1. In calculating the shear flow associated with the nail shown, which areas should be included in the calculation of Q? (3 points) Areas (1) and (5)

Σχετικά έγγραφα
1. Sketch the ground reactions on the diagram and write the following equations (in units of kips and feet). (8 points) ΣF x = 0 = ΣF y = 0 =

θ p = deg ε n = με ε t = με γ nt = μrad

Chapter 7 Transformations of Stress and Strain

MECHANICAL PROPERTIES OF MATERIALS


Macromechanics of a Laminate. Textbook: Mechanics of Composite Materials Author: Autar Kaw

Dr. D. Dinev, Department of Structural Mechanics, UACEG

Delhi Noida Bhopal Hyderabad Jaipur Lucknow Indore Pune Bhubaneswar Kolkata Patna Web: Ph:

Strain gauge and rosettes

EXPERIMENTAL AND NUMERICAL STUDY OF A STEEL-TO-COMPOSITE ADHESIVE JOINT UNDER BENDING MOMENTS

Stresses in a Plane. Mohr s Circle. Cross Section thru Body. MET 210W Mohr s Circle 1. Some parts experience normal stresses in

Cross sectional area, square inches or square millimeters

ADVANCED STRUCTURAL MECHANICS

Ingenieurbüro Frank Blasek - Beratender Ingenieur Am Kohlhof 10, Osterholz-Scharmbeck Tel: 04791/ Fax: 04791/

Ingenieurbüro Frank Blasek - Beratender Ingenieur Am Kohlhof 10, Osterholz-Scharmbeck Tel: 04791/ Fax: 04791/

The logic of the Mechanics of Materials

5.0 DESIGN CALCULATIONS

Mechanics of Materials Lab

Introduction to Theory of. Elasticity. Kengo Nakajima Summer

Homework 8 Model Solution Section

Consolidated Drained

(Mechanical Properties)

Mechanical Behaviour of Materials Chapter 5 Plasticity Theory

Technical Data for Profiles. α ( C) = 250 N/mm 2 (36,000 lb./in. 2 ) = 200 N/mm 2 (29,000 lb./in 2 ) A 5 = 10% A 10 = 8%

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

ΚΕΦΑΛΑΙΟ 1 Ο 1.1. ΕΛΑΣΤΙΚΟ ΣΤΕΡΕΟ

Spherical Coordinates

Properties of Nikon i-line Glass Series

Chapter 2. Stress, Principal Stresses, Strain Energy

CONSULTING Engineering Calculation Sheet

Rectangular Polar Parametric


MATH 150 Pre-Calculus

Aerodynamics & Aeroelasticity: Beam Theory

Answers to practice exercises

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET

STRUCTURAL CALCULATIONS FOR SUSPENDED BUS SYSTEM SEISMIC SUPPORTS SEISMIC SUPPORT GUIDELINES

1 String with massive end-points

E T E L. E e E s G LT. M x, M y, M xy M H N H N x, N y, N xy. S ijkl. V v V crit

Review Test 3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Math 6 SL Probability Distributions Practice Test Mark Scheme

Areas and Lengths in Polar Coordinates

APPENDIX 1: Gravity Load Calculations. SELF WEIGHT: Slab: 150psf * 8 thick slab / 12 per foot = 100psf ROOF LIVE LOAD:

Chapter 5 Stress Strain Relation

Περίπτωση Μελέτης Θαλάσσιας Κατασκευής με χρήση λογισμικού και με βάση Κώδικες (Compliant Tower) (8.1.10)

Fixed spherical bearing KF 32 N/mm 2 Dimensions and weights acc. to German approval

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

ΣΤΡΙΨΗ ΜΕΘΟΔΟΙ ΠΡΟΣΔΟΣΗΣ ΤΗΣ ΣΤΡΙΨΗΣ ΠΤΥΧΙΑΚΗ ΕΡΓ ΑΣΙΑ. για την απόκτηση Πτυχίου ΚΛΩΣΤΟΥΦΑΝΤΟΥΡΓΙΑΣ. με την συνεργασία του Επίκουρου καθηγητή

DETERMINATION OF DYNAMIC CHARACTERISTICS OF A 2DOF SYSTEM. by Zoran VARGA, Ms.C.E.

University of Waterloo. ME Mechanical Design 1. Partial notes Part 1

Areas and Lengths in Polar Coordinates

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr

the total number of electrons passing through the lamp.

Answer sheet: Third Midterm for Math 2339

is like multiplying by the conversion factor of. Dividing by 2π gives you the

Lecture 6 Mohr s Circle for Plane Stress

Parametrized Surfaces

Statics and Strength of Materials

11.4 Graphing in Polar Coordinates Polar Symmetries

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint

Ι Ο Λ Ο Γ Ι Μ Ο - Α Π Ο Λ Ο Γ Ι Μ Ο Μ Η Ν Ο Γ Δ Κ Δ Μ Β Ρ Ι Ο Υ

3.4 MI Components, Allowable Load Data and Specifications. MI Girder 90/120. Material Specifications. Ordering Information

Lifting Entry (continued)

= l. = l. (Hooke s Law) Tensile: Poisson s ratio. σ = Εε. τ = G γ. Relationships between Stress and Strain

ΕΛΕΓΧΟΣ ΤΩΝ ΠΑΡΑΜΟΡΦΩΣΕΩΝ ΧΑΛΥΒ ΙΝΩΝ ΦΟΡΕΩΝ ΜΕΓΑΛΟΥ ΑΝΟΙΓΜΑΤΟΣ ΤΥΠΟΥ MBSN ΜΕ ΤΗ ΧΡΗΣΗ ΚΑΛΩ ΙΩΝ: ΠΡΟΤΑΣΗ ΕΦΑΡΜΟΓΗΣ ΣΕ ΑΝΟΙΚΤΟ ΣΤΕΓΑΣΤΡΟ

Approximation of distance between locations on earth given by latitude and longitude

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Trigonometric Formula Sheet

ΥΧΡΩΜΑ ΜΟΛΥΒΙΑ. «Γ λ υ κ ό κ α λ ο κ α ι ρ ά κ ι» της Γ ω γ ώ ς Α γ γ ε λ ο π ο ύ λ ο υ

Graded Refractive-Index

COMPOSITE INSULATOR. ANSI Standard Type COMPOSITE LONGE ROD SUSPENSION INSULATOR. PDI 16mm Diameter Rod Deadend Insulators

ΜΗΧΑΝΙΚΗ ΣΥΜΠΕΡΙΦΟΡΑ ΥΛΙΚΩΝ

D Alembert s Solution to the Wave Equation

3.5 - Boundary Conditions for Potential Flow

ΨΗΦΙΑΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΒΟΗΘΗΜΑ «ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ» ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ Α

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

Differential equations

Π Ι Ν Α Κ Α Σ Α Μ Ο Ι Β Ω Ν Ε Π Ι Δ Ο Σ Ε Ω Ν

DuPont Suva 95 Refrigerant

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is

2 η ΑΣΚΗΣΗ Γ ΛΥΚΕΙΟΥ ΕΚΦΩΝΗΣΗ

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

CORDIC Background (2A)

ΕΠΙΤΥΧΟΝΤΕΣ ΑΕΙ 2009 Αρχιτεκτόνων Μηχανικών Κρήτης

DuPont Suva. DuPont. Thermodynamic Properties of. Refrigerant (R-410A) Technical Information. refrigerants T-410A ENG

Equations. BSU Math 275 sec 002,003 Fall 2018 (Ultman) Final Exam Notes 1. du dv. FTLI : f (B) f (A) = f dr. F dr = Green s Theorem : y da

Surface Mount Multilayer Chip Capacitors for Commodity Solutions

TRIAXIAL TEST, CORPS OF ENGINEERS FORMAT

Μιχάλης ΚΛΟΥΒΑΣ 1, Χρήστος ΖΕΡΗΣ 2

ΕΚΛΟΓΙΚΑ ΤΜΗΜΑΤΑ ΚΑΙ ΚΑΤΑΣΤΗΜΑΤΑ ΨΗΦΟΦΟΡΙΑΣ ΒΟΥΛΕΥΤΙΚΩΝ ΕΚΛΟΓΩΝ ΤΗΣ 6 ης ΜΑΪΟΥ 2012

1 ο ΚΡΙΤΗΡΙΟ ΑΞΙΟΛΟΓΗΣΗΣ ΣΤΗ ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 1 ο ΚΕΦΑΛΑΙΟ (ΤΑΛΑΝΤΩΣΕΙΣ)

38 Te(OH) 6 2NH 4 H 2 PO 4 (NH 4 ) 2 HPO 4

LUOYANG JINYUAN OUTSIZE BEARING CO.,LTD J Y C TAPER ROLLER BEARINGS

Sampling Basics (1B) Young Won Lim 9/21/13

Μηχανουργική Τεχνολογία & Εργαστήριο Ι

Example Sheet 3 Solutions

Μονοβάθμια Συστήματα: Εξίσωση Κίνησης, Διατύπωση του Προβλήματος και Μέθοδοι Επίλυσης. Απόστολος Σ. Παπαγεωργίου

Συνοπτική περιγραφή των συνηθέστερων εργαστηριακών δοκιµών Βραχοµηχανικής Εδαφοµηχανικής

Transcript:

IDE 0 S08 Test 5 Name:. In calculating the shear flow associated with the nail shown, which areas should be included in the calculation of Q? ( points) Areas () and (5) Areas () through (5) Areas (), () and (4) Areas (), (), (4) and (5). In calculating the shear flow associated with the two nails shown, which areas should be included in the calculation of Q? ( points) Areas () through (6) Areas (), (), (5) and (6) Area (4) Areas (), (4) and (5). What is the alue of Q needed to determine the shear force acting on nail B? (6 points) 90,65 mm,40,65 mm 875,000 mm 750,000 mm

4. What is the alue of Q needed to determine the shear force acting on the two nails shown? (6 points) 480,000 mm,00 mm 96,000 mm 44,000 mm 5. If boards () and () were glued to board () instead of nailed, what would be the shear stress in the glue if V =,5 lb? (6 points) 6.5 psi 49.6 psi 99. psi 98.5 psi 6. The allowable load for each weld is.4 kip/inch in the longitudinal direction. What is the imum allowable shear force V? (8 points) 0.5 kips.8 kips 0.9 kips 5.6 kips

7. A.00-inch-diameter solid steel shaft supports loads P A = 00 lb and P D = 500 lb. Assume L = 5 in., L = 6 in., and L = 8 in. Determine the alues for V, Q, I, and b that would be used in the imum horizontal shear stress anywhere in the shaft. (0 points) V = lb Q = in. Ι = in. 4 b = in.

8. For the beam and loading shown, use the integration method to determine the equation of the elastic cure for segment AB of the beam. Do NOT sole for the integration constants. (8 points) 9. List the boundary, continuity, and/or symmetry conditions that could be used to sole the integration constants in the preious problem. (6 points)

0. Determine the beam deflection at point H. Assume that EI = 40,000 kn-m is constant for the beam. (6 points) H = mm. Determine the beam deflection at point H. Assume that EI = 40,000 kn-m is constant for the beam. (0 points) H = mm

. Determine the beam deflection at point H. Assume that EI = 40,000 kn-m is constant for the beam. (8 points) H = mm. Determine the beam deflection at point C. Assume that EI = 40,000 kn-m is constant for the beam. (0 points) C = mm

TRIGONOMETRY sin = opp / hyp cos = adj / hyp tan = opp / adj STATICS Symbol Meaning Equation Units x, y, z centroid position y = Σy i A i / ΣA i in, m I moment of inertia I = Σ(I i + d i A i ) in 4, m 4 J N V M J solid circular shaft polar = πd 4 / moment J of inertia hollow circular shaft = π(d 4 o - d 4 i )/ normal force shear force bending moment equilibrium V = -w(x) dx M = V(x) dx ΣF = 0 ΣM (any point) = 0 in 4, m 4 lb, N lb, N in-lb, Nm lb, N in-lb, Nm MECHANICS OF MATERIALS Topic Symbol Meaning Equation Units σ axial = N/A σ, sigma normal stress τ cutting = V/A σ bearing = F b /A b axial ε, epsilon normal strain ε axial = ΔL/L o = δ/l o ε transerse = Δd/d in/in, m/m γ, gamma shear strain γ = change in angle, γ = c rad E Young's modulus, modulus of elasticity σ = Eε (one-dimensional only) G shear modulus, modulus of rigidity G = τ/γ = E / (+ν) ν, nu Poisson's ratio ν = -ε'/ε δ, delta deformation, elongation, deflection in, m δ = NL o /EA + αδtl o α, alpha coefficient of thermal expansion (CTE) in/inf, m/mc F.S. factor of safety F.S. = actual strength / design strength

Topic Symbol Meaning Equation Units τ, tau shear stress τ torsion = Tc/J torsion φ, phi angle of twist φ = TL/GJ rad, degrees, theta angle of twist per unit length, rate of twist = φ / L rad/in, rad/m P power P = Tω r T = r T watts = Nm/s hp=6600 in-lb/s ω, r ω angular speed, speed of rotation = r ω rad/s omega f frequency ω = πf Hz = re/s K stress concentration factor τ = KTc/J flexure σ, sigma σ, sigma τ, tau normal stress σ beam = -My/I composite beams, n = E B /E A σ A = -My / I T σ B = -nmy / I T shear stress τ beam = VQ/Ib where Q = Σ(y bar i A i ) q shear flow q = V beam Q/I = nv fastener /s or y beam deflection = M(x) dx / EI in, m Topic Equations Units stress transformation planar rotations σ u = (σ x +σ y )/ + (σ x )/ cos() + τ xy sin() σ = (σ x +σ y )/ - (σ x )/ cos() - τ xy sin() τ u = -(σ x )/ sin() + τ xy cos() principals and in-plane shear tan( p ) = τ xy / (σ x ), s = p ± 45 o σ, = (σ x +σ y )/ ± sqrt { [ (σ x )/ ] + τ xy } τ = sqrt { [ (σ x )/ ] + τ xy } = (σ -σ )/ σ ag = (σ x +σ y )/ = (σ +σ )/ strain transformation planar rotations ε u = (ε x +ε y )/ + (ε x )/ cos() + γ xy / sin() ε = (ε x +ε y )/ - (ε x )/ cos() - γ xy / sin() γ u / = -(ε x )/ sin() + γ xy / cos() ε z = -ν (ε x + ε y ) / (-ν) principals and in-plane shear tan( p ) = γ xy / (ε x ), s = p ± 45 o ε, = (ε x +ε y )/ ± sqrt { [ (ε x )/ ] + (γ xy /) } γ / = sqrt { [ (ε x )/ ] + (γ xy /) } ε ag = (ε x +ε y )/ in/in, m/m Hooke's law D strain to stress σ = Eε D strain to stress σ x = E(ε x +νε y ) / (-ν ) σ y = E(ε y +νε x ) / (-ν ) τ xy = Gγ xy = Eγ xy / (+ν) D stress to strain ε x = (σ x -νσ y ) / E ε y = (σ y -νσ x ) / E ε z = -ν(ε x +ε y ) / (-ν) γ xy = τ xy /G = (+ν)τ xy / E in/in, m/m pressure σ spherical = pr/t σ cylindrical, hoop = pr/t σ cylindrical, axial = pr/t imum principal stress theory σ, < σ yp σ radial, outside = 0 σ radial, inside = -p failure theories imum shear stress theory τ < 0.5 σ yp

CANTILEVER BEAMS Beam Slope Deflection Elastic Cure PL EI PL EI Px = ( L x) 6EI ML EI ML EI Mx EI 6EI 4 8EI wx L Lx+ x 4EI (6 4 ) 0 4EI 4 0 0EI wx L L x+ Lx x 0LEI 0 (0 0 5 )

SIMPLY SUPPORTED BEAMS Beam Slope Deflection Elastic Cure PL 6EI PL 48EI Px (L 4 x ) 48EI for 0 x L Pb L 6LEI Pa L =+ 6LEI ( b ) ( a ) ML EI ML =+ 6EI Pba ( ) 6LEI x= a L b a 6LEI ML 9 EI @ x= L Pbx ( L b x ) for 0 x a Mx L Lx+ x 6LEI ( ) 4EI 4 5 84EI wx L Lx + x 4EI ( ) wa ( L a) 4LEI wa =+ L a 4LEI 7 0 60EI 0 =+ 45EI ( ) wa a al L x= a 4LEI + ( 7 4 ) 0 0.0065 EI @ x= 0.59L 4 wx 4 ( a 4a L+ 4a L + a x 4LEI 4 alx + Lx ) for 0 x a wa a L+ L x+ a x Lx + x 4LEI for a x L ( 4 6 ) wx L L x + x 60LEI 0 4 4 (7 0 )