Using the Jacobian- free Newton- Krylov method to solve the sea- ice momentum equa<on

Σχετικά έγγραφα
Mechanical Behaviour of Materials Chapter 5 Plasticity Theory

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

EXPERIMENTAL AND NUMERICAL STUDY OF A STEEL-TO-COMPOSITE ADHESIVE JOINT UNDER BENDING MOMENTS

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

MECHANICAL PROPERTIES OF MATERIALS

Numerical Analysis FMN011

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Figure A.2: MPC and MPCP Age Profiles (estimating ρ, ρ = 2, φ = 0.03)..

Strain gauge and rosettes

Toward the Quantitative Study of Hydrothermal Systems An Approach to Understand Hydrothermal Systems

GMRES(m) , GMRES, , GMRES(m), Look-Back GMRES(m). Ax = b, A C n n, x, b C n (1) Krylov.

Oscillatory Gap Damping

Eulerian Simulation of Large Deformations

Chapter 7 Transformations of Stress and Strain

Επεξεργασία πειραματικών αποτελεσμάτων

BSL Transport Phenomena 2e Revised: Chapter 2 - Problem 2C.4 Page 1 of 9

New Adaptive Projection Technique for Krylov Subspace Method

Dr. D. Dinev, Department of Structural Mechanics, UACEG

Forced Pendulum Numerical approach

Introduction to Theory of. Elasticity. Kengo Nakajima Summer

Consolidated Drained

TRIAXIAL TEST, CORPS OF ENGINEERS FORMAT


Module 5. February 14, h 0min

Discretization of Generalized Convection-Diffusion

(Mechanical Properties)

6.3 Forecasting ARMA processes

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

Grey Cast Irons. Technical Data

ΕΡΓΑΣΤΗΡΙΟ ΧΑΛΑΡΗΣ ΥΛΗΣ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΡΕΟΛΟΓΙΑ

Surface Mount Multilayer Chip Capacitors for Commodity Solutions

: Monte Carlo EM 313, Louis (1982) EM, EM Newton-Raphson, /. EM, 2 Monte Carlo EM Newton-Raphson, Monte Carlo EM, Monte Carlo EM, /. 3, Monte Carlo EM

Areas and Lengths in Polar Coordinates

Ηλεκτρονικοί Υπολογιστές IV

- 1+x 2 - x 3 + 7x x x x x x 2 - x 3 - -

Radiation Stress Concerned with the force (or momentum flux) exerted on the right hand side of a plane by water on the left hand side of the plane.

Approximation of distance between locations on earth given by latitude and longitude

Parametrized Surfaces

Chapter 5 Stress Strain Relation

Tutorial on Multinomial Logistic Regression

( ) 2 and compare to M.

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C

NMBTC.COM /

[1] P Q. Fig. 3.1


Ρεύµατα παρουσία τριβής ανεµογενής κυκλοφορία

Group 30. Contents.

Stress Relaxation Test and Constitutive Equation of Saturated Soft Soil

Areas and Lengths in Polar Coordinates

ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΕΡΙΒΑΛΛΟΝΤΟΣ

HW 3 Solutions 1. a) I use the auto.arima R function to search over models using AIC and decide on an ARMA(3,1)

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Assalamu `alaikum wr. wb.

NKT NTC Thermistor. Negative Temperature Coefficient Thermistor FEATURES

VBA Microsoft Excel. J. Comput. Chem. Jpn., Vol. 5, No. 1, pp (2006)

ΜΑΘΗΜΑΤΙΚΗ ΠΡΟΣΟΜΟΙΩΣΗ ΤΗΣ ΔΥΝΑΜΙΚΗΣ ΤΟΥ ΕΔΑΦΙΚΟΥ ΝΕΡΟΥ ΣΤΗΝ ΠΕΡΙΠΤΩΣΗ ΑΡΔΕΥΣΗΣ ΜΕ ΥΠΟΓΕΙΟΥΣ ΣΤΑΛΑΚΤΗΦΟΡΟΥΣ ΣΩΛΗΝΕΣ ΣΕ ΔΙΑΣΤΡΩΜΕΝΑ ΕΔΑΦΗ

CorV CVAC. CorV TU317. 1

Figure 3 Three observations (Vp, Vs and density isosurfaces) intersecting in the PLF space. Solutions exist at the two indicated points.

Mechanics of Materials Lab

Managing Economic Fluctuations. Managing Macroeconomic Fluctuations 1

6.4 Superposition of Linear Plane Progressive Waves

Figure 1 - Plan of the Location of the Piles and in Situ Tests

ΠΣΤΥΙΑΚΗ ΔΡΓΑΙΑ. Μειέηε Υξόλνπ Απνζηείξσζεο Κνλζέξβαο κε Τπνινγηζηηθή Ρεπζηνδπλακηθή. Αζαλαζηάδνπ Βαξβάξα

Stresses in a Plane. Mohr s Circle. Cross Section thru Body. MET 210W Mohr s Circle 1. Some parts experience normal stresses in

Μιχάλης ΚΛΟΥΒΑΣ 1, Χρήστος ΖΕΡΗΣ 2

Ceramic PTC Thermistor Overload Protection

Math 6 SL Probability Distributions Practice Test Mark Scheme

Filter Diagonalization Method which Constructs an Approximation of Orthonormal Basis of the Invariant Subspace from the Filtered Vectors

Matrices and Determinants

Statistical Inference I Locally most powerful tests

Local Approximation with Kernels

( ) Sine wave travelling to the right side

; +302 ; +313; +320,.

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)

NTC Thermistor:SCK Series

SERIES DATASHEET INDUCTORS RF INDUCTORS (MRFI SERIES)

Nov Journal of Zhengzhou University Engineering Science Vol. 36 No FCM. A doi /j. issn

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

derivation of the Laplacian from rectangular to spherical coordinates


TUNING FORK TUNES. exploring new scanning probe applications

Srednicki Chapter 55

Pipe E235N (St 37.4 NBK) phosphated and oiled

5.0 DESIGN CALCULATIONS

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET

Appendix M. P50 and P90 Turbine Production

High order interpolation function for surface contact problem

Laboratory Studies on the Irradiation of Solid Ethane Analog Ices and Implications to Titan s Chemistry

상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님

ADVANCED STRUCTURAL MECHANICS

Hartree-Fock Theory. Solving electronic structure problem on computers

1 String with massive end-points

Three coupled amplitudes for the πη, K K and πη channels without data

Constitutive Equation for Plastic Behavior of Hydrostatic Pressure Dependent Polymers

Biostatistics for Health Sciences Review Sheet

Space-Time Symmetries

ΜΔΛΔΣΖ ΔΝΓΟΣΡΑΥΤΝΖ Δ ΥΑΛΤΒΔ ΘΔΡΜΖ ΔΛΑΖ

Study on Re-adhesion control by monitoring excessive angular momentum in electric railway traction

ΓΗΠΛΧΜΑΣΗΚΖ ΔΡΓΑΗΑ ΑΡΥΗΣΔΚΣΟΝΗΚΖ ΣΧΝ ΓΔΦΤΡΧΝ ΑΠΟ ΑΠΟΦΖ ΜΟΡΦΟΛΟΓΗΑ ΚΑΗ ΑΗΘΖΣΗΚΖ

4.4 Superposition of Linear Plane Progressive Waves

Transcript:

Using the Jacobian- free Newton- Krylov method to solve the sea- ice momentum equa<on Jan Sedláček1 and Jean- François Lemieux2 1ETH Zürich; 2Environment Canada

The sea- ice momentum equa<on AssumpFon: Long enough Fme step i hf k u i + a( a w )+r i hgrh d =0

The sea- ice momentum equa<on AssumpFon: Long enough Fme step Coriolis force rheology i hf k u i + a( a w )+r i hgrh d =0 wind stress water drag sea surface Flt

The sea- ice momentum equa<on Note: wind speed generally much larger than sea- ice speed non- linear terms rheology i hf k u i + a( a w )+r i hgrh d =0 water drag

Introduc<on to rheology 1- D Example: stress < crifcal value elasfc material deformafons reversible stress = crifcal value plasfc material deformafons not reversible stresses cannot be larger than crifcal value

Introduc<on to rheology 1- D Example: stress < crifcal value elasfc material deformafons reversible stress = crifcal value plasfc material deformafons not reversible stresses cannot be larger than crifcal value BUT: storage and numerically expensive sea ice modeled as viscous- plasfc material (very viscous / creep flow)

Yield curve cavitafng fluid q ice cream cone q -p -p granular Hibler model; EVP q q -p -p

Cons<tu<ve law (i.e., rela<on between stress and strain rate) and normal flow rule σ ij =2η ɛ ij +[ζ η] ɛ kk δ ij Pδ ij /2

Cons<tu<ve law (i.e., rela<on between stress and strain rate) and normal flow rule ( ) ice concentrafon ice strength parameter P = P hexp[ C(1 A)] ice thickness σ ij =2η ɛ ij +[ζ η] ɛ kk δ ij Pδ ij /2 ice concentrafon parameter

Cons<tu<ve law (i.e., rela<on between stress and strain rate) and normal flow rule strain rates ɛ 11 = u x,, ɛ 22 = v y, ɛ 12 = 1 ( u 2 y + v ) x ɛ kk = ɛ 11 + ɛ 22 σ ij =2η ɛ ij +[ζ η] ɛ kk δ ij Pδ ij /2 ( ) ice concentrafon ice strength parameter P = P hexp[ C(1 A)] ice thickness ice concentrafon parameter Kronecker Delta

Cons<tu<ve law (i.e., rela<on between stress and strain rate) and normal flow rule strain rates ɛ 11 = u x,, ɛ 22 = v y, ɛ 12 = 1 ( u 2 y + v ) x ( ɛ kk = ɛ 11 + ɛ 22 ( ( ) σ ij =2η ɛ ij +[ζ η] ɛ kk δ ij Pδ ij /2 ( ) ice concentrafon ice strength parameter P = P hexp[ C(1 A)] ice thickness ice concentrafon parameter bulk viscosity ζ = P 2 shear viscosity η = ζe 2 Kronecker Delta =[( ɛ 2 11 + ɛ2 22 )(1 + e 2 )+4e 2 ɛ 2 12 +2 ɛ 11 ɛ 22 (1 e 2 )] 1 2

Cons<tu<ve law (i.e., rela<on between stress and strain rate) and normal flow rule strain rates ɛ 11 = u x,, ɛ 22 = v y, ɛ 12 = 1 ( u 2 y + v ) x ( ɛ kk = ɛ 11 + ɛ 22 ( ( ) σ ij =2η ɛ ij +[ζ η] ɛ kk δ ij Pδ ij /2 ( ) ice concentrafon ice strength parameter P = P hexp[ C(1 A)] ice thickness bulk viscosity shear viscosity ζ = P 2 η = ζe 2 =[( ɛ 2 11 + ɛ2 22 )(1 + e 2 )+4e 2 ɛ 2 12 +2 ɛ ( 11 ɛ 22 (1 e 2 ) )] 1 2 ice concentrafon parameter Kronecker Delta using: ζ = min ( ) P 2, ζ max η = min ( ) P 2e 2, η max

and now graphically failure in shear pure compression viscous flow outside yield curve: not physical

Brief history 1979: viscous- plasfc sea ice model outer loop successive over- relaxafon, linear relaxafon 1992: cavitafng sea- ice model only pressure 1997: elasfc- viscous- plasfc sea- ice model arfficial elasfc term explicit conjuate gradient

Difference SOR vs. GMRES only for the linear solver

Outer loop convergence KineFc energy

Outer loop convergence KineFc energy 10 500 OL iterafons 2 OL iterafons 10 OL iterafons 40 OL iterafons

Removing discon<nuity ( ) ζ = min ( ) P 2, ζ max ( P ζ = ζ max tanh 2 ζ max ) + ζ min

Full Jacobian- free Newton- Krylov

Full Jacobian- free Newton- Krylov

The final result simulafon with 10 km resolufon sea- ice velocity shear deformafon

References Lemieux, J.- F., B. Tremblay, J. Sedláček, P. Tupper, S. Thomas, D. Huard, and J.- P. Auclair (2010), Improving the numerical convergence of viscous- plasfc sea ice models with the Jacobian- free Newton Krylov method, J. Comput. Phys., 229(8), 2840 2852, doi:10.1016/j.jcp.2009.12.011 Lemieux, J.- F., and B. Tremblay (2009), Numerical convergence of viscous- plasfc sea ice models, J. Geophys. Res., 114(C5), doi:10.1029/2008jc005017 Lemieux, J.- F., B. Tremblay, S. Thomas, J. Sedláček, and L. A. Mysak (2008), Using the precondifoned Generalized Minimum RESidual (GMRES) method to solve the sea- ice momentum equafon, J. Geophys. Res., 113(C10), doi:10.1029/2007jc004680 Lemieux, J.- F., D. A. Knoll, B. Tremblay, D. M. Holland, and M. Losch (2012), A comparison of the Jacobian- free Newton Krylov method and the EVP model for solving the sea ice momentum equafon with a viscous- plasfc formulafon: A serial algorithm study, J. Comput. Phys., 231(17), 5926 5944, doi:10.1016/j.jcp.2012.05.024