1 Decay Scheme. 2 Nuclear Data. 2.1 Electron Capture Transitions. 2.2 Gamma Transitions and Internal Conversion Coefficients

Σχετικά έγγραφα
1 Decay Scheme. 2 Nuclear Data. 2.1 Electron Capture Transitions. 2.2 β Transitions

1 Decay Scheme. 2 Nuclear Data. 2.1 α Transitions

1 Decay Scheme. 2 Nuclear Data. 2.1 Electron Capture Transitions. 2.2 Gamma Transitions and Internal Conversion Coefficients

1 Decay Scheme. 2 Nuclear Data. 2.1 β Transitions

1 Decay Scheme. 2 Nuclear Data. 2.1 α Transitions

1 Decay Scheme. 2 Nuclear Data. 2.1 β Transitions

1 Decay Scheme. 2 Nuclear Data. 2.1 Electron Capture Transitions

1 Decay Scheme. 2 Nuclear Data. 236m. 2.1 Electron Capture Transitions. 2.2 β Transitions

1 Decay Scheme. 2 Nuclear Data. 2.1 α Transitions

1 Decay Scheme. 2 Nuclear Data. 2.1 Electron Capture Transitions. 2.2 Gamma Transitions and Internal Conversion Coefficients

1 Decay Scheme. 2 Nuclear Data. 2.1 β Transitions. 2.2 Gamma Transitions and Internal Conversion Coefficients

1 Decay Scheme. 2 Nuclear Data. 2.1 Electron Capture Transitions. 2.2 Gamma Transitions and Internal Conversion Coefficients

1 Decay Scheme. 2 Nuclear Data. 2.1 β + Transitions. 2.2 Electron Capture Transitions

1 Decay Scheme. 2 Nuclear Data. 2.1 α Transitions

1 Decay Scheme. 2 Nuclear Data. 2.1 β Transitions

1 Decay Scheme. 2 Nuclear Data. 2.1 β Transitions. 2.2 Gamma Transitions and Internal Conversion Coefficients

1 Decay Scheme. 2 Nuclear Data. 2.1 α Transitions

1 Decay Scheme. 2 Nuclear Data. 2.1 α Transitions

1 Decay Scheme. 2 Nuclear Data. 2.1 Electron Capture Transitions. 2.2 Gamma Transitions and Internal Conversion Coefficients

1 Decay Scheme. 2 Nuclear Data. 2.1 Electron Capture Transitions. 2.2 Gamma Transitions and Internal Conversion Coefficients

1 Decay Scheme. 2 Nuclear Data. 2.1 α Transitions

1 Decay Scheme. 2 Nuclear Data. 2.1 Electron Capture Transitions

1 Decay Scheme. 2 Nuclear Data. 2.1 α Transitions

1 Decay Scheme. 2 Nuclear Data. 2.1 β Transitions

1 Decay Scheme. 2 Nuclear Data. 2.1 α Transitions

1 Decay Scheme. 2 Nuclear Data. 2.1 Electron Capture Transitions. 2.2 β + Transitions

1 Decay Scheme. 2 Nuclear Data. 2.1 α Transitions

1 Decay Scheme. 2 Nuclear Data. 2.1 α Transitions

1 Decay Scheme. 2 Nuclear Data. 2.1 β Transitions

1 Decay Scheme. 2 Nuclear Data. 2.1 Electron Capture Transitions

Th, Ra, Rn, Po, Pb, Bi, & Tl K x-rays. Rn Kα1. Rn Kα2. 93( 227 Th)/Rn Kβ3. Ra Kα2. Po Kα2 /Bi K α1 79( 227 Th)/Po Kα1. Ra Kα1 /Bi K β1.

5.7. TABLE OF PHYSICAL CHARACTERISTICS OF RADIONUCLIDES MENTIONED IN THE EUROPEAN PHARMACOPOEIA

RAPPORT CEA-R-6201 MARIE-MARTINE BÉ, CHRISTOPHE DULIEU, VANESSA CHISTÉ. "NUCLÉIDE-LARA - Bibliothèque des émissions alpha, X et gamma"

Engineering Tunable Single and Dual Optical. Emission from Ru(II)-Polypyridyl Complexes. Through Excited State Design

Butadiene as a Ligand in Open Sandwich Compounds

By R.L. Snyder (Revised March 24, 2005)

MSWD = 1.06, probability = 0.39

S

Nuclear Physics 5. Name: Date: 8 (1)

Supplementary Information Chemical Partition of the Radiative Decay Rate of Luminescence of Europium Complexes

P Ë ³μ,.. μ μ³μ²μ,.. ŠμÎ μ,.. μ μ,.. Š μ. ˆ œ ˆ Š Œˆ ŠˆŒ ƒ Œ Ÿ ˆŸ Š ˆ ˆ -ˆ ˆŠ

P ƒ. μ μ², Œ.. ˆ μ,.. μ ± Î Š Ÿ ˆ Œ ˆŸ ˆ Ÿ Š ˆ. ² μ Ê ² μ Ò É Ì ± Ô± ³ É.

An experimental and theoretical study of the gas phase kinetics of atomic chlorine reactions with CH 3 NH 2, (CH 3 ) 2 NH, and (CH 3 ) 3 N

Calculating the propagation delay of coaxial cable

HOMEWORK#1. t E(x) = 1 λ = (b) Find the median lifetime of a randomly selected light bulb. Answer:

P ² Ì μ Š ˆ Œˆ Š Œ Œˆ. ² μ Ê ² Nuclear Instruments and Methods in Physics Research.

P Œ ²μ, ƒ.. μ ±μ,. ˆ. ˆ μ, Œ.. ƒê Éμ,. ƒ. ²μ,.. ³ É. ˆŒ ˆ Š ƒ Œ ˆ Ÿ ˆŸ 238 Uˆ 237 U, Œ ƒ Ÿ Š ˆˆ 238 U(γ,n) 237 U.

April MD simulation of interaction between radiation damages and microstructure: voids, helium bubbles and grain boundaries

Laboratory Studies on the Irradiation of Solid Ethane Analog Ices and Implications to Titan s Chemistry

A life-table metamodel to support management of data deficient species, exemplified in sturgeons and shads. Electronic Supplementary Material

ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ. Μιχελακάκης Ηλίας Michelakakis Elias Εμμανουήλ.

Zebra reaction or the recipe for heterodimeric zinc complexes synthesis

Lukasz STAWARZ. on Behalf of the Fermi LAT Collaboration.

Bookmark and Index Summary

2.1

Nuclear Data Sheets for A = 110 *

ˆ ˆˆ Œˆ C Z =47 50 Œ Œ ˆ ˆ Œ ˆ 23 ŒÔ

P μ,. Œμ α 1,. ²μ ± 1,.. ϱ Î, Ÿ. Ê Í± 2 Œˆ ˆ Œ Š Ÿ Š Ÿ ˆ ˆŒ ˆˆ. ² μ Ê ² μ Ò É Ì ± Ô± ³ É

DuPont Suva 95 Refrigerant

«Βασικές Αρχές της SPECT και PET Απεικόνισης»

ΘΕΩΡΗΤΙΚΗ ΚΑΙ ΠΕΙΡΑΜΑΤΙΚΗ ΙΕΡΕΥΝΗΣΗ ΤΗΣ ΙΕΡΓΑΣΙΑΣ ΣΚΛΗΡΥΝΣΗΣ ΙΑ ΛΕΙΑΝΣΕΩΣ

Heavier chalcogenone complexes of bismuth(iii)trihalides: Potential catalysts for acylative cleavage of cyclic ethers. Supporting Information

DuPont Suva. DuPont. Thermodynamic Properties of. Refrigerant (R-410A) Technical Information. refrigerants T-410A ENG

Š Ÿ Š Ÿ Ÿ ˆ Œ ˆŠ -280

Ó³ Ÿ , º 7(163).. 793Ä797 ˆ ˆŠ ˆ ˆŠ Š ˆ. .. Ëμ μ. Î ± É ÉÊÉ ³..., Œμ ±

Electronic Supplementary Information:

(1) Describe the process by which mercury atoms become excited in a fluorescent tube (3)

P É Ô Ô² 1,2,.. Ò± 1,.. ±μ 1,. ƒ. ±μ μ 1,.Š. ±μ μ 1, ˆ.. Ê Ò 1,.. Ê Ò 1 Œˆ ˆŸ. ² μ Ê ² μ Ì μ ÉÓ. É μ ±, Ì μé μ Ò É μ Ò ² μ Ö

NUCLEAR WALLET CARDS

ˆŒ œ ƒ ƒ ˆ ˆŸ ˆ Š ˆ 137 Cs Š ˆ Œ.

Electronic Supplementary Information DFT Characterization on the Mechanism of Water Splitting Catalyzed by Single-Ru-substituted Polyoxometalates

Si + Al Mg Fe + Mn +Ni Ca rim Ca p.f.u

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

DuPont Suva 95 Refrigerant

Dipole-Guided Electron Capture Causes Abnormal Dissociations of Phosphorylated Pentapeptides

IB PHYSICS HL REVIEW PACKET: NUCLEAR PHYSICS

Derivation of Optical-Bloch Equations

10-π-electron arenes à la carte: Structure. Sr, Ba; n = 6-8) complexes

P ˆ.. ƒê ²μ 1,.. Œ ² ±μ 1,..Šμ Í,.. ʳ,.. μ μ 2. ˆ ˆŸ Š Š ˆ ƒ ˆŒ œ ƒ Œ ƒ ƒ Š-Š ˆ 10- Œ ˆ. ( ), Œμ ± Œμ ± 1 μ Ò É Ì μ²μ ±μ³ μ ÉÒ ±Êʳ ÒÌ μ μ

P ƒ. Œ. ʳ Ö,. É ±, ˆ.. Š Öαμ,. ˆ. ÕÉÕ ±μ,.. ² μ. Š -ŒˆŠ Š : Œ ˆ, œ,

LUO, Hong2Qun LIU, Shao2Pu Ξ LI, Nian2Bing

Fused Bis-Benzothiadiazoles as Electron Acceptors

Development of Accurate Quantitative Analytical Methods to Determine Trace Amounts of Carbon, Sulfur, and Oxygen in Steel

In your answer, you should make clear how evidence for the size of the nucleus follows from your description

Electronic Supplementary Information

Equilibrium pka Table (DMSO Solvent and Reference)

ˆŒˆ ˆŸ ˆ Œ ƒ LEPTO/JETSET Ÿ ˆ ƒ

E#ects of Drying on Bacterial Activity and Iron Formation in Acid Sulfate Soils

Technical Information T-9100 SI. Suva. refrigerants. Thermodynamic Properties of. Suva Refrigerant [R-410A (50/50)]

Supporting Information: Expanding the Armory: Predicting and Tuning Covalent Warhead. Reactivity.

SUPPLEMENTARY INFORMATION

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET

P Î,.. Š ²³Ò±μ, Œ.. Œ ϱ,.. ʳ ˆ ˆ ˆ ˆŸ ˆŠ Š Š ˆ Ÿ -200

NIVEAUX C1&C2 sur l échelle proposée par le Conseil de l Europe

Studies on the Binding Mechanism of Several Antibiotics and Human Serum Albumin

Supporting Information To. Microhydration of caesium compounds: Journal of Molecular Modeling

P ² ± μ. œ Š ƒ Š Ÿƒ ˆŸ Œ œ Œ ƒˆ. μ²μ μ Œ Ê μ μ ±μ Ë Í μ É Í ±μ ³μ²μ (RUSGRAV-13), Œμ ±, Õ Ó 2008.

FORMULAS FOR STATISTICS 1

ƒ Š ˆ Šˆ Š Œˆ Šˆ Š ˆŒ PAMELA ˆ AMS-02

Nuclear Data Sheets for A = 102

Transcript:

1 Decay Scheme Sn- decays by electron capture mainly to the In-m isomer which has a half-life of 99 minutes. After a sufficient time, the ratio of the In-m (99 min) and Sn- activities remains constant and is 1,0006. The values given here are the nuclides in equibium. Le Sn- se désintègre par capture électronique conduisant principalement à l isomère In-m ayant 99 min de période. Lorsque In-m et Sn- sont à l équilibre le rapport des activités de ces deux radionucléides est : 1,0006. Les valeurs sont données ici à l équilibre. 2 Nuclear Data T 1/2 ( Sn ) : 115,09 (3) d T 1/2 ( m In ) : 1,6579 (38) h Q ( Sn ) : 1036,0 (28) kev 2.1 Electron Capture Transitions Probability (%) Nature lg ft P K P L P M ɛ 0,3 6 (3) 0,00103 (4) Allowed 6,5 0,3 (3) 0,54 (20) ɛ 0,2 389 (3) 2,21 (8) 1st Forbidden 8,2 0,8490 (14) 0,121 (1) 0,0254 (5) ɛ 0,1 644 (3) 97,79 (8) 1st Forbidden 7,01 0,855 (1) 0,116 (1) 0,0241 (5) 2.2 Gamma Transitions and Internal Conversion Coefficients P γce α Multipolarity K α L α M α N α T (%) (10 2 ) (10 2 ) (10 3 ) γ 2,1(In) 255,134 (10) 2,21 (8) M133%E2 0,0396 (12) 0,549 (16) 0,1078 (32) 0,211 (6) 0,0464 (14) γ 3,2(In) 382,90 (8) 0,000060 (3) γ 1,0(In) 391,698 (3) 100,00 (17) M4 0,437 (4) 8,58 (26) 1,70 (5) 3,77 (11) 0,540 (4) γ 3,1(In) 638,03 (8) 0,00097 (4) γ 2,0(In) 646,83 (1) 0,000004 (2) [E3] INEEL / R.G. Helmer 1 14/07/1998 20/10/2017

3 Atomic Data 3.1 In ω K : 0,851 (4) ω L : 0,0684 (20) n KL : 0,944 (4) 3.1.1 X Radiations Relative probability X K Kα 2 24,0023 53,3 Kα 1 24,21 100 Kβ 3 27,238 Kβ 1 27,2762 27,8 Kβ 5 27,495 Kβ 2 27,861 Kβ 4 27,928 5,4 KO 2,3 27,939 L Ll 2,9 Lα 3,28-3,29 Lη 3,11 Lβ 3,49-3,79 Lγ 3,82-4,16 3.1.2 Auger Electrons Relative probability Auger K KLL 19,34-20,35 100 KLX 22,83-24,19 43,6 KXY 26,25-27,90 5,7 Auger L 2,0-4,2 INEEL / R.G. Helmer 2 14/07/1998 20/10/2017

4 Electron Emissions Electrons (per 100 disint.) e AL (In) 2,0-4,2 116,3 (6) e AK (In) KLL 19,34-20,35 KLX 22,83-24,19 KXY 26,25-27,90 17,0 (5) ec 2,1 K (In) 227,194 (10) 0,0836 (41) ec 2,1 L (In) 250,896-251,404 0,0116 (6) ec 1,0 K (In) 363,758 (3) 28,39 (27) ec 1,0 L (In) 387,460-387,968 5,57 (17) ec 1,0 M (In) 390,872-391,255 1,104 (33) ec 1,0 N (In) 391,576-391,682 0,245 (7) ec 1,0 T (In) 363,758-391,682 35,31 (28) 5 Photon Emissions 5.1 X-Ray Emissions Photons (per 100 disint.) XL (In) 2,9-4,16 8,48 (19) } XKα 2 (In) 24,0023 27,69 (21) Kα XKα 1 (In) 24,21 51,9 (3) XKβ 3 (In) 27,238 XKβ 1 (In) 27,2762 14,58 (17) K β 1 XKβ 5 (In) 27,495 XKβ 2 (In) 27,861 XKβ 4 (In) 27,928 2,77 (10) K β 2 XKO 2,3 (In) 27,939 5.2 Gamma Emissions Photons (per 100 disint.) γ 2,1 (In) 255,134 (10) 2,11 (8) γ 3,2 (In) 382,90 (8) 0,000060 (3) γ 1,0 (In) 391,698 (3) 64,97 (17) γ 3,1 (In) 638,03 (8) 0,00097 (4) γ 2,0 (In) 646,83 (1) 0,000004 (2) INEEL / R.G. Helmer 3 14/07/1998 20/10/2017

6 Main Production Modes Sn 112(n,γ)Sn m σ : 0,30 (4) barns Sn m(it)sn T 1/2 : 20 min { Sn 112(n,γ)Sn σ : 0,71 (10) barns Possible impurities: Sn 119m, Sn 121m, Sn 117m, Sn 123, Sn 125m 7 References - S.W.Barnes. Phys. Rev. 56 (1939) 414 - J.L.Lawson, J.M.Cork. Phys. Rev. 57 (1940) 982 - R.K.Girgis, R.Van Lieshout. Physica 24 (1958) 672 - S.B.Burson, H.A.Grench, L.C.Schmid. Phys. Rev. 115 (1959) 188 - R.C.Greenwood, E.Brannen. Phys. Rev. 122 (1961) 1849 (Gamma ray emission intensities) - R.C.Catura. Nucl. Instrum. Methods 32 (1965) 152 - H.E.Bosch, M.C.Simon, E.Szichman, L.Gatto, S.M.Abecasis. Phys. Rev. 159 (1967) 1029 - H.Okamura, M.Ogawa, A.Mito. J. Inorg. Nucl. Chem. 29 (1967) 1184 - B.Fogelberg, A.Bäcklin. Institute of Physics, University of Uppsala and Swedish Research Councils Laboratory Studsvik NP-17722 (1968) - E.Der Mateosian, M.Goldhaber. Phys. Rev. 186 (1969) 1285 - H.van den Berg, M.McDonnell, M.K.Ramaswamy. Can. J. Phys. 47 (1969) 594 - E.Der Mateosian, M.Goldhaber. Phys. Rev. C2 (1970) 2026 - I.W.Goodier, F.H.Hughes, M.J.Woods. Int. J. Appl. Radiat. Isotop. 21 (1970) 678 - J.Legrand, F.Lagoutine, J.P.Brethon. Int. J. Appl. Radiat. Isotop. 21 (1970) 139 - M.K.Ramaswamy. Phys. Rev. C1 (1970) 333 - R.J.Rousselin, Cl.Gauthier. Int. J. Appl. Radiat. Isotop. 21 (1970) 599 - J.M.Oottukulam, M.K.Ramaswamy. J. Am. Phys. 39 (1971) 221 - H.H.Hansen, E.De Roost, D.Mouchel, R.Vaninbroukx. Int. J. Appl. Radiat. Isotop. 22 (1971) 1 - F.Lagoutine, J.Legrand, C.Perrot, J.P.Brethon, J.Morel. Int. J. Appl. Radiat. Isotop. 23 (1972) 219 - J.F.Emery, S.A.Reynolds, E.I.Wyatt, G.I.Gleason. Nucl. Sci. Eng. 48 (1972) 319 - M.Ramaswamy. Conf. Vanderbilt Vol. 2 (1972) 1211 - H.Inoue, Y.Yoshizawa, T.Morii. J. Phys. Soc. Jap. 34 (1973) 1437 - S.Raman, N.B.Gove. Phys. Rev. C7 (1973) 1995 (lg ft) - H.J.Kim, R.L.Robinson. Phys. Rev. C9 (1974) 767 INEEL / R.G. Helmer 4 14/07/1998 20/10/2017

- B.Bulow, M.Eriksson, G.G.Jonsson, Hagebo. Z Physik A275 (1975) 261 - V.Z.Kuttemperoor, R.A.Kobiske. Int. J. Appl. Radiat. Isotop. 26 (1975) 138 - A.A.Delucchi, R.A.Meyer. J. Inorg. Nucl. Chem. 38 (1976) 2135 (Gamma ray energies and emission probabilities) - W.Dietrich, A.Bäcklin. Z. Physik A276 (1976) 133 - F.Rösel, H.M.Fries, K.Alder, H.C.Pauli. At. Data. Nucl. Data Tables 21 (1978) 92 (Theoretical Internal Conversion Coefficients) - K.Heyde, M.Waroquier, R.A.Meyer. Phys. Rev. C17 (1978) 1219 (Gamma ray energies and emission probabilities) - H.Houtermans, O.Milosevic, F.Reichel. Int. J. Appl. Radiat. Isotop. 31 (1980) 153 - A.R.Rutledge, L.V.Smith, J.S.Merritt. NBS-SP-626 (1982) 5 - D.D.Hoppes, J.M.R.Hutchinson, F.J.Schima, M.P.Unterweger. NBS-SP-626 (1982) 85 - Y.Iwata, I.Yamamoto, Y.Yoshizawa. Int. J. Appl. Radiat. Isotop. 35 (1984) 907 - Zs.Nemeth, L.Lakosi, I.Pavlicsek, A.Veres. Int. J. Appl. Radiat. Isotop. 38 (1987) 63 - J.Blachot. Nucl. Data Sheets 59 (1990) 729 (Spin, multipolarities) - M.P.Unterweger, D.D.Hoppes, F.J.Schima. Nucl. Instrum. Methods A312 (1992) 349 - A.Mukherjee, S.Bhattacharya, B.Dasmahapatra. Appl. Rad. Isotopes 44 (1993) 731 (Gamma-ray emission intensities) - K.Debertin. Private Communication (1994) (Gamma-ray emission intensities) - G.Audi, A.H.Wapstra. Nucl. Phys. A595 (1995) 409 (Q) - X.Wen, K.Shizuma, S.Hamanaka, K.Iwatani, H.Hasai. Nucl. Instrum. Methods A397 (1997) 478 - R.G.Helmer, C.Van der Leun. Nucl. Instrum. Methods A450 (2000) 35 (Gamma ray energies) INEEL / R.G. Helmer 5 14/07/1998 20/10/2017

LNE-LNHB/CEA - Table de Radionucléides Sn 50 63 γ Emission intensities per 100 disintegrations 0 ε Sn 50 63 1/2 ; 0 115,09 (3) d 0,33 ns 3 0 6 9 7 0,000 0,000 1/2,3/2 ; 1029,73 0,00103 2 2,11 0,000 0 04 3/2- ; 646,833 2,21 1,6579 h 1 6 4,97-1/2 ; 391,699 97,79 Stable 0 In 49 64 Q = 1036 kev % ε = 100 9/2 ; 0 INEEL / R.G. Helmer Scheme page : 1/1 14/07/1998-17/02/2004