Buried Markov Model Pairwise

Σχετικά έγγραφα
EM Baum-Welch. Step by Step the Baum-Welch Algorithm and its Application 2. HMM Baum-Welch. Baum-Welch. Baum-Welch Baum-Welch.

3: A convolution-pooling layer in PS-CNN 1: Partially Shared Deep Neural Network 2.2 Partially Shared Convolutional Neural Network 2: A hidden layer o

Applying Markov Decision Processes to Role-playing Game

Maxima SCORM. Algebraic Manipulations and Visualizing Graphs in SCORM contents by Maxima and Mashup Approach. Jia Yunpeng, 1 Takayuki Nagai, 2, 1

ER-Tree (Extended R*-Tree)

Διπλωματική Εργασία του φοιτητή του Τμήματος Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών της Πολυτεχνικής Σχολής του Πανεπιστημίου Πατρών

Web-based supplementary materials for Bayesian Quantile Regression for Ordinal Longitudinal Data

Stabilization of stock price prediction by cross entropy optimization

Schedulability Analysis Algorithm for Timing Constraint Workflow Models

1 (forward modeling) 2 (data-driven modeling) e- Quest EnergyPlus DeST 1.1. {X t } ARMA. S.Sp. Pappas [4]

Automatic extraction of bibliography with machine learning

1 n-gram n-gram n-gram [11], [15] n-best [16] n-gram. n-gram. 1,a) Graham Neubig 1,b) Sakriani Sakti 1,c) 1,d) 1,e)

GPU. CUDA GPU GeForce GTX 580 GPU 2.67GHz Intel Core 2 Duo CPU E7300 CUDA. Parallelizing the Number Partitioning Problem for GPUs

An Automatic Modulation Classifier using a Frequency Discriminator for Intelligent Software Defined Radio

{takasu, Conditional Random Field

Estimation, Evaluation and Guarantee of the Reverberant Speech Recognition Performance based on Room Acoustic Parameters

: Monte Carlo EM 313, Louis (1982) EM, EM Newton-Raphson, /. EM, 2 Monte Carlo EM Newton-Raphson, Monte Carlo EM, Monte Carlo EM, /. 3, Monte Carlo EM

CSJ. Speaker clustering based on non-negative matrix factorization using i-vector-based speaker similarity

ΔΙΠΛΩΜΑΣΙΚΗ ΕΡΓΑΙΑ. του φοιτητή του Σμήματοσ Ηλεκτρολόγων Μηχανικών και. Σεχνολογίασ Τπολογιςτών τησ Πολυτεχνικήσ χολήσ του. Πανεπιςτημίου Πατρών

Simplex Crossover for Real-coded Genetic Algolithms

Bayesian modeling of inseparable space-time variation in disease risk

MIDI [8] MIDI. [9] Hsu [1], [2] [10] Salamon [11] [5] Song [6] Sony, Minato, Tokyo , Japan a) b)

*,* + -+ on Bedrock Bath. Hideyuki O, Shoichi O, Takao O, Kumiko Y, Yoshinao K and Tsuneaki G

Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science.

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

GPGPU. Grover. On Large Scale Simulation of Grover s Algorithm by Using GPGPU

Διπλωματική Εργασία. Μελέτη των μηχανικών ιδιοτήτων των stents που χρησιμοποιούνται στην Ιατρική. Αντωνίου Φάνης

CorV CVAC. CorV TU317. 1

HIV HIV HIV HIV AIDS 3 :.1 /-,**1 +332

Biostatistics for Health Sciences Review Sheet

ΜΑΘΗΜΑΤΙΚΗ ΠΡΟΣΟΜΟΙΩΣΗ ΤΗΣ ΔΥΝΑΜΙΚΗΣ ΤΟΥ ΕΔΑΦΙΚΟΥ ΝΕΡΟΥ ΣΤΗΝ ΠΕΡΙΠΤΩΣΗ ΑΡΔΕΥΣΗΣ ΜΕ ΥΠΟΓΕΙΟΥΣ ΣΤΑΛΑΚΤΗΦΟΡΟΥΣ ΣΩΛΗΝΕΣ ΣΕ ΔΙΑΣΤΡΩΜΕΝΑ ΕΔΑΦΗ

* ** *** *** Jun S HIMADA*, Kyoko O HSUMI**, Kazuhiko O HBA*** and Atsushi M ARUYAMA***

Conjoint. The Problems of Price Attribute by Conjoint Analysis. Akihiko SHIMAZAKI * Nobuyuki OTAKE

, -.

Πτυχιακή Εργασι α «Εκτι μήσή τής ποιο τήτας εικο νων με τήν χρή σή τεχνήτων νευρωνικων δικτυ ων»

Retrieval of Seismic Data Recorded on Open-reel-type Magnetic Tapes (MT) by Using Existing Devices

ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ. ΘΕΜΑ: «ιερεύνηση της σχέσης µεταξύ φωνηµικής επίγνωσης και ορθογραφικής δεξιότητας σε παιδιά προσχολικής ηλικίας»

APPENDICES APPENDIX A. STATISTICAL TABLES AND CHARTS 651 APPENDIX B. BIBLIOGRAPHY 677 APPENDIX C. ANSWERS TO SELECTED EXERCISES 679

A Method of Trajectory Tracking Control for Nonminimum Phase Continuous Time Systems

[5] F 16.1% MFCC NMF D-CASE 17 [5] NMF NMF 3. [5] 1 NMF Deep Neural Network(DNN) FUSION 3.1 NMF NMF [12] S W H 1 Fig. 1 Our aoustic event detect

Development of a basic motion analysis system using a sensor KINECT

FORMULAS FOR STATISTICS 1

Newman Modularity Newman [4], [5] Newman Q Q Q greedy algorithm[6] Newman Newman Q 1 Tabu Search[7] Newman Newman Newman Q Newman 1 2 Newman 3

Homework 8 Model Solution Section

Query by Phrase (QBP) (Music Information Retrieval, MIR) QBH QBP / [1, 2] [3, 4] Query-by-Humming (QBH) QBP MIDI [5, 6] [8 10] [7]

Spectrum Representation (5A) Young Won Lim 11/3/16

Probabilistic Approach to Robust Optimization

Χρηματοοικονομική Ανάπτυξη, Θεσμοί και

Chapter 1 Introduction to Observational Studies Part 2 Cross-Sectional Selection Bias Adjustment

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems

Resurvey of Possible Seismic Fissures in the Old-Edo River in Tokyo

Supplementary Appendix

2 ~ 8 Hz Hz. Blondet 1 Trombetti 2-4 Symans 5. = - M p. M p. s 2 x p. s 2 x t x t. + C p. sx p. + K p. x p. C p. s 2. x tp x t.

ΖΩΝΟΠΟΙΗΣΗ ΤΗΣ ΚΑΤΟΛΙΣΘΗΤΙΚΗΣ ΕΠΙΚΙΝΔΥΝΟΤΗΤΑΣ ΣΤΟ ΟΡΟΣ ΠΗΛΙΟ ΜΕ ΤΗ ΣΥΜΒΟΛΗ ΔΕΔΟΜΕΝΩΝ ΣΥΜΒΟΛΟΜΕΤΡΙΑΣ ΜΟΝΙΜΩΝ ΣΚΕΔΑΣΤΩΝ

ΠΣΤΥΙΑΚΗ ΔΡΓΑΙΑ ΘΔΜΑ ΜΔΛΔΣΗ ΥΔΓΙΑΗ ΚΑΙ ΑΝΑΠΣΤΞΗ ΚΙΝΟΤΜΔΝΟΤ ΡΟΜΠΟΣ ΚΑΙ Ο ΔΛΔΓΥΟ ΣΟΤ ΜΔ ΦΩΝΗΣΙΚΔ ΔΝΣΟΛΔ

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

2016 IEEE/ACM International Conference on Mobile Software Engineering and Systems

A Method for Creating Shortcut Links by Considering Popularity of Contents in Structured P2P Networks

IPSJ SIG Technical Report Vol.2014-CE-127 No /12/6 CS Activity 1,a) CS Computer Science Activity Activity Actvity Activity Dining Eight-He

ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ ΣΤΥΛΙΑΝΗΣ Κ. ΣΟΦΙΑΝΟΠΟΥΛΟΥ Αναπληρώτρια Καθηγήτρια. Τµήµα Τεχνολογίας & Συστηµάτων Παραγωγής.

Homomorphism in Intuitionistic Fuzzy Automata

Detection and Recognition of Traffic Signal Using Machine Learning

Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1

ΓΙΑΝΝΟΥΛΑ Σ. ΦΛΩΡΟΥ Ι ΑΚΤΟΡΑΣ ΤΟΥ ΤΜΗΜΑΤΟΣ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΟΥ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΜΑΚΕ ΟΝΙΑΣ ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ

VSC STEADY2STATE MOD EL AND ITS NONL INEAR CONTROL OF VSC2HVDC SYSTEM VSC (1. , ; 2. , )

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

Bayesian Discriminant Feature Selection

OLS. University of New South Wales, Australia

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET

Study of In-vehicle Sound Field Creation by Simultaneous Equation Method

The Algorithm to Extract Characteristic Chord Progression Extended the Sequential Pattern Mining

Study on the Strengthen Method of Masonry Structure by Steel Truss for Collapse Prevention

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Reaction of a Platinum Electrode for the Measurement of Redox Potential of Paddy Soil

ECON 381 SC ASSIGNMENT 2

No. 7 Modular Machine Tool & Automatic Manufacturing Technique. Jul TH166 TG659 A

ΠΣΤΥΙΑΚΗ ΔΡΓΑΙΑ. Μειέηε Υξόλνπ Απνζηείξσζεο Κνλζέξβαο κε Τπνινγηζηηθή Ρεπζηνδπλακηθή. Αζαλαζηάδνπ Βαξβάξα

Development of a Seismic Data Analysis System for a Short-term Training for Researchers from Developing Countries

Study on Re-adhesion control by monitoring excessive angular momentum in electric railway traction

Vol. 31,No JOURNAL OF CHINA UNIVERSITY OF SCIENCE AND TECHNOLOGY Feb

Ανάλυση Προτιμήσεων για τη Χρήση Συστήματος Κοινόχρηστων Ποδηλάτων στην Αθήνα

Durbin-Levinson recursive method

Ι ΑΚΤΟΡΙΚΗ ΙΑΤΡΙΒΗ. Χρήστος Αθ. Χριστοδούλου. Επιβλέπων: Καθηγητής Ιωάννης Αθ. Σταθόπουλος

Optimizing Microwave-assisted Extraction Process for Paprika Red Pigments Using Response Surface Methodology

,,, (, ) , ;,,, ; -

[4] 1.2 [5] Bayesian Approach min-max min-max [6] UCB(Upper Confidence Bound ) UCT [7] [1] ( ) Amazons[8] Lines of Action(LOA)[4] Winands [4] 1

Assalamu `alaikum wr. wb.

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

Statistics 104: Quantitative Methods for Economics Formula and Theorem Review

ΠΑΝΔΠΗΣΖΜΗΟ ΠΑΣΡΩΝ ΓΗΑΣΜΖΜΑΣΗΚΟ ΠΡΟΓΡΑΜΜΑ ΜΔΣΑΠΣΤΥΗΑΚΩΝ ΠΟΤΓΩΝ «ΤΣΖΜΑΣΑ ΔΠΔΞΔΡΓΑΗΑ ΖΜΑΣΩΝ ΚΑΗ ΔΠΗΚΟΗΝΩΝΗΩΝ» ΣΜΖΜΑ ΜΖΥΑΝΗΚΩΝ Ζ/Τ ΚΑΗ ΠΛΖΡΟΦΟΡΗΚΖ

ADVANCED STRUCTURAL MECHANICS

Math221: HW# 1 solutions

Test Data Management in Practice

ΜΕΛΕΤΗ ΤΗΣ ΗΛΕΚΤΡΟΝΙΚΗΣ ΣΥΝΤΑΓΟΓΡΑΦΗΣΗΣ ΚΑΙ Η ΔΙΕΡΕΥΝΗΣΗ ΤΗΣ ΕΦΑΡΜΟΓΗΣ ΤΗΣ ΣΤΗΝ ΕΛΛΑΔΑ: Ο.Α.Ε.Ε. ΠΕΡΙΦΕΡΕΙΑ ΠΕΛΟΠΟΝΝΗΣΟΥ ΚΑΣΚΑΦΕΤΟΥ ΣΩΤΗΡΙΑ

ΑΛΓΟΡΙΘΜΟΙ Άνοιξη I. ΜΗΛΗΣ

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΜΗΧΑΝΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ. Πτυχιακή εργασία

Research of Han Character Internal Codes Recognition Algorithm in the Multi2lingual Environment

ΓΕΩΠΟΝΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙO ΑΘΗΝΩΝ ΤΜΗΜΑ ΑΞΙΟΠΟΙΗΣΗΣ ΦΥΣΙΚΩΝ ΠΟΡΩΝ & ΓΕΩΡΓΙΚΗΣ ΜΗΧΑΝΙΚΗΣ

ΣΧΕΔΙΑΣΜΟΣ ΔΙΚΤΥΩΝ ΔΙΑΝΟΜΗΣ. Η εργασία υποβάλλεται για τη μερική κάλυψη των απαιτήσεων με στόχο. την απόκτηση του διπλώματος

Transcript:

Buried Markov Model 1 2 2 HMM Buried Markov Model J. Bilmes Buried Markov Model Pairwise 0.6 0.6 1.3 Structuring Model for Speech Recognition using Buried Markov Model Takayuki Yamamoto, 1 Tetsuya Takiguchi 2 and Yasuo Ariki 2 Though HMM makes it possible to recognize clear utterance by high accuracy, there is a problem that the speech including the noise or the continuous utterance cause the decrease in accuracy. To solve this problem, buried Markov model was proposed by J. Bilmes, where Buried Markov model contains the conditional independence between the observation node. In this research, to enable to obtain the conditional independence that the assumption of distribution prevents from obtaining, we proposed to introduce non-parametric independence test instead of mutual information into pairwise algorithm, that is the algorithm to learn the structure of buried Markov model. We performed phone recognition experiment by HMM, BMM structured using mutual information and BMM structured using multi-resolution independence test. Experimental results achieved improvement of phone recognition rate of male of 0.6%, improvement of phone recognition rate of female of 0.6%, and improvement of phone recognition rate of mix of 1.3%. 1. (Hidden Markov Model, HMM) HMM (Dynamic Bayesian Network, DBN) HMM HMM HMM J. Bilmes Buried Markov Model (BMM) 1) BMM HMM BMM BMM BMM 2 BMM 3 BMM 4 5 1 Graduate School of Engineering, Kobe University 2 Organization of Advanced Science and Technology, Kobe University 1 c 2009 Information Processing Society of Japan

2. Buried Markov Model 2.1 Buried Markov Model Hidden Markov Model 1 HMM (hidden) BMM (buried) Buried Markov Model BMM 1 Buried Markov Model Fig. 1 Structure of Buried Markov Model BMM (1) P r(x 1:T ) = P r(x t z t (q t ), q t )P r(q t q t 1 ) (1) t x 1:T T q z t t z t t q t 2.2 BMM Pairwise Pairwise I (X, Z q) > δ 1 (2) I (Z, Z i ) < δ 2 I (X, Z) Z i Z (3) I (X, Z) < δ 3 (4) X Z Z δ 1 3 (2) X Z q X q q (4) X Z q q (3) X Z Z X Z i Z X Z i X Z Z U(Z) = I(X, Z q) I(X, Z) Z X BMM 2 c 2009 Information Processing Society of Japan

3.1 (Multi-resolution Independence Test) R I J I J ( 3) c 1,, c K K IJ N p 1,, p K B R D Fig. 2 2 Buried Markov Model Method to structure Buried Markov Model P r(d p 1 K, B R, R) = N! p c k k c k! (5) (5) p 1 K BMM HMM HMM Pairwise BMM Pairwise HMM HMM 3. BMM BMM 2) 3) 4) 3 Fig. 3 Histgramization 3 c 2009 Information Processing Society of Japan

P r(p 1 K) = Γ(γ) p γ k 1 k Γ(γ k ) (6) γ = Σ K γ k γ k Γ(x) P r(d) p k (5) (6) P r(d) P r(d) = P r(d p 1 K )P r(p 1 K )dp 1 K = Γ(γ) Γ(γ + N) Γ(γ k + c k ) Γ(γ k ) D M I M I P r(d) = P r(d M I)P r(m I) + P r(d M I)P r(m I) (8) (8) P r(m I) ρ P r(m I ) 1 ρ [ ] P r(m I D) = 1/ 1 + 1 ρ P r(d M I ) ρ P r(d M I ) P r(d M I) P r(d M I) (9) P r(d M I) = P r(d M I ) = Γ(γ) Γ(γ + N) Γ(γ k + c k ) Γ(γ k ) Υ(C K, γ K ) (10) Γ(α) Γ(α + N) I i=1 Γ(α i + c i ) Γ(α i ) Γ(β) Γ(β + N) J j=1 Γ(β j + c j ) Γ(β j ) Υ(C I, α I)Υ(C J, β J) (11) (10) (11) γ = Σ K γ k α = Σ I i=1α i β = Σ J j=1β j α i = β j = γ k = 1 (10) (11) (9) (6) (7) (9) P r(m I D) = 1/ [ 1 + ] (1 ρ)υ(ck, γk) ρυ(c I, α I)Υ(C J, β J) (12) R (13) P r(m I R, D) = (12) P r(m I B R, R, D)P r(b R R, D)dB R (13) B R R 3 R P r(m I D) R P r(b R R, D) R R max R R 1, 3.2 (Spearman s rank correlation coefficient) ρ = 1 6 n i=1 D2 i (n 1)n(n + 1) n X Y i X i,y i D i = rank(x i ) rank(y i ) ρ (14) 4 c 2009 Information Processing Society of Japan

3.3 (Kendall tau rank correlation coefficient) τ = P Q 1 n(n 1) (15) 2 n X Y 1 n(n 1) 2 a b P X a < X b Y a < Y b X a > X b Y a > Y b Q X a < X b Y a > Y b X a > X b Y a < Y b P Q P τ 1 Q τ 1 P Q τ 0 4. BMM (ASJ-PB) (ASJ-JNAS) ( 100 10 ) GMTK 5) 16 khz 0 MFCC 12 36 10 ms 25ms 43 1 BMM 5 5.4 BMM 0.6 0.6 1.3 5. 4 [ ] Fig. 4 Phone recognition rate [%] BMM GMTK JNAS Pairwise 1) J.A. Bilmes, Buried Markov models: a graphical-modeling approach to automatic speech recognition,computer Speech and Language, Volume 17, Issues 2-3, pp. 213-231, 2003. 2) D. Margaritis et al., A Bayesian Multiresolution Independence Test for Continuous Variables, Proceedings of the 17th Conference in Uncertainty in Artificial Intelligence(UAI), pp. 346-353, 2001. 5 c 2009 Information Processing Society of Japan

3) J. L. Myers, A. D. Well, Research Design and Statistical Analysis (second edition ed.), pp. 508, 2003. 4) H. Abdi, Kendall rank correlation, Neil Salkind (Ed.), Encyclopedia of Measurement and Statistics, 2007. 5) J.A. Bilmes and G. Zweig, The Graphical Models Toolkit: An open source software system for speech and time-series processing, ICASSP, Orland, 3916-3919, 2002. 6 c 2009 Information Processing Society of Japan