Thermodynamics of the motility-induced phase separation

Σχετικά έγγραφα
Free Energy and Phase equilibria

Self-Gravitating Lattice Gas

DuPont Suva 95 Refrigerant

DuPont Suva 95 Refrigerant

DuPont Suva. DuPont. Thermodynamic Properties of. Refrigerant (R-410A) Technical Information. refrigerants T-410A ENG

Coupling of a Jet-Slot Oscillator With the Flow-Supply Duct: Flow-Acoustic Interaction Modeling

Συστήματα Βιομηχανικών Διεργασιών 6ο εξάμηνο

Technical Information T-9100 SI. Suva. refrigerants. Thermodynamic Properties of. Suva Refrigerant [R-410A (50/50)]

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

Supporting Information

General 2 2 PT -Symmetric Matrices and Jordan Blocks 1

Geodesic Equations for the Wormhole Metric

Parametrized Surfaces

UV fixed-point structure of the 3d Thirring model

[1] P Q. Fig. 3.1

Figure 3 Three observations (Vp, Vs and density isosurfaces) intersecting in the PLF space. Solutions exist at the two indicated points.

Free Energy Calculation

Higher Derivative Gravity Theories

NonEquilibrium Thermodynamics of Flowing Systems: 2

Lifting Entry 2. Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion MARYLAND U N I V E R S I T Y O F

Evolution of Novel Studies on Thermofluid Dynamics with Combustion

6.4 Superposition of Linear Plane Progressive Waves

Solutions to the Schrodinger equation atomic orbitals. Ψ 1 s Ψ 2 s Ψ 2 px Ψ 2 py Ψ 2 pz

wave energy Superposition of linear plane progressive waves Marine Hydrodynamics Lecture Oblique Plane Waves:

Spherical Coordinates

The challenges of non-stable predicates

Major Concepts. Multiphase Equilibrium Stability Applications to Phase Equilibrium. Two-Phase Coexistence

From the finite to the transfinite: Λµ-terms and streams

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

Hartree-Fock Theory. Solving electronic structure problem on computers

for fracture orientation and fracture density on physical model data

ΑΛΛΗΛΕΠΙ ΡΑΣΗ ΜΟΡΦΩΝ ΛΥΓΙΣΜΟΥ ΣΤΙΣ ΜΕΤΑΛΛΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ

Lecture 21: Scattering and FGR

Estimation for ARMA Processes with Stable Noise. Matt Calder & Richard A. Davis Colorado State University

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint

( y) Partial Differential Equations

Dark matter from Dark Energy-Baryonic Matter Couplings

Mechanical Behaviour of Materials Chapter 5 Plasticity Theory

Eulerian Simulation of Large Deformations

Lifting Entry (continued)

Section 8.3 Trigonometric Equations

CRASH COURSE IN PRECALCULUS

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

ΔΗΜΟΤΙΚΕΣ ΕΚΛΟΓΕΣ 18/5/2014 ΑΚΥΡΑ

Figure A.2: MPC and MPCP Age Profiles (estimating ρ, ρ = 2, φ = 0.03)..

Thesis presentation. Turo Brunou

Cosmological Space-Times

Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1

1 String with massive end-points

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

derivation of the Laplacian from rectangular to spherical coordinates

Symmetric Stress-Energy Tensor

The mass and anisotropy profiles of nearby galaxy clusters from the projected phase-space density

Answer sheet: Third Midterm for Math 2339

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Derivation of Optical-Bloch Equations

Toward the Quantitative Study of Hydrothermal Systems An Approach to Understand Hydrothermal Systems

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

Chapter 9 Ginzburg-Landau theory

2 Composition. Invertible Mappings

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Areas and Lengths in Polar Coordinates

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 10η: Basics of Game Theory part 2 Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών

상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님

Models for Probabilistic Programs with an Adversary

Resurvey of Possible Seismic Fissures in the Old-Edo River in Tokyo

Graded Refractive-Index

ibemo Kazakhstan Republic of Kazakhstan, West Kazakhstan Oblast, Aksai, Pramzone, BKKS office complex Phone: ; Fax:

Three coupled amplitudes for the πη, K K and πη channels without data

The kinetic and potential energies as T = 1 2. (m i η2 i k(η i+1 η i ) 2 ). (3) The Hooke s law F = Y ξ, (6) with a discrete analog

Markov chains model reduction

ADVANCED STRUCTURAL MECHANICS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CYPRUS UNIVERSITY OF TECHNOLOGY Faculty of Geotechnical Sciences and Environmental Management Department of Environmental Science and Technology

ΣΤΙΓΜΙΑΙΑ ΚΑΤΑΣΚΕΥΗ ΣΤΕΡΕΟΥ ΜΕΙΓΜΑΤΟΣ ΥΛΙΚΟΥ ΜΕΣΑ ΑΠΟ ΕΛΕΓΧΟΜΕΝΗ ΦΥΣΙΚΗ ΔΙΑΔΙΚΑΣΙΑ

Constitutive Equation for Plastic Behavior of Hydrostatic Pressure Dependent Polymers

4.6 Autoregressive Moving Average Model ARMA(1,1)

Similarly, we may define hyperbolic functions cosh α and sinh α from the unit hyperbola

Μελέτη των μεταβολών των χρήσεων γης στο Ζαγόρι Ιωαννίνων 0

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΒΑΛΕΝΤΙΝΑ ΠΑΠΑΔΟΠΟΥΛΟΥ Α.Μ.: 09/061. Υπεύθυνος Καθηγητής: Σάββας Μακρίδης

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΓΕΩΤΕΧΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ

ZLW Series. Single-stage Monoblock Centrifugal Pump ZL PUMP GROUP.,LTD

5.4 The Poisson Distribution.

α & β spatial orbitals in

Physical and Chemical Properties of the Nest-site Beach of the Horseshoe Crab Rehabilitated by Sand Placement

2. Chemical Thermodynamics and Energetics - I

Areas and Lengths in Polar Coordinates

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007


Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

D Alembert s Solution to the Wave Equation

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr

( ) Sine wave travelling to the right side

arxiv: v1 [cond-mat.soft] 2 Jul 2007

SAFE APPLICATION OF HERBICIDES FOR THE HUMAN AND THE ENVIRONMENT

ΑΚΑ ΗΜΙΑ ΕΜΠΟΡΙΚΟΥ ΝΑΥΤΙΚΟΥ ΜΑΚΕ ΟΝΙΑΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ

From kinetic theory to dissipative fluid dynamics

ΙΕΥΘΥΝΤΗΣ: Καθηγητής Γ. ΧΡΥΣΟΛΟΥΡΗΣ Ι ΑΚΤΟΡΙΚΗ ΙΑΤΡΙΒΗ

Sharp Interface Limit for the Navier Stokes Korteweg Equations

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

Transcript:

1/9 Thermodynamics of the motility-induced phase separation Alex Solon (MIT), Joakim Stenhammar (Lund U), Mike Cates (Cambridge U), Julien Tailleur (Paris Diderot U) July 21st 2016 STATPHYS Lyon

Active fluids 2/9 Fluid of self-propelled particles

Active fluids 2/9 Fluid of self-propelled particles Reorientation mechanisms v v Run and Tumble Particles Bacteria Active Brownian Particles Janus colloids

Motility-induced phase separation (MIPS) 3/9 Feedback loop Collisions/interactions = Particles slow down = Increase in density

Motility-induced phase separation (MIPS) 3/9 Feedback loop Collisions/interactions = Particles slow down = Increase in density Phase separation: dilute/fast vs dense/slow Buttinoni et al, PRL 2013 Liu et al, Science 2011

Motility-induced phase separation (MIPS) 3/9 Feedback loop Collisions/interactions = Particles slow down = Increase in density Phase separation: dilute/fast vs dense/slow Buttinoni et al, PRL 2013 Liu et al, Science 2011 How can we understand the phase coexistence?

Microscopic models 4/9 Hard core repulsion Fily and Marchetti (PRL 2012), Redner et al (PRL 2013), Stenhammar et al (PRL 2013), Mallory et al (PRE 2014), Takatori et al (PRL 2014), Solon et al (PRL 2015)...

Microscopic models 4/9 Hard core repulsion Quorum sensing Fily and Marchetti (PRL 2012), Redner et al (PRL 2013), Stenhammar et al (PRL 2013), Mallory et al (PRE 2014), Takatori et al (PRL 2014), Solon et al (PRL 2015)... Tailleur and Cates (PRL 2008), Solon et al (EPJ 2015)

Microscopic models 4/9 Hard core repulsion Quorum sensing Fily and Marchetti (PRL 2012), Redner et al (PRL 2013), Stenhammar et al (PRL 2013), Mallory et al (PRE 2014), Takatori et al (PRL 2014), Solon et al (PRL 2015)... Tailleur and Cates (PRL 2008), Solon et al (EPJ 2015) Similar to liquid-gas phase separation

5/9 Liquid-gas phase separation in equilibrium Cahn-Hilliard equation t = M(ρ) δh[ρ] δρ, H = d r [ f (ρ) + c(ρ) ] 2 ρ 2

Liquid-gas phase separation in equilibrium 5/9 Cahn-Hilliard equation ] [f t = M(ρ) (ρ) + c 2 ρ 2 c ρ

5/9 Liquid-gas phase separation in equilibrium Cahn-Hilliard equation ] [f t = M(ρ) (ρ) + c 2 ρ 2 c ρ ρ ρ g ρ g, ρ l? x l ρ l x

5/9 Liquid-gas phase separation in equilibrium Cahn-Hilliard equation ] [f t = M(ρ) (ρ) + c 2 ρ 2 c ρ ρ ρ g ρ g, ρ l? x l ρ l x J = 0 = f (ρ) + c 2 ρ 2 c ρ = Cst. = µ

5/9 Liquid-gas phase separation in equilibrium Cahn-Hilliard equation ] [f t = M(ρ) (ρ) + c 2 ρ 2 c ρ ρ ρ g ρ g, ρ l? x l ρ l x J = 0 = f (ρ) + c 2 ρ 2 c ρ = Cst. = µ f (ρ g ) = f (ρ l ) equality of chemical potential

5/9 Liquid-gas phase separation in equilibrium Cahn-Hilliard equation ] [f t = M(ρ) (ρ) + c 2 ρ 2 c ρ ρ ρ g ρ g, ρ l? x l ρ l x J = 0 = f (ρ) + c 2 ρ 2 c ρ = Cst. = µ f (ρ g ) = f (ρ l ) equality of chemical potential µ x l ρdx = x l f (ρ) ρdx + xl [ c 2 ρ 2 c ρ] ρdx } {{ } =0

5/9 Liquid-gas phase separation in equilibrium Cahn-Hilliard equation ] [f t = M(ρ) (ρ) + c 2 ρ 2 c ρ ρ ρ g ρ g, ρ l? x l ρ l x J = 0 = f (ρ) + c 2 ρ 2 c ρ = Cst. = µ f (ρ g ) = f (ρ l ) equality of chemical potential µ(ρ l ρ g ) = f (ρ l ) f (ρ g ) equality of pressure P = ρf f

Liquid-gas phase separation in equilibrium Cahn-Hilliard equation ] [f t = M(ρ) (ρ) + c 2 ρ 2 c ρ ρ ρ g ρ g, ρ l? x l ρ l x J = 0 = f (ρ) + c 2 ρ 2 c ρ = Cst. = µ f (ρ g ) = f (ρ l ) equality of chemical potential µ(ρ l ρ g ) = f (ρ l ) f (ρ g ) equality of pressure P = ρf f f ρ g ρ l ρ 5/9

Nonequilibrium phase separation 6/9 Most general for a scalar conserved field [ ] t = M(ρ) µ 0 (ρ) + λ(ρ) ρ 2 κ(ρ) ρ

Nonequilibrium phase separation 6/9 Most general for a scalar conserved field [ ] t = M(ρ) µ 0 (ρ) + λ(ρ) ρ 2 κ(ρ) ρ J = 0 = µ0 (ρ) + λ ρ 2 κ ρ = Cst. = µ

Nonequilibrium phase separation 6/9 Most general for a scalar conserved field [ ] t = M(ρ) µ 0 (ρ) + λ(ρ) ρ 2 κ(ρ) ρ J = 0 = µ0 (ρ) + λ ρ 2 κ ρ = Cst. = µ µ 0 (ρ g ) = µ 0 (ρ l ) equality of chemical potential

Nonequilibrium phase separation 6/9 Most general for a scalar conserved field [ ] t = M(ρ) µ 0 (ρ) + λ(ρ) ρ 2 κ(ρ) ρ J = 0 = µ0 (ρ) + λ ρ 2 κ ρ = Cst. = µ µ 0 (ρ g ) = µ 0 (ρ l ) equality of chemical potential µ(ρ l ρ g ) = f (ρ l ) f (ρ g ) + df dρ = µ 0 xl [λ ρ 2 κ ρ] ρdx } {{ } 0

Nonequilibrium phase separation 6/9 Most general for a scalar conserved field [ ] t = M(ρ) µ 0 (ρ) + λ(ρ) ρ 2 κ(ρ) ρ J = 0 = µ0 (ρ) + λ ρ 2 κ ρ = Cst. = µ µ 0 (ρ g ) = µ 0 (ρ l ) equality of chemical potential µ(ρ l ρ g ) = f (ρ l ) f (ρ g ) + df dρ = µ 0 xl Uncommon tangent construction [Wittkowski et al, Nat. Comm. 2014] [λ ρ 2 κ ρ] ρdx } {{ } 0 f ρ

Generalized thermodynamic constructions 7/9 µ = µ 0 (ρ) + λ(ρ) ρ 2 κ(ρ) ρ ρ ρ g x l ρ l x µ x l ρdx = x l µ 0 (ρ) ρdx + x l [λ(ρ) ρ 2 κ(ρ) ρ] ρdx

Generalized thermodynamic constructions 7/9 µ = µ 0 (ρ) + λ(ρ) ρ 2 κ(ρ) ρ ρ ρ g x l ρ l x µ x l Rdx = x l µ 0 (ρ) Rdx + x l [λ(ρ) ρ 2 κ(ρ) ρ] Rdx Effective density R(ρ) s.t. R = 2λ+κ κ R

7/9 Generalized thermodynamic constructions µ = µ 0 (ρ) + λ(ρ) ρ 2 κ(ρ) ρ ρ ρ g x l ρ l x µ x l Rdx = x l µ 0 (ρ) Rdx + x l [λ(ρ) ρ 2 κ(ρ) ρ] Rdx Effective density R(ρ) s.t. R = 2λ+κ κ R µ(r l R g ) = φ(r l ) φ(r g ), dφ dr = µ 0 Common tangent construction

7/9 Generalized thermodynamic constructions µ = µ 0 (ρ) + λ(ρ) ρ 2 κ(ρ) ρ ρ ρ g x l ρ l x µ x l Rdx = x l µ 0 (ρ) Rdx + x l [λ(ρ) ρ 2 κ(ρ) ρ] Rdx Effective density R(ρ) s.t. R = 2λ+κ κ R µ(r l R g ) = φ(r l ) φ(r g ), dφ dr = µ 0 Common tangent construction Thermodynamic pressure: P = µ 0 R φ Equal-area construction

Quorum sensing interactions 8/9 Particles moving at velocity v(ρ) t = M(ρ) [µ 0 (ρ) κ(ρ) ρ], µ 0 = log(ρv), κ(ρ) = l 2 v v

8/9 Quorum sensing interactions Particles moving at velocity v(ρ) t = M(ρ) [µ 0 (ρ) κ(ρ) ρ], µ 0 = log(ρv), κ(ρ) = l 2 v v = effective density R(ρ) = ρ 1 κ(u) du φ P 0 µ R g R l R 0.6 0.8 1.0 1.2 1.4 P 1/R l 1/R g 1/R 0.5 1.0 1.5 2.0

Quorum sensing interactions Particles moving at velocity v(ρ) t = M(ρ) [µ 0 (ρ) κ(ρ) ρ], µ 0 = log(ρv), κ(ρ) = l 2 v v = effective density R(ρ) = ρ 1 κ(u) du φ P 0 µ R g R l R 0.6 0.8 1.0 1.2 1.4 ρ P 1/R l 1/R g 1/R 0.5 1.0 1.5 2.0 v v g v l ρ 600 400 200 Simulations, 1d lattice Simulations, 2d RTP off-lattice Simulations, 2d ABP off-lattice Equ. construction Theory 0 v g /v l 2 4 6 8 10 12 8/9

Conclusions 9/9 Hard core repulsion: more difficult but consistent results = Both models described by the same theory

Conclusions 9/9 Hard core repulsion: more difficult but consistent results = Both models described by the same theory MIPS described by a generalized Cahn-Hilliard equation including non-equilibrium interfacial terms Equilibrium relations are recovered after defining an effective density The phase diagram depends on the interfacial terms