FURTHER EXTENSION OF THE GENERALIZED HURWITZ-LERCH ZETA FUNCTION OF TWO VARIABLES

Σχετικά έγγραφα
SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

The k-α-exponential Function

A summation formula ramified with hypergeometric function and involving recurrence relation

Homomorphism in Intuitionistic Fuzzy Automata

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation

ON NEGATIVE MOMENTS OF CERTAIN DISCRETE DISTRIBUTIONS

Commutative Monoids in Intuitionistic Fuzzy Sets

Coefficient Inequalities for a New Subclass of K-uniformly Convex Functions

Roman Witu la 1. Let ξ = exp(i2π/5). Then, the following formulas hold true [6]:

PROPERTIES OF CERTAIN INTEGRAL OPERATORS. a n z n (1.1)

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

2 Composition. Invertible Mappings

n=2 In the present paper, we introduce and investigate the following two more generalized

C.S. 430 Assignment 6, Sample Solutions

SPECIAL FUNCTIONS and POLYNOMIALS

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

On Generating Relations of Some Triple. Hypergeometric Functions

Uniform Convergence of Fourier Series Michael Taylor

4.6 Autoregressive Moving Average Model ARMA(1,1)

On the k-bessel Functions

M a t h e m a t i c a B a l k a n i c a. On Some Generalizations of Classical Integral Transforms. Nina Virchenko

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Statistical Inference I Locally most powerful tests

Reccurence Relation of Generalized Mittag Lefer Function

Congruence Classes of Invertible Matrices of Order 3 over F 2

Example Sheet 3 Solutions

Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation. Mathematica StandardForm notation

Inverse trigonometric functions & General Solution of Trigonometric Equations

Math221: HW# 1 solutions

Generalized fractional calculus of the multiindex Bessel function

g-selberg integrals MV Conjecture An A 2 Selberg integral Summary Long Live the King Ole Warnaar Department of Mathematics Long Live the King

SOME PROPERTIES OF FUZZY REAL NUMBERS

Section 8.3 Trigonometric Equations

A General Note on δ-quasi Monotone and Increasing Sequence

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Solutions to Exercise Sheet 5

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

J. of Math. (PRC) Banach, , X = N(T ) R(T + ), Y = R(T ) N(T + ). Vol. 37 ( 2017 ) No. 5

EXTENDED WRIGHT-BESSEL FUNCTION AND ITS PROPERTIES

D Alembert s Solution to the Wave Equation

Fractional Calculus of a Class of Univalent Functions With Negative Coefficients Defined By Hadamard Product With Rafid -Operator

ON INTEGRAL MEANS FOR FRACTIONAL CALCULUS OPERATORS OF MULTIVALENT FUNCTIONS. S. Sümer Eker 1, H. Özlem Güney 2, Shigeyoshi Owa 3

Homework 3 Solutions

derivation of the Laplacian from rectangular to spherical coordinates

Second Order Partial Differential Equations

The k-bessel Function of the First Kind

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

A Note on Intuitionistic Fuzzy. Equivalence Relation

Homomorphism of Intuitionistic Fuzzy Groups

The Negative Neumann Eigenvalues of Second Order Differential Equation with Two Turning Points

Other Test Constructions: Likelihood Ratio & Bayes Tests

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

Fractional Colorings and Zykov Products of graphs

Approximation of distance between locations on earth given by latitude and longitude

Additional Results for the Pareto/NBD Model

ExpIntegralE. Notations. Primary definition. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation

CERTAIN SUBCLASSES OF UNIFORMLY STARLIKE AND CONVEX FUNCTIONS DEFINED BY CONVOLUTION WITH NEGATIVE COEFFICIENTS

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Solution Series 9. i=1 x i and i=1 x i.

Problem Set 3: Solutions

Arithmetical applications of lagrangian interpolation. Tanguy Rivoal. Institut Fourier CNRS and Université de Grenoble 1

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

EE512: Error Control Coding

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

w o = R 1 p. (1) R = p =. = 1

ST5224: Advanced Statistical Theory II

ACTA MATHEMATICAE APPLICATAE SINICA Nov., ( µ ) ( (

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

The Simply Typed Lambda Calculus

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

Intuitionistic Fuzzy Ideals of Near Rings

Generating Set of the Complete Semigroups of Binary Relations

1. Introduction and Preliminaries.

Heisenberg Uniqueness pairs

THE SECOND ISOMORPHISM THEOREM ON ORDERED SET UNDER ANTIORDERS. Daniel A. Romano

CRASH COURSE IN PRECALCULUS

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

STRONG DIFFERENTIAL SUBORDINATIONS FOR HIGHER-ORDER DERIVATIVES OF MULTIVALENT ANALYTIC FUNCTIONS DEFINED BY LINEAR OPERATOR

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Every set of first-order formulas is equivalent to an independent set

Takeaki Yamazaki (Toyo Univ.) 山崎丈明 ( 東洋大学 ) Oct. 24, RIMS

Section 7.6 Double and Half Angle Formulas

Areas and Lengths in Polar Coordinates

Η ΨΥΧΙΑΤΡΙΚΗ - ΨΥΧΟΛΟΓΙΚΗ ΠΡΑΓΜΑΤΟΓΝΩΜΟΣΥΝΗ ΣΤΗΝ ΠΟΙΝΙΚΗ ΔΙΚΗ

Web-based supplementary materials for Bayesian Quantile Regression for Ordinal Longitudinal Data

( y) Partial Differential Equations

Homework 8 Model Solution Section

GÖKHAN ÇUVALCIOĞLU, KRASSIMIR T. ATANASSOV, AND SINEM TARSUSLU(YILMAZ)

Parametrized Surfaces

The semiclassical Garding inequality

High order interpolation function for surface contact problem

Εγχειρίδια Μαθηµατικών και Χταποδάκι στα Κάρβουνα

Bessel functions. ν + 1 ; 1 = 0 for k = 0, 1, 2,..., n 1. Γ( n + k + 1) = ( 1) n J n (z). Γ(n + k + 1) k!

The Pohozaev identity for the fractional Laplacian

Concrete Mathematics Exercises from 30 September 2016

Instruction Execution Times

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Transcript:

FURTHER EXTENSION OF THE GENERALIZED HURWITZ-LERCH ZETA FUNCTION OF TWO VARIABLES KOTTAKKARAN SOOPPY NISAR* Abstract. The main aim of this paper is to give a new generaliation of Hurwit-Lerch Zeta function of two variables.also, we investigate several interesting properties such as integral representations, summation formula and a connection with generalied hypergeometric function. To strengthen the main results we also consider many important special cases. arxiv:176.3516v1 [math.ca] 12 Jun 217 k 1. Introduction The Appell hypergeometric function F 1 of two variables [15] is defined by F 1 [a,b,b a) k+l b) k b ) l ;c;,t] c) k+l k! l! [ ] a) k b) k a+k, b ; 2F 1 c) k c+k; t k k! max{r),rt)} 1 and Ra) > ) The confluent forms of Humbert functions are [15]: a) k+l b) k Φ 1 [a,b;c;,t] c) k+l k! l! and Φ 2 [b,b ;c;,t] Φ 3 [b;c;,t] b) k b ) l c) k+l k! l! b) k c) k+l k! l! 1.1) < 1, t < ) 1.2) <, t < ) 1.3) <, t < ) 1.4) The Appell s type generalied functions M i by considering product of two 3 F 2 functions is given in [7]. From these expansions, we recall one of the generalied Appell s type functions of two variables M 4 and is defined by M 4 µ,η,η,δ,δ ;ν,ξ,ξ ;x,y) k l µ) k+l η) k η ) l δ) k δ ) l ν) k+l ξ) k ξ) l x k y l k! l! 1.5) 21 Mathematics Subject Classification. 11M6, 11M35, 33B15, 33C6. Key words and phrases. Gamma function; Beta function; Hypergeometric function; Generalied Hurwit-Lerch Zeta function. *Corresponding author. 1

2 K.S. NISAR The Hurwit-Lerch Zeta function Φ,s,a) is defined by see [1, 11]): k Φ,s,a) k +a) s, a C Z ;s C ) when < 1;Rs) > 1when 1. k 1.6) For more details about the properties and particular cases found in [4, 1, 11]. For more generaliations of the Hurwit-Lerch Zeta function one may refer to [1, 2, 5, 6, 9, 12 14]. Pathan and Daman [8] give another generaliation of the form Φ α,β;γ,λ,µ;ν,t,s,a) : α) k β) k λ) l µ) l γ) k ν) l k!l! γ,ν,a {, 1, 2,,},s C; k +n+a) s Rs+γ +ν α β µ λ) > when 1 and t 1 1.7) Recently Choi and Parmar [3] introduced two variable generaliation by µ) k+l η) k η ) l Φ µ,η,η ;ν,t,s,a) : ν) k+l k!l! k +l+a) s µ,η,η C; a,ν C Z ; s,,t C when ) < 1 and t < 1; and Rs+ν µ η η ) > when 1 and t 1 1.8) In this paper, we further extended the Hurwit-Lerch Zeta function of two variables and is defined by Φ µ,η,η,δ,δ ;ν,ξ,ξ,t,s,a) : µ) k+l η) k η ) l δ) k δ ) l ν) k+l ξ) k ξ ) l k!l! k +l+a) s µ,η,η,δ,δ C;a,ν,ξ,ξ C Z ; s,,t C when ) < 1 and t < 1; and Rs+ν +ξ +ξ µ η η δ δ ) > when 1 and t 1 1.9) Special cases: Case 1. If δ ξ,δ ξ, then 1.9) reduces to equation 3) of [3] which is given in 1.8). Case 2. If µ ν and δ ξ,δ ξ in 1.9), then we get the generalied Hurwit-Lerch Zeta function of [8]: Φ µ,η,t,s,a) : µ) k η) l k!l! k +l +a) s µ,η C; a C Z ; s C when ) < 1 and t < 1; and 1.1) Rs µ η) > when 1 and t 1 The limiting case of 1.9) are as follows:

Case 3. If η then we have HURWITZ LERCH ZETA FUNCTION 3 Φ µ,η,δ,δ ;ν,ξ,ξ,t,s,a) : lim {Φ η µ,η,η,δ,δ ;ν,ξ,ξ,t/η,s,a)} µ) k+l η) k δ) k δ ) l ν) k+l ξ) k ξ ) l k!l! k +l+a) s µ,η,δ,δ C;a,ν,ξ,ξ C Z ; s,,t C when ) < 1 and t < 1; and Rs+ν +ξ +ξ µ η δ δ ) > when 1 and t 1 Case 4. If µ then we have 1.11) Φ η,η,δ,δ ;ν,ξ,ξ,t,s,a) : lim {Φ µ,η,η α,δ,δ ;ν,ξ,xi /µ,t/µ,s,a)} η) k η ) l δ) k δ ) l ν) k+l ξ) k ξ ) l k!l! k +l+a) s η,η,δ,δ C;a,ν,ξ,ξ C Z ; s,,t C when ) < 1 and t < 1; and Rs+ν +ξ +ξ η δ δ ) > when 1 and t 1 Case 4. If min µ, η ) then we have Φ η,δ,δ ;ν,ξ,ξ,t,s,a) : lim min µ, η ) { Φ µ,η,η,δ,δ ;ν,ξ,ξ µ, t µη ),s,a η) k δ) k δ ) l ν) k+l ξ) k ξ ) l k!l! k +l+a) s η,δ,δ C;a,ν,ξ,ξ C Z ; s,,t C when ) < 1 and t < 1; and )} 1.12) Rs+ν +ξ +ξ η δ δ ) > when 1 and t 1 1.13) 2. Integral representations Theorem 2.1. The following integral representation of 1.9) holds true: Φ µ,η,η,δ,δ ;ν,ξ,ξ,t,s,a) 1 Γs) x s 1 e ax M 4 µ,η,η,δ,δ ;ν,ξ,ξ ;e x,te x) dx min{rs),ra)} > when 1 1), t 1t 1),Rs) > 1,when 1,t 1) 2.1) Corollary 2.1. The following integral representations for Φ µ,η,δ,δ ;ν,ξ,ξ,t,s,a),φ η,η,δ,δ ;ν,ξ,ξ,t,s,a) and Φ η,δ,δ ;ν,ξ,ξ,t,s,a) in 1.11), 1.12) and 1.13) holds true when δ ξ,δ ξ : Φ µ,η;ν,t,s,a) 1 Γs) x s 1 e ax Φ 1 µ,η;ν;e x,te x) dx. 2.2)

4 K.S. NISAR which is equation 14) of [3]. Φ η,η ;ν,t,s,a) 1 Γs) which is equation 15) of [3]. and Φ η;ν,t,s,a) 1 Γs) x s 1 e ax Φ 2 η,η ;ν;e x,te x) dx. 2.3) x s 1 e ax Φ 3 η;ν;e x,te x) dx. 2.4) min{rs),ra)} > when 1 1), t 1t 1),Rs) > 1,when 1,t 1), which is equation 16) of [3]. Corollary 2.2. If we set µ ν,δ ξ,δ ξ in then 1.5) reduces as yields [8]: Φ µ,η,η ;µ,t,s,a) 1 Γs) M 4 [µ,η,η,δ,δ ;µ,δ,δ ;x,y] 1 x) η 1 y) η x s 1 e ax 1 e x ) η 1 te x ) η dx, 2.5) minrs) >,Ra) > when 1 1), t 1t 1),Rs) > 1,when 1,t 1). Remark 2.1. If we take t in 2.5), then it give equation 19) of [3] and by setting t,η 1 then 2.5) reduce to equation 2) of [3] Theorem 2.2. Each of the following integrals for Φ µ,η,η,δ,δ ;ν,ξ,ξ,t,s,a) holds true and Φ µ,η,η,δ,δ ;ν,ξ,ξ,t,s,a) Γν) Γµ)Γν µ) Φ µ,η,η,δ,δ ;ν,ξ,ξ,t,s,a) y µ 1+y) νφ η,η,ξ,δ;δ,ξ,t,s,a) 2.6) Γν) x s 1 e ax y α 1 Γs)Γµ)Γν µ) 1+y) ν ) η) k δ) k e x k ) η ) l δ ) k te x l dxdy k! 1+y l! y k l 2.7) Corollary 2.3. If δ δ 1 and ξ ξ 1, then we get Γν) Φ µ,η,η ;ν,t,s,a) Γs)Γµ)Γν µ) x s 1 e ax y µ 1 1+y) ν 1 ye x 1+y Rν) > Rµ) > ;min{rs),ra)} > ) ) η ) η 1 tye x dxdy, 1+y

HURWITZ LERCH ZETA FUNCTION 5 Theorem 2.3. The following summation formula hold true. s) r r! Φ µ,η,η ;ν,t,s+r,a)x r Φ µ,η,η ;ν,t,s,a x), x < a ;s 1) 2.8) r Proof. Using 1.9), we have Φ µ,η,η ;ν,t,s,a x) r µ) k+l η) k η ) l δ) k δ ) l ν) k+l ξ) k ξ) l µ) k+l η) k η ) l δ) k δ ) l ν) k+l ξ) k ξ) l { s) r µ)k+l η) k η ) l δ) k δ ) l s! ν) k+l ξ) k ξ) l k!l!k +l+a x) s k!l!k +l+a) s in view of definition 1.9), we reach the required result. 1 k!l!k +l+a) s+r x k +l+a } x k ) s 3. A connection with generalied hypergeometric function In this section, we establish the connection between 1.9) and generalied hypergeometric function. Theorem 3.1. For a { 1, 2, } and, the following explicit series representation holds true Φ µ,η,η,δ,δ ;ν,ξ,ξ,t,s,a) µ) k η) k δ) k k ν) k ξ) k a+k) s k! k F η,δ,1 ξ k, k;1 η k,1 δ k,ξ ; t ) 3.1) where F ) is the generalied hypergeometric function [4] defined by p i1 F β 1,,β p ;δ 1,,δ q ;) p F q β 1,,β p ;δ 1,,δ q ;) β i) n n q j1 β j) n n!, 3.2) p,q Z + ;b j, 1, 2, Proof. Using 1.9) and the identity [4] Am,k) which implies that Now, m k Φ µ,η,η,δ,δ ;ν,ξ,ξ,t,s,a) k m k Am,m k) n µ) k+l η) k l η ) l δ) k l δ ) l k l t l ν) k+l l ξ) k l ξ ) l k l)!l! k +l+a) s l k l)! 1)l k! k) l, l k

6 K.S. NISAR we get, η) k l 1)l η) k 1 η k) l, l k Φ µ,η,η,δ,δ ;ν,ξ,ξ,t,s,a) k k l µ) k 1) l η) k η ) l 1) l δ) k δ ) l 1 ξ k) l k) l k l t l ν) k 1 η k) l 1 δ k) l 1) l ξ) k ξ ) l 1) l k)!l! Lastly, summing the n-series, we get the required result. k 1 k +l +a) s Corollary 3.1. If we set δ ξ, then we get equation 28) of [8] as µ) k η) k k Φ ν) k a+k) s k! F η,ξ,1 ξ k, k;1 η k,1 ξ k,ξ ; t ) Corollary 3.2. If we set ν η,δ ξ and δ ξ in theorem 3.1 then we get µ) k k Φ a+k) s k! F η, k;1 η k,δ ; t ) k 3.3) 3.4) 4. Concluding remarks An extension of generalied Hurwit-Lerch Zeta function is established in this paper and studied its properties. The integral representations and relation with Appell s type function are established. Finally, the connection with hypergeometric function also given. The results derived here is more general in nature which help us to derive many interesting special cases. References [1] M. A. Chaudhry and S. M. Zubair, On a Class of Incomplete Gamma Functions with Applications, Chapman and Hall, CRC Press Company), Boca Raton, London, New York and Washington, D. C., 21. [2] J. Choi, D. S. Jang and H. M. Srivastava, A generaliation of the Hurwit-Lerch Zeta function, Integral Transforms Spec. Funct. 19 28), 6579. [3] J. Choi and R. Parmar, An extension of the generalied Hurwit-Lerch Zeta function of two variable, Filomat 31 217), 91-96. [4] A. Erdelyi, Higher transdental functions, 1, McGraw Hill book Co.,New York, 1953 Filomat 31 217), 91-96. [5] D. Jankov, T. K. Pogany and R. K. Saxena, An extended general Hurwit-Lerch Zeta function as a Mathieu a, )-series, Appl. Math. Lett., 24 211), 14731476. [6] S. D. Lin and H. M. Srivastava, Some families of the Hurwit-Lerch ZZeta functions and associated fractional derivative and other integral representations, Appl. Math. Comput. 154 24), 725733 [7] M.A. Khan and G.S. Abukhammash, FOn a generaliations of Appell s functions of two variables, Pro Mathematica, 31-32XVI) 22, 62-83.

HURWITZ LERCH ZETA FUNCTION 7 [8] M.A. Pathan and O. Daman, Further generaliation of Hurwit eta function, MATH. SCI. RES. J. 161) 212, 251-259 [9] H. M. Srivastava, A new family of the -generalied Hurwit-Lerch Zeta functions with applications, Appl. Math. Inf. Sci. 84)214), 148515. [1] H. M. Srivastava and J. Choi, Series Associated with the Zeta and Related Functions, Kluwer, Acedemic Publishers, Dordrecht, Boston and London, 21. [11] H. M. Srivastava and J. Choi, Zeta and q-zeta Functions and Associated Series and Integrals, Elsevier Science, Publishers, Amsterdam, London and New York, 212. [12] H. M. Srivastava, D. Jankov, T. K. Pogany and R. K. Saxena, Two-sided inequalities for the extended Hurwit-Lerch Zeta function, Comput. Math. Appl. 62 211), 516522. [13] H. M. Srivastava, M.-J. Luo and R. K. Raina, New results involving a class of generalied Hurwit-Lerch Zeta functions and their applications, Turkish J. Anal. Number Theory 11) 213), 2635. [14] H. M. Srivastava, R. K. Saxena, T. K. Pogany and R. Saxena, Integral and computational representations of the extended Hurwit-Lerch Zeta function, Integral Transforms Spec. Funct. 227) 211), 48756. [15] H. M. Srivastava and P. W. Karlsson, Multiple Gaussian Hypergeometric Series, Halsted Press Ellis Horwood Limited, Chichester), John Wiley and Sons, New York, Chichester, Brisbane and Toronto, 1985. Kottakkaran Sooppy Nisar: Department of Mathematics, College of Arts and Science- Wadi Aldawaser, 11991, Prince Sattam bin Abdulai University, Alkharj, Saudi Arabia E-mail address: n.sooppy@psau.edu.sa