i the fom l whee is tiol ume. 5 7 Sih 5 Cosh osh 7 Sih 5osh's 7 Ee e I E e e 4 e te 5e 55 O 5e 55 te e 4 O Ge 45

Διαβάστε περισσότερα

Cycles and Multiple Equilibria in the Market for Durable Lemons

Cycles and Multiple Equilibria in the Market for Durable Lemons Cyce Mue Equbr he Mre for Durbe Leo Mre C W Je Eru Uery Roer Vr Kryche Tberge Iue Roer Jury Abrc: We ege he ure of re fure yc ero of Aerof 97 where ec cohor of urbe goo eer he re oer e I he yc oe equbr

Διαβάστε περισσότερα

One and two particle density matrices for single determinant HF wavefunctions. (1) = φ 2. )β(1) ( ) ) + β(1)β * β. (1)ρ RHF

One and two particle density matrices for single determinant HF wavefunctions. (1) = φ 2. )β(1) ( ) ) + β(1)β * β. (1)ρ RHF One and two partcle densty matrces for sngle determnant HF wavefunctons One partcle densty matrx Gven the Hartree-Fock wavefuncton ψ (,,3,!, = Âϕ (ϕ (ϕ (3!ϕ ( 3 The electronc energy s ψ H ψ = ϕ ( f ( ϕ

Διαβάστε περισσότερα

apj1 SSGA* hapla P6 _1G hao1 1Lh_PSu AL..AhAo1 *PJ"AL hp_a*a

apj1 SSGA* hapla P6 _1G hao1 1Lh_PSu AL..AhAo1 *PJAL hp_a*a n n 1/2 n (n 1) 0/1 l 2 E x X X x X E x X g(x) := 1 g(x). X f : X C L p f p := (E x X f(x) p ) 1/p f,g := E x X f(x)g(x) x X X X X := {f : X [0, ) : f 1 =1}. X µ A A X x X µ A (x) :=α 1 1 A (x) 1 A A α

Διαβάστε περισσότερα

www.absolualarme.com met la disposition du public, via www.docalarme.com, de la documentation technique dont les rιfιrences, marques et logos, sont

www.absolualarme.com met la disposition du public, via www.docalarme.com, de la documentation technique dont les rιfιrences, marques et logos, sont w. ww lua so ab me lar m.co t me la sit po dis ion du c, bli pu via lar ca do w. ww me.co m, de la ion nta t do cu me on t ed hn iqu tec les en ce s, rι fιr ma rq ue se t lo go s, so nt la pr op riι tι

Διαβάστε περισσότερα

Reflection Models. Reflection Models

Reflection Models. Reflection Models Reflecon Models Today Types of eflecon models The BRDF and eflecance The eflecon equaon Ideal eflecon and efacon Fesnel effec Ideal dffuse Thusday Glossy and specula eflecon models Rough sufaces and mcofaces

Διαβάστε περισσότερα

-! " #!$ %& ' %( #! )! ' 2003

-!  #!$ %& ' %( #! )! ' 2003 -! "#!$ %&' %(#!)!' ! 7 #!$# 9 " # 6 $!% 6!!! 6! 6! 6 7 7 &! % 7 ' (&$ 8 9! 9!- "!!- ) % -! " 6 %!( 6 6 / 6 6 7 6!! 7 6! # 8 6!! 66! #! $ - (( 6 6 $ % 7 7 $ 9!" $& & " $! / % " 6!$ 6!!$#/ 6 #!!$! 9 /!

Διαβάστε περισσότερα

!!" #7 $39 %" (07) ..,..,.. $ 39. ) :. :, «(», «%», «%», «%» «%». & ,. ). & :..,. '.. ( () #*. );..,..'. + (# ).

!! #7 $39 % (07) ..,..,.. $ 39. ) :. :, «(», «%», «%», «%» «%». & ,. ). & :..,. '.. ( () #*. );..,..'. + (# ). 1 00 3 !!" 344#7 $39 %" 6181001 63(07) & : ' ( () #* ); ' + (# ) $ 39 ) : : 00 %" 6181001 63(07)!!" 344#7 «(» «%» «%» «%» «%» & ) 4 )&-%/0 +- «)» * «1» «1» «)» ) «(» «%» «%» + ) 30 «%» «%» )1+ / + : +3

Διαβάστε περισσότερα

L.K.Gupta (Mathematic Classes) www.pioeermathematics.com MOBILE: 985577, 4677 + {JEE Mai 04} Sept 0 Name: Batch (Day) Phoe No. IT IS NOT ENOUGH TO HAVE A GOOD MIND, THE MAIN THING IS TO USE IT WELL Marks:

Διαβάστε περισσότερα

Veliine u mehanici. Rad, snaga i energija. Dinamika. Meunarodni sustav mjere (SI) 1. Skalari. 2. Vektori - poetak. 12. dio. 1. Skalari. 2.

Veliine u mehanici. Rad, snaga i energija. Dinamika. Meunarodni sustav mjere (SI) 1. Skalari. 2. Vektori - poetak. 12. dio. 1. Skalari. 2. Vele u ehc Rd, g eegj D. do. Sl. Veo 3. Tezo II. ed 4. Tezo IV. ed. Sl: 3 0 pod je jedc (ezo ulog ed). Veo: 3 3 pod je jedc (ezo pog ed) 3. Tezo dugog ed 3 9 pod je jedc 4. Tezoeog ed 3 4 8 pod je jedc

Διαβάστε περισσότερα

i i (3) Derive the fixed-point iteration algorithm and apply it to the data of Example 1.

i i (3) Derive the fixed-point iteration algorithm and apply it to the data of Example 1. Howor#3 urvval Aalyss Na: Huag Xw 黃昕蔚 Quso: uppos ha daa ( follow h odl ( ( > ad <

Διαβάστε περισσότερα

EXISTENCE AND BOUNDEDNESS OF gλ -FUNCTION AND MARCINKIEWICZ FUNCTIONS ON CAMPANATO SPACES

EXISTENCE AND BOUNDEDNESS OF gλ -FUNCTION AND MARCINKIEWICZ FUNCTIONS ON CAMPANATO SPACES Scieiae Mahemaicae Jaoicae Olie, Vol. 9, 3), 59 78 59 EXISTENCE AND BOUNDEDNESS OF gλ -FUNCTION AND MARCINKIEWICZ FUNCTIONS ON CAMPANATO SPACES KÔZÔ YABUTA Received Decembe 3, Absac. Le gf), Sf), gλ f)

Διαβάστε περισσότερα

Đường tròn : cung dây tiếp tuyến (V1) Đường tròn cung dây tiếp tuyến. Giải.

Đường tròn : cung dây tiếp tuyến (V1) Đường tròn cung dây tiếp tuyến. Giải. Đường tròn cung dây tiếp tuyến BÀI 1 : Cho tam giác ABC. Đường tròn có đường kính BC cắt cạnh AB, AC lần lượt tại E, D. BD và CE cắt nhau tại H. chứng minh : 1. AH vuông góc BC (tại F thuộc BC). 2. FA.FH

Διαβάστε περισσότερα

ITU-R P (2012/02) &' (

ITU-R P (2012/02) &' ( ITU-R P.530-4 (0/0) $ % " "#! &' ( P ITU-R P. 530-4 ii.. (IPR) (ITU-T/ITU-R/ISO/IEC).ITU-R http://www.itu.int/itu-r/go/patents/en. ITU-T/ITU-R/ISO/IEC (http://www.itu.int/publ/r-rec/en ) () ( ) BO BR BS

Διαβάστε περισσότερα

!" #$! '() -*,*( *(*)* *. 1#,2 (($3-*-/*/330%#& !" #$ -4*30*/335*

! #$! '() -*,*( *(*)* *. 1#,2 (($3-*-/*/330%#& ! #$ -4*30*/335* !" #$ %#&! '( (* + #*,*(**!',(+ *,*( *(** *. * #*,*(**( 0* #*,*(**(***&, 1#,2 (($3**330%#&!" #$ 4*30*335* ( 6777330"$% 8.9% '.* &(",*( *(** *. " ( : %$ *.#*,*(**." %#& 6 &;" * (.#*,*(**( #*,*(**(***&,

Διαβάστε περισσότερα

! "# $ % $&'& () *+ (,-. / 0 1(,21(,*) (3 4 5 "$ 6, ::: ;"<$& = = 7 + > + 5 $?"# 46(A *( / A 6 ( 1,*1 B"',CD77E *+ *),*,*) F? $G'& 0/ (,.

! # $ % $&'& () *+ (,-. / 0 1(,21(,*) (3 4 5 $ 6, ::: ;<$& = = 7 + > + 5 $?# 46(A *( / A 6 ( 1,*1 B',CD77E *+ *),*,*) F? $G'& 0/ (,. ! " #$%&'()' *('+$,&'-. /0 1$23(/%/4. 1$)('%%'($( )/,)$5)/6%6 7$85,-9$(- /0 :/986-$, ;2'$(2$ 1'$-/-$)('')5( /&5&-/ 5(< =(4'($$,'(4 1$%$2/996('25-'/(& ;/0->5,$ 1'$-/%'')$(($/3?$%9'&-/?$( 5(< @6%-'9$

Διαβάστε περισσότερα

C 1 D 1. AB = a, AD = b, AA1 = c. a, b, c : (1) AC 1 ; : (1) AB + BC + CC1, AC 1 = BC = AD, CC1 = AA 1, AC 1 = a + b + c. (2) BD 1 = BD + DD 1,

C 1 D 1. AB = a, AD = b, AA1 = c. a, b, c : (1) AC 1 ; : (1) AB + BC + CC1, AC 1 = BC = AD, CC1 = AA 1, AC 1 = a + b + c. (2) BD 1 = BD + DD 1, 1 1., BD 1 B 1 1 D 1, E F B 1 D 1. B = a, D = b, 1 = c. a, b, c : (1) 1 ; () BD 1 ; () F; D 1 F 1 (4) EF. : (1) B = D, D c b 1 E a B 1 1 = 1, B1 1 = B + B + 1, 1 = a + b + c. () BD 1 = BD + DD 1, BD =

Διαβάστε περισσότερα

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Partial Differential Equations in Biology The boundary element method. March 26, 2013 The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet

Διαβάστε περισσότερα

Το άτομο του Υδρογόνου

Το άτομο του Υδρογόνου Το άτομο του Υδρογόνου Δυναμικό Coulomb Εξίσωση Schrödinger h e (, r, ) (, r, ) E (, r, ) m ψ θφ r ψ θφ = ψ θφ Συνθήκες ψ(, r θφ, ) = πεπερασμένη ψ( r ) = 0 ψ(, r θφ, ) =ψ(, r θφ+, ) π Επιτρεπτές ενέργειες

Διαβάστε περισσότερα

1 3D Helmholtz Equation

1 3D Helmholtz Equation Deivation of the Geen s Funtions fo the Helmholtz and Wave Equations Alexande Miles Witten: Deembe 19th, 211 Last Edited: Deembe 19, 211 1 3D Helmholtz Equation A Geen s Funtion fo the 3D Helmholtz equation

Διαβάστε περισσότερα