DISCONTINUOUS YIELDING BEHAVIOR OF β PHASE CONTAINING TiAl ALLOY DURING HIGH TEMPERATURE DEFORMATION PROCESS

Σχετικά έγγραφα
STUDY ON CYCLIC OXIDATION RESISTANCE OF HIGH NIOBIUM CONTAINING TiAl BASE ALLOY WITH ERBIUM

RELATIONSHIP BETWEEN MECHANICAL PROPERTIES AND LAMELLAR ORIENTATION OF PST CRYSTALS IN Ti 45Al 8Nb ALLOY

ACTA MATHEMATICAE APPLICATAE SINICA Nov., ( µ ) ( (

1-6 Ð Ï Te (mass%) 0% 0.3% 0.5% 0.8% 1.0% 2.0% 2 Î 1 6


Z L L L N b d g 5 * " # $ % $ ' $ % % % ) * + *, - %. / / + 3 / / / / + * 4 / / 1 " 5 % / 6, 7 # * $ 8 2. / / % 1 9 ; < ; = ; ; >? 8 3 " #


Delta Inconel 718 δ» ¼

P É Ô Ô² 1,2,.. Ò± 1,.. ±μ 1,. ƒ. ±μ μ 1,.Š. ±μ μ 1, ˆ.. Ê Ò 1,.. Ê Ò 1 Œˆ ˆŸ. ² μ Ê ² μ Ì μ ÉÓ. É μ ±, Ì μé μ Ò É μ Ò ² μ Ö

2011 Đ 3 Ñ ACTA METALLURGICA SINICA Mar pp

EFFECT OF HIGH MAGNETIC FIELD ON THE TRANSI- TION BEHAVIOR OF Cu RICH PARTICLES IN Cu 80%Pb HYPERMONOTECTIC ALLOY

INFLUENCES OF PHASE PRECIPITATIONS OF TERNARY β Ti Mo Zr(Sn) ALLOYS ON YOUNG S MODULUS AND MECHANICAL PROPERTIES

MICROSTRUCTURE STABILITY IN A FULLY LAMELLAR HIGH Nb TiAl ALLOY AFTER LONG TERM THERMAL CYCLING

SYNTHESIS OF PLASTIC Zr BASED BULK METALLIC GLASS WITH CRYSTAL PHASE BY DIRECTIONAL SOLIDIFICATION

ØSrÚCa Mg 12Zn 4Al 0.3MnÜ

M 2. T = 1 + κ 1. p = 1 + κ 1 ] κ. ρ = 1 + κ 1 ] 1. 2 κ + 1

MICROSTRUCTURE EVOLUTION OF HYPEREUTEC- TOID STEELS DURING WARM DEFORMATION II. Cementite Spheroidization and Effects of Al

FRICTION AND WEAR PROPERTIES OF SURFACE PLASMA Cr W ALLOYING LAYER OF γ TiAl ALLOY

EFFECT OF HAFNIUM CONTENT ON MORPHOLOGY EVOLUTION OF γ PRECIPITATES IN P/M Ni BASED SUPERALLOY

High order interpolation function for surface contact problem

P Ò±,. Ï ± ˆ ˆŒˆ Š ƒ ˆŸ. Œ ƒ Œ ˆˆ γ-š Œˆ ƒ ƒˆ 23 ŒÔ. ² μ Ê ². Í μ ²Ó Ò Í É Ö ÒÌ ² μ, É μí±, μ²óï

Ανώτερα Μαθηματικά ΙI

Θεωρία Συνόλων. Ενότητα: Διατακτικοί αριθμοί. Γιάννης Μοσχοβάκης. Τμήμα Μαθηματικών

AN INVESTIGATION ON THE CREEP BEHAVIOR OF PURE Mg

P Ë ³μ,.. μ μ³μ²μ,.. ŠμÎ μ,.. μ μ,.. Š μ. ˆ œ ˆ Š Œˆ ŠˆŒ ƒ Œ Ÿ ˆŸ Š ˆ ˆ -ˆ ˆŠ

Ó³ Ÿ , º 2(131).. 105Ä ƒ. ± Ï,.. ÊÉ ±μ,.. Šμ ² ±μ,.. Œ Ì ²μ. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê

CORROSION BEHAVIOR OF X70 PIPELINE STEEL IN SIMULATED KU ERLE SOIL SOLUTION WITH CO 2

v w = v = pr w v = v cos(v,w) = v w

Š ˆ œ Ÿ ˆ œ Œ Œ ƒ ˆ Œ Œ LEPTA

PHOTOCATALYTIC PROPERTIES OF TiO 2 THIN FILMS PREPARED BY MICROARC OXIDATION AND DOPING ELECTROLYTES

NUMERICAL SIMULATION OF KEYHOLE SHAPE AND TRANSFORMATION FROM PARTIAL TO OPEN STATES IN PLASMA ARC WELDING

ØÖÓÒÓÑ ÈÖ Ø ÙÑ Ù Ò Ö Ò Ë Ð ØÛ ØØ Ö¹ ØÖÓÒÓÑ Íº Ù ÍÒ Ú Ö ØØ Ù ÙÖ ¹ Ò Ö ËÓÒÒ ÒÐ Ù Ñ Î ÖÐ Ù Ò Â Ö Ð ÙÒ ½ Û ÙÒ Ö ËÓÒÒ Ö Ò À ÑÑ Ð ÞÙ Ï ÒØ Ö Ò Ò Ö Ð Ò Ò Ò ÙÒ

THE MICRO FABRICATING PROCESS AND ELECTRO- MAGNETIC PROPERTIES OF TWO KINDS OF Fe POWDERS WITH DIFFERENT GRAIN SIZES AND INTERNAL STRAINS

EFFECT OF WELDING PROCESSING PARAMETERS ON POROSITY FORMATION OF MILD STEEL TREATED BY CO 2 LASER DEEP PENETRATION WELDING

2 SFI

Blowup of regular solutions for radial relativistic Euler equations with damping

49 Ö 6 Đ Vol.49 No ACTA METALLURGICA SINICA Jun pp

Αλγόριθμοι Δικτύων και Πολυπλοκότητα Προσεγγιστικοί Αλγόριθμοι. Άρης Παγουρτζής

Œ.. ² μ,.. Œ ²μ, ƒ.. μ ±μ,. Ô Ô ², Œ.. ƒê Éμ, Œ.. Œ ² μ *

Ó³ Ÿ , º 7(205) Ä1486 ˆ ˆŠ ˆ ˆŠ Š ˆ. . ³ μ 1, ƒ. μ μë,. μ,. ŠÊ² ±μ,. Œ ² μ ± Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê

P ƒ Ê Î 1, 2,.. ƒê μ 1, 3,. ÉÓ±μ 2, O.M.ˆ μ 1,.. Œ É μë μ 1,.. μ μ 1,. ƒ. Ê±μ ± 1,.. ³ 1,.. ±Ê Éμ 1. ˆ ˆ ˆ ˆ Š ˆ Si- ˆ SiC- Š Š ˆ

EFFECTS OF TEMPERING TEMPERATURE ON THE IMPACT TOUGHNESS OF STEEL 42CrMo

Ó³ Ÿ º 3[120] Particles and Nuclei, Letters No. 3[120]

Š Ÿ Š Ÿ Ÿ ˆ Œ ˆŠ -280

2011 Ð 5 ACTA MATHEMATICAE APPLICATAE SINICA May, ( MR(2000) ß Â 49J20; 47H10; 91A10

BEHAVIOUR AND MECHANISM OF STRAIN HARDEN- ING FOR DUAL PHASE STEEL DP1180 UNDER HIGH STRAIN RATE DEFORMATION

MnZn. MnZn Ferrites with Low Loss and High Flux Density for Power Supply Transformer. Abstract:

P Œ ²μ, Œ.. ƒê Éμ,. ƒ. ²μ,.. μ. ˆ ˆŸ Œˆ ˆŸ ˆ Š Œ ˆŸ Ÿ - ˆ ˆ ŠˆŒˆ Œ Œˆ ˆ œ ˆ Œ ˆ ŒˆŠ Œ -25

A NEW ONE PARAMETER KINETICS MODEL OF DYNAMIC RECRYSTALLIZATION AND GRAIN SIZE PREDICATION

ˆ ˆ ˆ ˆˆ γ-ˆ ˆŸ ˆ Š Œ ˆ Œ œ Š ˆˆ

ƒê,.. ± É,.. Ëμ μ. ˆŸ Œ ƒ ˆ ƒ Ÿ ˆ ˆˆ ˆ ˆ ˆ Šˆ- ˆŒŒ ˆ ƒ Œ ƒ ˆ. ² μ Ê ² ² ±É Î É μ

CONVECTION EFFECTS AND BANDING STRUCTURE FORMATION MECHANISM DURING DIRECTIONAL SOLIDIFICATION OF PERITECTIC ALLOYS I. Experimental Result

P ²ÒÏ,.. μ μ Š ˆ ˆ Ÿ ˆ

p din,j = p tot,j p stat = ρ 2 v2 j,

Motion analysis and simulation of a stratospheric airship

Ó³ Ÿ , º 7(163).. 798Ä802 ˆ ˆŠ ˆ ˆŠ Š ˆ. .. Ëμ μ. Î ± É ÉÊÉ ³..., Œμ ±

ˆ Œ ˆ Ÿ ˆ ˆŸ Ÿ - ˆ ˆ Šˆ Š ˆŸˆ

FRACTURE TOUGHNESS OF WELDED JOINTS OF X100 HIGH STRENGTH PIPELINE STEEL

Ó³ Ÿ , º 7(163).. 855Ä862 ˆ ˆŠ ˆ ˆŠ Š ˆ. . ƒ. ² ͱ 1,.. μ μ Íμ,.. μ²ö,.. ƒ² μ,.. ² É,.. ³ μ μ, ƒ.. Š ³ÒÏ,.. Œμ μ μ,. Œ.

.. ƒ²μ É, Œ. Œ Ï,. Š. μé ±μ,..,.. ³ μ μ, ƒ.. ÒÌ

P ƒ. μ μ², Œ.. ˆ μ,.. μ ± Î Š Ÿ ˆ Œ ˆŸ ˆ Ÿ Š ˆ. ² μ Ê ² μ Ò É Ì ± Ô± ³ É.

EFFECTS OF TEMPERATURE GRADIENT ON LAMEL- LAR ORIENTATIONS OF DIRECTIONAL SOLIDIFIED TiAl BASED ALLOY

EFFECTS OF Al Al 4 C 3 REFINER AND ULTRASONIC FIELD ON MICROSTRUCTURES OF PURE Mg

2 PbO 2. Pb 3 O 4 Sn. Ti/SnO 2 -Sb 2 O 4 -CF/PbO x SnO 2 -Sb PbO 2. Sn-Sb 1:1. 1 h. Sn:Sb=10:1. PbO 2 - CeO 2 PbO 2. [8] SnO 2 +Sb 2 O 4 _

Ó³ Ÿ , º 7(163).. 793Ä797 ˆ ˆŠ ˆ ˆŠ Š ˆ. .. Ëμ μ. Î ± É ÉÊÉ ³..., Œμ ±

P ² ± μ. œ Š ƒ Š Ÿƒ ˆŸ Œ œ Œ ƒˆ. μ²μ μ Œ Ê μ μ ±μ Ë Í μ É Í ±μ ³μ²μ (RUSGRAV-13), Œμ ±, Õ Ó 2008.

AN RFID INDOOR LOCATION ALGORITHM BASED ON FUZZY NEURAL NETWORK MODEL. J. Sys. Sci. & Math. Scis. 34(12) (2014, 12),

17 min R A (2009) To probe into the thermal property the mechanism of the thermal decomposition and the prospective

, Litrrow. Maxwell. Helmholtz Fredholm, . 40 Maystre [4 ], Goray [5 ], Kleemann [6 ] PACC: 4210, 4110H

ˆ Œ ˆŸ Š ˆˆ ƒ Šˆ ƒ ƒ ˆ Šˆ ˆ ˆ Œ ˆ

BEHAVIOR OF MARTENSITE REVERSE TRANSFORMA- TION IN 18Mn TRIP STEEL DURING WARM DEFORMATION

Quick algorithm f or computing core attribute

EFFECTS OF B ON THE MICROSTRUCTURE AND HYDROGEN RESISTANCE PERFORMANCE OF Fe Ni BASE ALLOY

Θεωρία Συνόλων. Ενότητα: Επιλογής επόμενα. Γιάννης Μοσχοβάκης. Τμήμα Μαθηματικών

Ó³ Ÿ , º 7(156).. 62Ä69. Š Œ œ ƒˆˆ ˆ ˆŠ. .. ŠÊ²Ö μ 1,. ƒ. ²ÓÖ μ 2. μ ± Ê É É Ê Ò μ μ, Œμ ±

P ƒ.. Š ³ÒÏ,.. Š ³ÒÏ,.. ± ˆ ŒˆŠˆ Š ˆŠ

Optimizing Microwave-assisted Extraction Process for Paprika Red Pigments Using Response Surface Methodology

ˆŒ œ ƒ ƒ ˆ ˆŸ ˆ Š ˆ 137 Cs Š ˆ Œ.

UDC. An Integral Equation Problem With Shift of Several Complex Variables 厦门大学博硕士论文摘要库

Ó³ Ÿ , º 2(214).. 171Ä176. Š Œ œ ƒˆˆ ˆ ˆŠ

48 12 Ö Vol.48 No ACTA METALLURGICA SINICA Dec pp Î µ TG142.1, Á A Ì µ (2012)

Ó³ Ÿ , º 5(147).. 777Ä786. Œ ˆŠ ˆ ˆ Š ƒ Š ˆŒ. ˆ.. Š Öαμ,. ˆ. ÕÉÕ ±μ,.. ²Ö. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê

ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ Ä616 Š ˆŒ CMS LHC

P Œ ²μ, ƒ.. μ ±μ,. ˆ. ˆ μ, Œ.. ƒê Éμ,. ƒ. ²μ,.. ³ É. ˆŒ ˆ Š ƒ Œ ˆ Ÿ ˆŸ 238 Uˆ 237 U, Œ ƒ Ÿ Š ˆˆ 238 U(γ,n) 237 U.

Ó³ Ÿ , º 7(205) Ä1268 ˆ ˆŠ ˆ ˆŠ Š ˆ. ƒ ˆˆ μì Ê ³... Ê ±μ, Œμ ± Í μ ²Ó Ò ² μ É ²Ó ± Ö Ò Ê É É Œˆ ˆ, Œμ ± É ƒ ³³ - μ ª Œμ ±, Œμ ±

Θεωρία Συνόλων. Ενότητα: Τα πάντα σύνολα; Γιάννης Μοσχοβάκης. Τμήμα Μαθηματικών

P ˆŸ ˆ Œ Œ ˆ Šˆ. Š ˆ œ ˆ -2Œ

Ó³ Ÿ , º 3(180).. 313Ä320

EXPERIMENTAL RESEARCH ON MELTING SURFACE BEHAVIOR IN MOLD UNDER COMPOUND MAGNETIC FIELD

P μ,. Œμ α 1,. ²μ ± 1,.. ϱ Î, Ÿ. Ê Í± 2 Œˆ ˆ Œ Š Ÿ Š Ÿ ˆ ˆŒ ˆˆ. ² μ Ê ² μ Ò É Ì ± Ô± ³ É

½ Τετραγωνίζω=κατασκευάζωκάτιίσουεμβαδούμεδοθέντετράγωνο. Δείτεκαιτην υποσημείωσηστηνπρότασηβ 14. ¾

MICROSTRUCTURE AND MECHANICAL PROPERTIES OF 1500 MPa GRADE ULTRA HIGH STRENGTH LOW ALLOY STEEL

Ó³ Ÿ , º 7(163).. 737Ä741 ˆ ˆŠ ˆ ˆŠ Š ˆ. .. ² Ì μ,.. Œ ± μ,.. Œ ÉÕÏ ±,.. Œμ μ μ,. Œ. Ò, Œ.. ±μ. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê

ƒ Š ˆ Šˆ Š Œˆ Šˆ Š ˆŒ PAMELA ˆ AMS-02

Resurvey of Possible Seismic Fissures in the Old-Edo River in Tokyo

Supporting Information. Enhanced energy storage density and high efficiency of lead-free

P ,.. ³,. Š. ³. ˆ ˆŸ Œˆ ˆŸ ˆ ˆ ˆ Š ˆ 9 3 ˆ Œ NiÄNb. ² μ Ê ² μ Ì μ ÉÓ. É μ ±, Ì μé μ Ò É μ Ò ² μ Ö. Õ³ Ó, μ Ö

J. of Math. (PRC) Banach, , X = N(T ) R(T + ), Y = R(T ) N(T + ). Vol. 37 ( 2017 ) No. 5

P ² Ì μ Š ˆ Œˆ Š Œ Œˆ. ² μ Ê ² Nuclear Instruments and Methods in Physics Research.

Déformation et quantification par groupoïde des variétés toriques

Transcript:

49 11 Vol.49 No.11 213 Ò 11 Æ 1339 1346 ACTA METALLURGICA SINICA Nov. 213 pp.1339 1346 Ó β TiAl ÕÚÐÅ Æ ß Đ ³ ( Ú ² ÆÀ  ÀĐ² À«, Ú 151) ÐÉË ½ ÆÄ Ë, Ç À β Ti 42Al 9V.3Y Æ, À ¹. Ç, β Ti 42Al 9V.3Y Í β ÐÑ γ ÐÑ, Æ β ÐÑ γ ½Å (Burgers b=1/2 112 ) º». ß Orowan Ý ÅÂÐ Á º Æ ¹, ² ºÐÅÂ Ò ½ Ò Å ÒÒ m ÝÝ TiAl. ÆÒ (11 115 ) Ò Ê (1 s 1 ) ¹ Ð ßÅ ÂË Ì ÈÏÖ. ÑØ TiAl,, ÐÑ Í, ½ÅÂ, Orowan ÝÔ TG146.2 «A «Ô 412 1961(213)11 1339 8 DISCONTINUOUS YIELDING BEHAVIOR OF β PHASE CONTAINING TiAl ALLOY DURING HIGH TEMPERATURE DEFORMATION PROCESS XU Wenchen, SHAN Debin, ZHANG Hao School of Materials Science and Engineering, Harbin Institute of Technogloy, Harbin 151 Correspondent: XU Wenchen, associate professor, Tel: 1864544122, E-mail: xuwc 76@hit.edu.cn Supported by Youth Science and Technology Project of Harbin City (No.28RFQXG4) Manuscript received 213 8 2, in revised form 213 8 24 ABSTRACT γ TiAl base alloys are promising high temperature materials for aviation and aerospace applications due to their low density, exceptional high temperature strength and good oxidation resistance. However, low ductility and poor hot workability limit the use of such alloys. The introduction of β phase appears to be effective to improve the hot workability of TiAl alloys, while the influence of β phase on hot deformation behavior of TiAl alloy has been rarely investigated until now. In this work, high temperature compression experiments of β phase containing TiAl alloy (Ti 42Al 9V.3Y) were conducted on a Gleeble 15 thermal simulation machine at 1 12 and strain rates of.1 1. s 1. The hot deformation behavior of the TiAl alloy was investigated and the discontinuous yielding mechanism was analyzed. The results show that the main deformation softening mechanism was the dynamic recovery(drv) of β phase and dynamic recrystallization(drx) of γ phase. The discontinuous yielding behavior was closely related to the DRV in β phase and the multiplication of the superdislocation with Burgers vector b=1/2 112 in γ phase. The established dislocation dynamics model based on the Orowan equation in the present work could reasonably explain the causes for the discontinuous yielding phenomenon, indicating that the rapid increase of mobile dislocation density and small dislocation motion velocity sensitivity m could induce the discontinuous yielding of the TiAl alloy. In addition, the fluctuating yielding behavior was attributed to the interaction effect of dislocation slip and twin at lower temperatures of 11 115 and higher strain rate of 1 s 1. KEY WORDS TiAl alloy, discontinuous yielding, dynamic softening, superdislocation, Orowan equation * Û ÈÅÓ¹Á Ç ³ 28RFQXG4 ËÏ Đ : 213 8 2, ËÏ Đ : 213 8 24 Ï Ö«:,, 1976 Ó, Í DOI: 1.3724/SP.J.137.213.47

134 Î 49 TiAl À ÛØ Ó ± ÎÎ Ê, Ù Ó Ì, ¼ Å Ç Þ, Ë Ó Ó Ü [1 3]. г β ±Å ¼ TiAl À Ó Û»ÌÕ, Ë Ì Þ, Ô² ±Ã Í., Ó β ± TiAl À Û Â Ô¼ [4 7]. TiAl À µî ÅÑÒ ÑÒ, Æ Ï» Þ Ú À ÉÑÓÄ ¼ Ç Ð Ð, [8 13]., ¼ º Á 2 Ï, Ò Ï ÑÒ Ï. Ò Ï «Ã Cottrel Đ, Í Ó Ä «Ã Đ, º ȻѫÃ, Î ÓÐÐ. ÑÒ Ï À»Ñ«ÃȻۼ. Jonas [14] ÌÈ Û Á Ò Ï, Ð Þ Zr Nb À Óº Ó Õß Õ ÓÐÅ., É¼Ó ÕÏ Î Ó. [15, 16] È ÑÒ Ï, È Ti V Ti Mn À Þ, Ì Ó Ó», ± Ó ² º. Ni 3 Fe, Ni 3 Mn Û ÎÀ, Besag Smallman [17], ٠ѱà Á Ê «Ã ÑÇ º ¾«Ã«Ã Æ Ø Burgers «ÃÌ, ÙÎ Ó ÐÐ. Ù, ¼ TiAl À Ï ÛÈ, º. β ± Ti 42Al 9V.3Y À Å Á ³È, Á β ± г TiAl À Ô², Û «ÃÑ TiAl À ÁÀ Ç, β ± TiAl À Ó Ó Õµ ϽÎ. 1 À Ti 42Al 9V.3Y ( È, %), ³ Cu ¼ Ó ß ¹ 13 mm, ¼Ó 25 mm Á, Ç 125, 17 MPa Ar Å (HIP) 4 h. ÅÁ ¾ Đß ¹ 8 mm, ¼Ó 12mm ÊÏ, Gleeble 15D ÑÊÌ ¾ Å Ì. Ó 1 12, Ó Ë.1 1 s 1, ÊÏÅ Ç ÀÅÈ Ì. Çß Å ÊÏÊ Þ, Û» Å ¾Õ¾Ç ³ Kroll (5%HNO 3 +3%HF+92%H 2 O, Ö ) Ì, JSM 67F ¹ (SEM) ¾³ (BSE) Á Ì ½. ³ Philips CM12 ß (TEM) ½ ÏÚ Ì, ÊÏ ¾ Ø.1 mm Ç ÖØ, Ö 6%HClO 4 +35%C 4 H 9 OH+59%CH 3 OH (Ö ). 2 ÙÒ Ð 2.1 Û 1 Å ÁÒ Ti 42Al 9V.3Y À XRD Ð. Ù»µ, À Á γ ±, Ï ÛÈ β(b2) ±, Å È Ó³ V Õ Á β ±. 2a ÁÒ Ti 42Al 9V.3Y À Ì,»µ, Ì Ù γ β ±Ì, β ± V (22.31%, È ) Å Û²., Ì ÏÁ Æ YAl 2 ±. 2b  TEM µ, γ ± ÛÈ Ã, Å V ӳРÁ γ ± Ã, ±Ã γ ± ± Þ Í, Ù±Ã È Ã Û» Í Õµ., β ± Æ Ô «Ã ( 2c), ÅÇÁÒ Ì µðó ÁÇ. 2.2 ÖÞ 3 Ti 42Al 9V.3Y À 1 12 Å Ó Ó. Ù»Ù, Ti 42Al 9V.3Y À Å±Ó Ë Ó ±Ã, ±Ý Ó, Ó ÆÓ Ë ÈÙ Ó; Ã Ó Ë, Ó Æ Ó ÙØº. ÓÄ ¼ Çà Ð, Ç ÐÆÄÜÛ, ³ ÒÉ Õ, Ó ÕÎ ÑÒµÎÆ ÛÂ. 4 Ti 42Al 9V.3Y À Ý Ó Ó Ë Å Ç Ì.»µ, Intensity, a.u. 3 4 5 6 7 8 9 2, deg 1 ÀÑ Ti 42Al 9V.3Y XRD Fig.1 XRD spectrum of as cast Ti 42Al 9V.3Y alloy

11 : β TiAl Æ «1341 True stess, MPa 5 4 3 2 1 (a) 12 o C 115 o C..1.2.3.4.5.6.7 True strain 5 (b) True stress, MPa 4 3 2 1 12 o 115 C o C..1.2.3.4.5.6.7 True strain 35 (c) 3 2 ÀÑ Ti 42Al 9V.3Y Ë Fig.2 Microstructures of as cast Ti 42Al 9V.3Y alloy (a) BSE microstructure (b) stacking faults in γ phase (c) dislocations in β phase Å ÇÀ Ì Î, ÀÁÒÌ Å YAl 2 ±Ý º À Ö Ì. Æ Ó, β ±Û ØÆÄ, Ó Ë Ð β ±Ü Ó. DSC, B2+γ β+γ Ã Ó 11 ÎÜ, Í Ó ¾ 11, γ ±Ü β ±Ã, Ë Ç β ± «Al ßØÅ γ ± Á ( 4d). 5 Ti 42Al 9V.3Y À Ý Ó Ó Ë Å Ç TEM µ., À Ó Ó Ë γ ± Í «ÃÌ ( 5a), Ù β ± È Æ «Ã ( 5b), ÑÒ Ô. Æ Ó Ë Ð, γ ± ÁÈ «Ã True stress, MPa True stress, MPa 25 2 15 1 5 115 o C 12 o C..1.2.3.4.5.6.7 True strain 15 1 (d) 5 115 o C 12 o C..1.2.3.4.5.6.7 True strain 3 Ti 42Al 9V.3Y ÜÒ Ê ÆÒ Ò Ò Fig.3 True stress strain curves of Ti 42Al 9V.3Y alloy with different strain rates ε at different temperatures (a) ε = 1 s 1 (c) ε =.1 s 1 (b) ε =.1 s 1 (d) ε =.1 s 1

V G 1342 G xæncn arlhn\ 49 ( 4 Ti 42Al 9V.3Y SEM Fig.4 SEM images of Ti 42Al 9V.3Y alloy after hot compression at different temperatures T and strain rates (b) 115,.1 s 1 (c, d) 115,.1 s 1 (a) 15,.1 s 1 $ (~ 5c), a 11 K T a C Y 7 b7, # <, # 3 W? fn o 2< o }} P z ;I γ % (~ 5d), u β % m n 3, ah C E + i IA s K h Z C (~ 5e), m nz N w P ÆL. D, n;w6 O. 11,.1 s uw M i9 9 :W/ ) X β ~ 7 Ti 42Al 9V.3Y M iuw o % \* γ %*?, a γ %% β %(A, V5 β 11, o bs.1 s, o.5 uw TEM % x t (~ 5f). ). u~ 7a /), D H z; C E, β % 2.3 a krz : b 7 6 I N (~ 3b), a&7{ o }}4 k Z J g M, Ti 42Al 9V.3Y H _ j β % : K 2b /M H;, k N 7 n a β o D o bs qj o "? / a C E %b 9I K 2b / 7 q. %}, β % mn :, o fn o G o u 2b o, Z t4 β % B K +, G o )V, 8_ I a o GO LX, fo hb }. ULXd [H 7 β %l o }}. y _ 7 1 #,*O z? Io( q V,. ;I xe. uw γ % : K 7 n&~ 7b D c kj, * K U o bs u o a, 94. ;I te, i " a K%B TaD / q, Z{sH o m +. S M, U o m E } a, C E }}.;p&. D m + y, =. < C E +, γ % < 7 w /z ; {111} T a \2, w 1 2 }?, u 1 `, 9 Burgers FG b = 1/2h11i {w K T a ^ =. D, o bs (11 115, o bs 1/6h112i U;6 :, Zw /kw9 b = 1/2h112i 1. s ) W/ ) X C E O? m + D h11i 2 K 6 :. 2 K T a / 4i, (~ 3a). {w K DU; %?Y % L o. TEM ~ 6 Ti 42Al 9V.3Y H o }} o a, B T a D / q K 2 K, σ σ (σ o, σ, o ) f o V Burgers FG b = 1/2h112i(~ 7c), a γ % : b = ". u ~/), o }}GD o 2<X w a % 1/2h112i 2 K } / Z { 6 o }}. 1 1 [18,19] [2,21] 1 p v p v

11 3^ : < β # TiAl FÆ 5[ AC 8 ~ 5 Ti 42Al 9V.3Y 1343 G Lh 6\ TEM ( Fig.5 TEM images of Ti 42Al 9V.3Y alloy after hot compression at different temperatures and strain rates (Inset in Fig.5a shows the SAED pattern) (a) twin in γ phase at 15, 1. s 1 (b) subgrains in β phase at 15, 1. s 1 (c) dislocations in γ phase at 11,.1 s 1 (d) recrystallization in γ phase at 11,.1 s 1 (e) subgrains in β phase at 11,.1 s 1 (f) γ phase nibbled by β phase at 11,.1 s 1 M1 < 7M K X s 7, w//s Orowan 9 6 ZM1 o bs ε D 1:/ m K [o ρ g Kam w&bo v *q : [22] m ε = φbρm v (1) I:, φ Q Schmid k P, b M u p j " +DT a %j Burgers FGd, u v / L [23]: v = v ( τeff m ) exp( Q/RT ) τ (2) I:, v M K r:t a e b o; τeff M w/o, i>o o τ j o *q, ; τ MG Z K R bot a k?y o ; m Q Kbo o _ \; Q Md\k; R M r / \; T M o. : [24] : τeff = τ αgbρ1/2 (3) I:, α MjE k P,.2 D 2 *q; G Ms T <

1344 Î 49 12 1 8 1 s -1 1-2 s -1 1-1 s -1 1-3 s -1 p - v, MPa 6 4 2-2 15 11 115 12 Temperature, o C 6 Ti 42Al 9V.3Y Ü Ä ØÚ Ò Ò (σ p σ v) Fig.6 Stress drops (σ p σ v) of Ti 42Al 9V.3Y alloy after hot compression with different conditions (σ p peak stress, σ v valley stress) ; ρ ÅÉ «Ã Ó, τ = σ 2 (σ ÅÉÑÓ). Ù» : σ ( = αgbρ 1/2 ε +τ 2 φbρ m v exp( Q/RT) ) 1/m (4) À Õ, «Ã Ó, : ( αgbρ 1/2 ε τ φbρ m v exp( Q/RT) ) 1/m (5) Á (4) (5),» : ε φbρ pv exp( Q/RT) )1/m σ p τ ( σ ε v τ ( = (ρ v ) 1/m (6) ρ φbρ vv exp( Q/RT) )1/m p Á, ρ p É ¼Ó»Ñ«Ã Ó, ρ v É ¼ ӻѫà Ó. Á (1) λ : ln ε lnσ = lnρ m lnσ + lnv lnσ (7) Ù Ó Ë m = lnσ ln ε, «Ã ÓÓ m = lnv lnσ, : m 1[25]. m 1 = m + lnρ m lnσ (8) ÍÓ Áº,»Ñ«Ã ÓÁ, m 8 Ó ε=.5, Ý Ó m., m ¼ 15 115, Û ²¼.262, 12.319, Ù 1.172. 9 Ó Ë m Ó ε Î ÑÀ. Û ÝÓ ÑÀ 7 Ti 42Al 9V.3Y Ä ØÚ T=11, ε=.1 s 1, Ò ε=.5 TEM Fig.7 TEM images of Ti 42Al 9V.3Y alloy after hot compression at the condition of T=11, ε=.1 s 1, strain ε=.5 (b Burgers vector) (a) subgrains in β phase (b, c) dislocations in γ phase ε,»ôö m 15 12 Õ ¼ 3.58 3.831, 1 ¼ 7.937. Á (6)»µ, ¾ Ó»Ñ«Ã Ó m ß Î ÓÐÐ. 11 12 À Õ γ ± «Ã Ð Ñūà Ӿ Ó, Ù m (3.58 3.831) Û Ð Á³. 1, Ù m ± 11 È, Í, Î «Ã», ÓÐÐ, «Ã» ÑÒ Ï ± Ç

11 : β TiAl Æ «1345 ln(, MPa) 7. 6.5 6. 5.5 5. 4.5 4. 3.5 3. 2.5 2. m=.172 m=.26 m=.248 m=.279 m=.319 115 o C 12 o C Fitted -7-6 -5-4 -3-2 -1 1 ln(., s -1 ) 8 Ti 42Al 9V.3Y Ò.5, ÜÆÒ Ò Ê m m Fig.8 Linear regressing results of strain rate sensitivity coefficient m of Ti 42Al 9V.3Y alloy after hot compression at various temperatures with ε=.5 (σ flow stress).4.35.3.25.2.15 115 o C.1 12 o C Fitted.5..1.2.3.4.5 9 Ti 42Al 9V.3Y ÜÆÒ m Ò Í Ð Fig.9 Nonlinear fitting curves of m of Ti 42Al 9V.3Y alloy after hot compression with varying strains at various temperatures β ± TiAl À Å [26]. 1 À 11, ε=1 s 1, ε=.5 Å «Ã Í ĐÉ TEM µ. γ ± Å«Ã Ì Í, Í «Æ Ó Ð Ó Ë Õ Ó. ͱà «ÃÌ Í, «Ã ± Ó² Í Å., À Ñ ( 3a) Ó «Ã Í ĐÉ. ÍÊÏ 11, ε=1 s 1 115, ε=1 s 1, «ÃÌ Í ÝÁ γ. Ç, «ÃÌ Í Å, º «Ã. ¾Û ± Ó Û, «Ã²» Í ÅÑ Ì. ÙÍ«Ã Í ÅÇ, Ñ Ì Ó Ð. Æ Ó, γ ± Í Ì ĐÉ Ù, ¹Ó ÑÙËÜÕ, Ù ÑÅÓ ÜØº. Í 1 Ti 42Al 9V.3Y 11, ε=1 s 1, ε=.5 Ä γ Ì Ë ÈÏÖ TEM Fig.1 TEM image of the interaction of slip and twin in γ phase of Ti 42Al 9V.3Y alloy during hot compression at 11, ε = 1 s 1, ε=.5 Ó Ð, Í «Õ, Í Å Ó Ó Ñ Á, ÅÀ 1 Å Ñ. 3 ÙÐ (1) β ± Ti 42Al 9V.3Y À Ó Ó Ë γ ± Í «ÃÌ. Æ Ó ( 11 ) Ë Ð, γ ± «ÃÌ Ã, Ù β ÑÒ γ ± ÑÒ µ Î. (2) À β ± ÑÒ γ ± «Ã»±¼. β ± ÑÒ Ø Á β ± Å «Ã, Û ÉÑÓ Ð, Ù γ ± ¾«Ã (Burgers b = 1/2 112 ) Ѿ«Ã Î ÁÓÐÐ. (3) Û Orowan Đ Þ «ÃÑ» À Ç»Ñ«Ã Ó Î «Ã ÓÓ m TiAl À ÉÑÓÐÐ Ô². 11 ¾ Ó»Ñ«Ã Ó m ß Î ÓÐÐ, Ù 1 m ± 11 È, Í, Î «Ã», ÓÐÐ Ø. (4) Ñ Ó «Ã Í ĐÉ. Í Ó Ð, Í «Õ, Í Å Ó ÉÑÓ ÑØº, À 1 Ñ. Ü«[1] Hu D. Intermetallics, 21; 9: 137 [2] Das G, Kestler H, Clemens H, Bartolotta P A. J Met, 24; 56(11): 42 [3] Xu X J, Lin J P, Wang Y L, Gao J F, Lin Z, Chen G L.

1346 Î 49 J Alloys Compd, 26; 414: 175 [4] Vanderschueren D, Nobuki M, Nakamura M. Scr Metall Mater, 1993; 28: 65 [5] Tetsui T, Kobayashi T, Harada H. Mater Sci Eng, 212; A552: 345 [6] Clemens H, Chladil H F, Wallgram W, Zickler G A, Gerling R, Liss K D, Kremmer S, Guther V, Smarsly W. Intermetallics, 28; 16: 827 [7] Niu H Z, Chen Y Y, Xiao S L, Xu L J. Intermetallics, 212; 31: 225 [8] Brenner S S. J Appl Phys, 1957; 28: 123 [9] Hahn G T. Acta Metall, 1962; 1: 727 [1] VarinRA,MazurekB,HimbeaultD.Mater Sci Eng, 1987; 1: 19 [11] Kurzydlowski K J. Scr Metall Mater, 1992; 1: 283 [12] Li L X, Lou Y, Yang L B, Peng D S, Rao K P. Mater Des, 22; 23: 451 [13] Jia W J, Zeng W D, Zhou Y G, Liu J R, Wang Q J. Mater Sci Eng, 211; A528: 46 [14] Jonas J J, Heritier B, Luton M J. Metall Trans, 1979; 1A: 611 [15] Vijayshankar M N, Ankem S. In: Froes F H, Caplan I eds., Proc Titanium 92: Science and Technology, Warrendale: TMS, 1993: 1733 [16] Ankem S, Shyue J G, Vijayshankar M N, Arsenault R J. Mater Sci Eng, 1989; A111: 51 [17] Besag F M C, Smallman R E. Acta Metall, 197; 18: 429 [18] Lai Y J, Zeng W D, Zhang C, Zhou J H, Wang X Y, Yu H Q, Zhou Y G. Mech Sci Technol Aerosp Eng, 27; 26: 1183 (,,, ÝÊ, ¹Ñ,,. ½ ¹Á, 27; 26: 1183) [19] Philippart I, Rack H J. Mater Sci Eng, 1998; A254: 253 [2] Yamaguchi M, Umakoshi Y. Prog Mater Sci, 199; 34(1): 1 [21] Apple F, Wagner R. Mater Sci Eng, 1998; R22: 187 [22] Haasen P. Dislocation Dynamics. New York: McGraw Hill Book Company, 1968: 71 [23] Yonenaga I, Sumino K. J Appl Phys, 1989; 65: 85 [24] Yang D Z. Dislocation and Strengthening Mechanism of Metals. Harbin: Harbin Institute of Technology Press, 199: 131 (Í Ä. ÅÂ Ï Í. Û : Û ³ ÇÁ, 199: 131) [25] Zhao J S. Fundamentals of Dislocation Theory. Beijing: National Defense Industry Press, 1989: 125 ( Ã. Å Î. Æ : ³, 1989: 125) [26] Wang Z J, Qiang H F, Wang X R. Chin J Nonferrous Met, 212; 22: 194 ( ³, Ä, Á. Úº ÏÁ, 212; 22: 194) ( ² : ±µ )