Introduction to Theory of. Elasticity. Kengo Nakajima Summer

Σχετικά έγγραφα
Dr. D. Dinev, Department of Structural Mechanics, UACEG

MECHANICAL PROPERTIES OF MATERIALS

Stresses in a Plane. Mohr s Circle. Cross Section thru Body. MET 210W Mohr s Circle 1. Some parts experience normal stresses in

Chapter 5 Stress Strain Relation

(Mechanical Properties)

= l. = l. (Hooke s Law) Tensile: Poisson s ratio. σ = Εε. τ = G γ. Relationships between Stress and Strain

Chapter 7 Transformations of Stress and Strain

Strain gauge and rosettes

ADVANCED STRUCTURAL MECHANICS

Mechanics of Materials Lab

Mechanical Behaviour of Materials Chapter 5 Plasticity Theory

Macromechanics of a Laminate. Textbook: Mechanics of Composite Materials Author: Autar Kaw

Aerodynamics & Aeroelasticity: Beam Theory

Capacitors - Capacitance, Charge and Potential Difference


Homework 8 Model Solution Section

the total number of electrons passing through the lamp.

[1] P Q. Fig. 3.1

Constitutive Equation for Plastic Behavior of Hydrostatic Pressure Dependent Polymers

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

Matrices Review. Here is an example of matrices multiplication for a 3x3 matrix

Numerical Analysis FMN011

Μηχανουργική Τεχνολογία & Εργαστήριο Ι

CONSULTING Engineering Calculation Sheet

Technical Data for Profiles. α ( C) = 250 N/mm 2 (36,000 lb./in. 2 ) = 200 N/mm 2 (29,000 lb./in 2 ) A 5 = 10% A 10 = 8%

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Potential Dividers. 46 minutes. 46 marks. Page 1 of 11

Solutions to Exercise Sheet 5

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

ΕΛΕΓΧΟΣ ΤΩΝ ΠΑΡΑΜΟΡΦΩΣΕΩΝ ΧΑΛΥΒ ΙΝΩΝ ΦΟΡΕΩΝ ΜΕΓΑΛΟΥ ΑΝΟΙΓΜΑΤΟΣ ΤΥΠΟΥ MBSN ΜΕ ΤΗ ΧΡΗΣΗ ΚΑΛΩ ΙΩΝ: ΠΡΟΤΑΣΗ ΕΦΑΡΜΟΓΗΣ ΣΕ ΑΝΟΙΚΤΟ ΣΤΕΓΑΣΤΡΟ

Lecture 6 Mohr s Circle for Plane Stress

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

TMA4115 Matematikk 3

D Alembert s Solution to the Wave Equation

Linearized Lifting Surface Theory Thin-Wing Theory

3o/B Mάθημα: Δικτύωμα / 2D-Truss in Batch

Delhi Noida Bhopal Hyderabad Jaipur Lucknow Indore Pune Bhubaneswar Kolkata Patna Web: Ph:

University of Waterloo. ME Mechanical Design 1. Partial notes Part 1

High order interpolation function for surface contact problem

Example Sheet 3 Solutions

6.4 Superposition of Linear Plane Progressive Waves

Concrete Mathematics Exercises from 30 September 2016

Instruction Execution Times

Radiation Stress Concerned with the force (or momentum flux) exerted on the right hand side of a plane by water on the left hand side of the plane.

1. Ηλεκτρικό μαύρο κουτί: Αισθητήρας μετατόπισης με βάση τη χωρητικότητα

1 String with massive end-points

ΚΕΦΑΛΑΙΟ 1 Ο 1.1. ΕΛΑΣΤΙΚΟ ΣΤΕΡΕΟ

Kul Finite element method I, Exercise 07/2016

ΜΕΤΑΠΤΥΧΙΑΚΗ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ «ΘΕΜΑ»

Biodiesel quality and EN 14214:2012

Surface Mount Multilayer Chip Capacitors for Commodity Solutions

Parametrized Surfaces

ΜΕΤΑΛΛΙΚΑ ΥΠΟΣΤΥΛΩΜΑΤΑ ΥΠΟ ΘΛΙΨΗ ΚΑΙ ΚΑΜΨΗ

wave energy Superposition of linear plane progressive waves Marine Hydrodynamics Lecture Oblique Plane Waves:

4.2 Differential Equations in Polar Coordinates

Uniform Convergence of Fourier Series Michael Taylor

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Calculating the propagation delay of coaxial cable

Chapter 2. Stress, Principal Stresses, Strain Energy

5.4 The Poisson Distribution.

Congruence Classes of Invertible Matrices of Order 3 over F 2

Lecture 5 Plane Stress Transformation Equations

Chapter 7a. Elements of Elasticity, Thermal Stresses

Spherical Coordinates

Study of In-vehicle Sound Field Creation by Simultaneous Equation Method

ST5224: Advanced Statistical Theory II

Properties of Nikon i-line Glass Series

Grey Cast Irons. Technical Data

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Lecture 8 Plane Strain and Measurement of Strain

ΣΥΓΚΡΙΣΗ ΑΝΑΛΥΤΙΚΩΝ ΚΑΙ ΑΡΙΘΜΗΤΙΚΩΝ ΜΕΘΟ ΩΝ ΓΙΑ ΤΗ

Ingenieurbüro Frank Blasek - Beratender Ingenieur Am Kohlhof 10, Osterholz-Scharmbeck Tel: 04791/ Fax: 04791/

Ingenieurbüro Frank Blasek - Beratender Ingenieur Am Kohlhof 10, Osterholz-Scharmbeck Tel: 04791/ Fax: 04791/

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

ΓΗΠΛΧΜΑΣΗΚΖ ΔΡΓΑΗΑ ΑΡΥΗΣΔΚΣΟΝΗΚΖ ΣΧΝ ΓΔΦΤΡΧΝ ΑΠΟ ΑΠΟΦΖ ΜΟΡΦΟΛΟΓΗΑ ΚΑΗ ΑΗΘΖΣΗΚΖ

Appendix A. Curvilinear coordinates. A.1 Lamé coefficients. Consider set of equations. ξ i = ξ i (x 1,x 2,x 3 ), i = 1,2,3

Math 6 SL Probability Distributions Practice Test Mark Scheme

ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟΔΟΙ ΣΤΙΣ ΚΑΤΑΣΚΕΥΕΣ

Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O

ΜΔΛΔΣΖ ΔΝΓΟΣΡΑΥΤΝΖ Δ ΥΑΛΤΒΔ ΘΔΡΜΖ ΔΛΑΖ


Other Test Constructions: Likelihood Ratio & Bayes Tests

Μηχανική Μάθηση Hypothesis Testing

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

Thermistor (NTC /PTC)

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Ηλεκτρονικοί Υπολογιστές IV

Figure 1 T / K Explain, in terms of molecules, why the first part of the graph in Figure 1 is a line that slopes up from the origin.

Forced Pendulum Numerical approach

ΑΝΩΤΑΤΗ ΣΧΟΛΗ ΠΑΙ ΑΓΩΓΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΕΚΠΑΙ ΕΥΣΗΣ ΠΑΡΑΔΟΤΕΟ ΕΠΙΣΤΗΜΟΝΙΚΗ ΕΡΓΑΣΙΑ ΣΕ ΔΙΕΘΝΕΣ ΕΠΙΣΤΗΜΟΝΙΚΟ ΠΕΡΙΟΔΙΚΟ

5. Choice under Uncertainty

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems

Code Breaker. TEACHER s NOTES

Οριακή και Παραμορφωσιακή Ανάλυση Κατασκευών με χρήση Μαθηματικού Προγραμματισμού

( ) 2 and compare to M.

Statistical Inference I Locally most powerful tests

The ε-pseudospectrum of a Matrix

Approximation of distance between locations on earth given by latitude and longitude

Transcript:

Introduction to Theor of lasticit Summer Kengo Nakajima Technical & Scientific Computing I (48-7) Seminar on Computer Science (48-4)

elast Theor of lasticit Target Stress Governing quations

elast 3 Theor of lasticit Continuum Mechanics, Solid Mechanics lastic Material Theor of lasticit lastomechanics Theor of lasticit, lastomechanics

elast 4 What is lastic Material? Deformation is proportional to load Load Hooke s law ample Spring k -mg Metal, Fiber, Resin If load is removed, deformation goes to. Original shape Deformation

elast 5 If load (deformation) increases, material is not elastic an more Yield Yield point Load lastic limit Yield Point Inelastic Plastic Deformation

elast 6 Deformation does not go to with removed load, after elastic limitation. Initial shape is not recovered an more. Load Permanent deformation Yield Point Permanent Deformation Deformation

elast 7 Theor of lasticit covers Up to Yield Point, lastic Limitation Load Small deformation Infinitesimal theor Shape does not change Linear Plastic/Inelastic Nonlinear More interesting part of research Deformation lasticit it is more important t in practical engineering i To control load/deformation below elastic limitation is important t Plastic/Inelastic: Accident condition

elast 8 Theor of lasticit Target Stress Governing quations

elast 9 Stress (/6) If eternal force is elastic bod, the bod deforms, and resists against eternal force b internal force generated b intermolecular forces. Deformation of the bod reach stead state, when eternal force and internal force are balanced. ternal Force Surface force Bod force ternal/internal forces are vectors.

elast Stress (/6) An elastic bod in under balanced condition with eternal forces at n points. P n- P P n P

elast Stress (3/6) If we assume an arbitrar surface S, internal force between part-a and part-b acts on through surface S. P n- P n S P P n A B

elast Stress (4/6) Consider small surface ΔS on surface S of part-a, A and resultant force vector ΔF If p is considered d as averaged force per area ΔF/ΔS with infinitesimal ΔS, p is called stress vector Δ F Δ P n- p lim ΔF S Δ S n S P n A ΔS

elast 3 Stress (5/6) Stress: Force Vector per Unit Surface Positive for etension, negative for compression On a surface Normal: Normal stress) Parallel: Shear stress) Yield Stress is an important design parameter. Δ F Δ P n- p lim ΔF S Δ S n S P n A ΔS

elast 4 Stress (6/6) Stress components in orthogonal coordinate sstem 9 t i 3D 9 components in 3D normal stress shear stress {}

elast 5 Theor of lasticit Target Stress Governing quations

elast 6 Governing quations in Theor of lasticit quilibrium quations Compatibilit Conditions Displacement-Strain Constitutive quations Stress-Strain D eample

elast 7 quilibrium d d d quations in X-ais Infinitesimal d G d d d lement d d d d d d X d d Bod Force in X-direction X

elast 8 quilibrium d d quations in Y-ais G Infinitesimal d d d d lement d d d d d d Y d d Bod Force in Y-direction Y

elast 9 d d Moment around Z-ais G at point-g d d d d d d d d d d d d d d

elast quilibrium quations in D X Y

elast quilibrium quations in 3D 6 Independent Stress Components {} X Y Z

elast What is Strain? Solid Mechanics Load Deformation Stress Load/Force per unit surface Strain Rate of Deformation/Displacement

elast 3 Strain: Rate of Displacement Normal strain L ΔL ΔL L Shear strain Δ L Δ L

elast 4 Strain-Displacement Displacement in 3D: (u, v, w) f D I fi it i l l t for D Infinitesimal lement Before Deformation: P, Q, R, After Deformation: P, Q, R R R P : (, ) d u / P Q P d Q v / Q : R : P': ( ( (, d u,, d ) ) v ) u v Q': ( d u d, v d u v R' : ( u d, d v d ) )

elast 5 Normal Strain - Displacement PQ P Q u d u d ( u ) d d u d R u / P R v / Q P d Q u u v w

elast 6 Shear Strain - Displacement d R u / P R v / Q u v w v w u P d Q

elast 7 Compatibilit Conditions p D 3D,,

elast 8 Constitutive qn s: Stress-Strain (/3) Young s Modulus Stress Strain: Proportional Stress-Strain: Proportional Proportionalit: (depends on material), Poisson s Ratio Bod deforms in Y- and Z- directions, even if eternal force is in X-direction. Poisson s s ratio is proportionalit for this lateral strain. depends on material Metal:.3 Rubber, Water:.5 (incompressible)

elast 9 Constitutive qn s: Stress-Strain (/3) q ( ) ffect of normal stress components in 3 directions ( ) (,, ) accumulation of each strain component ( ) { } ( ) { } ( ) { }

elast 3 Constitutive qn s: Stress-Strain (3/3) Shear strain components do not depend on normal stress components. The are proportional to shear stress. Lateral lastic Modulus: G,, G G G ( ) G

elast 3 Stress-Strain Relationship ( ) ( ) ( ) ( ) ( )

elast 3 Strain-Stress Relationship ( )( ) ( ) ( ) ( ) ( ) [ ] D { } [ ]{} D Incompressible Material (~.5): Special Treatment Needed

elast 33 Some Assumptions in this Class Isotropic Material Uniform, and (~.3) CFRP (Carbon Fiber Reinforced Plastics) Orthotropic

elast 34 Finite-lement Method Displacement-based FM Dependent Variable: Displacement Generall used approach This class adopts this approach Stress-based FM Dependent Variable: Stress

elast 35 D Problem tension of D truss element onl deforms in X-dir. Uniform sectional area A Young s Modulus u@x, ternal Force F@XL u X F Displacement-based FM u X