Introduction. Strong Electrolyte Weak Electrolyte Dissociation depends on concentration, model as reaction Speciation

Σχετικά έγγραφα
Introduction. Strong Electrolyte Weak Electrolyte Dissociation depends on concentration, model as reaction

1. Arrhenius. Ion equilibrium. ก - (Acid- Base) 2. Bronsted-Lowry *** ก - (conjugate acid-base pairs) HCl (aq) H + (aq) + Cl - (aq)

REDOX (2) pe as a master variable. C. P. Huang University of Delaware CIEG 632

2. Chemical Thermodynamics and Energetics - I

Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O

Enthalpy data for the reacting species are given in the table below. The activation energy decreases when the temperature is increased.

Figure 1 T / K Explain, in terms of molecules, why the first part of the graph in Figure 1 is a line that slopes up from the origin.

Free Energy and Phase equilibria

Colligative Properties

Supporting Information

the total number of electrons passing through the lamp.

Electronic Supplementary Information

THERMODYNAMICS Exercise 1 6CO 2 gas photosynthesis to 6O 2aqua and C 6 H 12 O 6

Differential equations

Graded Refractive-Index

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

Technical Information T-9100 SI. Suva. refrigerants. Thermodynamic Properties of. Suva Refrigerant [R-410A (50/50)]

DuPont Suva 95 Refrigerant

Enthalpy and Entropy

4. ELECTROCHEMISTRY - II

Major Concepts. Multiphase Equilibrium Stability Applications to Phase Equilibrium. Two-Phase Coexistence

1 String with massive end-points

Cable Systems - Postive/Negative Seq Impedance

DuPont Suva. DuPont. Thermodynamic Properties of. Refrigerant (R-410A) Technical Information. refrigerants T-410A ENG

An experimental and theoretical study of the gas phase kinetics of atomic chlorine reactions with CH 3 NH 2, (CH 3 ) 2 NH, and (CH 3 ) 3 N

Chemistry 506: Allied Health Chemistry 2. Chapter 14: Carboxylic Acids and Esters. Functional Groups with Single & Double Bonds to Oxygen

Paper Reference. Paper Reference(s) 6665/01 Edexcel GCE Core Mathematics C3 Advanced. Thursday 11 June 2009 Morning Time: 1 hour 30 minutes

Homework 8 Model Solution Section

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Matrices and Determinants

DuPont Suva 95 Refrigerant

Free Energy Calculation

Supporting information. An unusual bifunctional Tb-MOF for highly sensing of Ba 2+ ions and remarkable selectivities of CO 2 /N 2 and CO 2 /CH 4

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

Supporting Information. A Combined Crossed Molecular Beams and ab Initio Investigation on the Formation of Vinylsulfidoboron (C 2 H

Supplementary Information 1.

Trigonometric Formula Sheet

Supplementary Materials for. Kinetic and Computational Studies on Pd(I) Dimer- Mediated Halogen Exchange of Aryl Iodides

Conductivity Logging for Thermal Spring Well

Multi-dimensional Central Limit Theorem

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C

4.6 Autoregressive Moving Average Model ARMA(1,1)

CONCENTRATIVE PROPERTIES OF AQUEOUS SOLUTIONS: DENSITY, REFRACTIVE INDEX, FREEZING POINT DEPRESSION, AND VISCOSITY

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

Περιβαλλοντική Βιοτεχνολογία- Environmental Biotechnology

Περιβαλλοντική Γεωχημεία

Other Test Constructions: Likelihood Ratio & Bayes Tests

CH 3 CH 2 COOCH 2 CH 2 CH 3 + H 2 O

Inverse trigonometric functions & General Solution of Trigonometric Equations

University of the Witwatersrand The Oxidation and Precipitation of Iron From a Manganese Sulphate Solution , -.

α i = m i /m o, m o κανονική Μοριακότητα (standard molality) 1 mol Kg -1.

Eight Examples of Linear and Nonlinear Least Squares

[1] P Q. Fig. 3.1

Second Order RLC Filters

Supporting Information for: electron ligands: Complex formation, oxidation and

SUPPLEMENTAL INFORMATION. Fully Automated Total Metals and Chromium Speciation Single Platform Introduction System for ICP-MS

Electronic Supplementary Information

Electronic structure and spectroscopy of HBr and HBr +

nitronium ion - ιόν νιτρονίου

5η ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ (Ηλεκτροχημεία)

Estimation of grain boundary segregation enthalpy and its role in stable nanocrystalline alloy design

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

PARTIAL NOTES for 6.1 Trigonometric Identities

The Simply Typed Lambda Calculus

Electronic Supplementary Information DFT Characterization on the Mechanism of Water Splitting Catalyzed by Single-Ru-substituted Polyoxometalates

Quadratic Expressions

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Μονοβάθμια Συστήματα: Εξίσωση Κίνησης, Διατύπωση του Προβλήματος και Μέθοδοι Επίλυσης. Απόστολος Σ. Παπαγεωργίου

Abstract Storage Devices

Homework 3 Solutions

#%" )*& ##+," $ -,!./" %#/%0! %,!

physicsandmathstutor.com Paper Reference Core Mathematics C4 Advanced Level Tuesday 23 January 2007 Afternoon Time: 1 hour 30 minutes

*H31123A0228* 1. (a) Find the value of at the point where x = 2 on the curve with equation. y = x 2 (5x 1). (6)

Lecture 2. Soundness and completeness of propositional logic

Selecting Critical Properties of Terpenes and Terpenoids through Group-Contribution Methods and Equations of State

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Supporting Information

VBA Microsoft Excel. J. Comput. Chem. Jpn., Vol. 5, No. 1, pp (2006)

Multi-dimensional Central Limit Theorem

ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΕΡΓΑΣΤΗΡΙΟ ΔΙΑΧΕΙΡΙΣΗΣ ΤΟΞΙΚΩΝ ΚΑΙ ΕΠΙΚΙΝΔΥΝΩΝ ΑΠΟΒΛΗΤΩΝ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

Example Sheet 3 Solutions

Chemistry 112 Name Homework Exam III Form A Section June 21,

Atkins & de Paula: Elements of Physical Chemistry, Fifth Edition ANSWERS TO END OF CHAPTER EXERCISES E F. E0.19 (a) / C 100 / C E0.

Reaction of a Platinum Electrode for the Measurement of Redox Potential of Paddy Soil

9-amino-(9-deoxy)cinchona alkaloids-derived novel chiral phase-transfer catalysts

2 Answer all the questions.

αριθμός δοχείου #1# control (-)

Areas and Lengths in Polar Coordinates

Large β 0 corrections to the energy levels and wave function at N 3 LO

Review Test 3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Non-volcanic Hot Springs from Deep Wells in the Kanto Plains, Osaka Plains, Ishikari Plains, Nobi Plains, and Ise-Shima-Suzuka Districts

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

Δείκτες- Ρυθμιστικά διαλύματα. Εισαγωγική Χημεία

Copper(II) complexes of salicylaldehydes and 2 hydroxyphenones: Synthesis, Structure,

Patrycja Miszczyk, Dorota Wieczorek, Joanna Gałęzowska, Błażej Dziuk, Joanna Wietrzyk and Ewa Chmielewska. 1. Spectroscopic Data.

Φασματοσκοπία υπεριώδους-ορατού (UV-Vis)

Areas and Lengths in Polar Coordinates

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

In your answer, you should make clear how evidence for the size of the nucleus follows from your description

Transcript:

Introduction Strong Electrolyte Weak Electrolyte Dissociation depends on concentration, model as reaction 8.2 Colligative properties Electrolyte dissociation changes concentration more than non-electrolyte (large dilution effect). Freezing pt. 5 g each acl 58.44g/mol, EG 62.7 g/mol, glucose 8 g/mol. Tf 27. K 27.7 K 272.7K. mole of each Tf 269.6 K 27.3 K 27.3 K smotic pressure,. mole of each Π 4.89 MPa 2.5 MPa 2.5 MPa Boiling pt elevation,. mole each Tb C.5 C.5C 2 8.3 Speciation H 2 l () H + ( aq) + H ( aq) K a, 298 H + [ ][ H ] 4 K a, 298 ΔG o 298 exp( RT) a H + a H --------------------- a H2 8.4 8.4 Concentration Scales and Standard States entity, superficial, apparent, nominal -- true -- molal - m i mol/(kg solvent) molarity - M i mol/l Standard States for electrolytes Standard State for water. K a 298, ( m H +γ H + m H γ H ) ( m o H + m o H a H2 ) m H +m H [ H + ][ H ] 3 4

8.5 Definition of ph ph log ( a H + ) 8.7 ph log [ H + ] 8.8 Solvent is important. 8.6 Thermodynamic etwork 8.7 Perspectives on Speciation 2H 2 () l H 3 + aq + Charge Balance ( ) H ( aq) AcH ( aq) + H 2 () l H 3 + aq + ( ) Ac ( aq) K VLE K SLE C 2 A ( v) C 2 A ( aq) C + aq C 2 A ( s) K a + ( ) CA ( aq) K sp K a2 2C + ( aq) + A 2 ( aq) 5 6 8.8 Acids and Bases Strong/Weak - Leveling effect - H 3 + H 2 H+ 4 + H Strong Acids - completely dissociate, superficial C A [Cl ] C A material balance for complete dissociation K a,w [H + ][H ] 4 equilibrium [H + ] [Cl ] + [H ] charge balance Proton Condition - [H + ] C A + [H ] proton condition Condition becomes [H + ] C A + K a,w /[H + ] Strong Bases - e.g. ah [a + ] C B material balance for dissociation K a,w [H + ][H ] 4 equilibrium [H + ] + [a + ] [H ] charge balance Proton Condition [H + ] + C B [H ] proton condition Condition becomes [H + ] + C B K a,w /[H + ] 7 8

Flood diagram -log [C(mol/L)] 2 4 6 8 2 4 4 4 2 4 6 8 2 2 8 6 4 2 - -2 Strong acid Strong Base -3-4 -5 Weak monoprotic acid - [A ] + [HA] C A material balance K a,a [H + ][A ]/[HA] equilibrium K a,w [H + ][H ] 4 equilibrium [H + ] [A ] + [H ] charge balance [HA] C A [ H + ] ([ H + ] + K aa, ) [ A ] K a, A C A ([ H + ] + K aa, ) undissociated acid (8.3) conjugate base (8.3) -6-7 -8 9 Weak monoprotic base - [a + ] [HA] + [A ] C B material balance K a,b [HA][H ]/[A ] equilibrium K a,w [H + ][H ] 4 equilibrium [H + ] + [a + ] [A ] + [H ] charge balance pk aa, + pk ab, pk aw, or K aa, K ab, K a, w Use pk a,a to plot Fluconazole + H 2 Fluconazole + + H ln(k a ).28 8/T F H F 8.9 Sillen Diagrams - seven steps. coordinates, strong acid/base lines. 2. material balance. 3. equil in acid form. 5. sketch acid and base equations. 6. proton condition to find intersection. 7. Check 2

Example 8.5 C B E-2 mol/l aac Step : The lines for [H + ] and [H ] have been drawn and labeled in the figure. Step 2: [a + ] [HAc] + [Ac ] C B material balance Step 3: K a [Ac ][H + ]/[HAc] equilibrium K w [H + ][H ] 4 equilibrium Step 4: [H + ] + [a + ] [Ac ] + [H ] charge balance Proton Condition - eliminate large terms from charge balance Polyprotic Acids (H 3 P 4, H 2 P 4, HP 2 4, P 3 4 ) [H 2 P 4 ] K -------------------- ---------- a [ H 3 P 4 ] [ H + ] [HP 2 4 ] K -------------------- a2 [HP 2 ---------- or 4 ] K -------------------- a K ---------------- a2 [H 2 P 4 ] [ H + ] [ H 3 P 4 ] [ H + ] 2 [P3 4 ] K -------------------- a3 [P3 ---------- or 4 ] K -------------------- a K a2 K ------------------------- a3 [HP 2 4 ] [ H + ] [ H 3 P 4 ] [ H + ] 3 The material balance on phosphorous is C [ H 3 P 4 ] + [ H 2 P 4 ] + [ HP2 4 ] + [P3 4 ] 3 4 ----- α 3 C [ H -------------------- 2 P 4 ] [ HP2 --------------------- 4 ] [P3 --------------------- 4 ] + + + -------------------- [ H 3 P 4 ] [ H 3 P 4 ] [ H 3 P 4 ] [ H 3 P 4 ] K a K ---------- a K a2 K ---------------- a K a2 K + + + ------------------------- a3 [ H + ] [ H + ] 2 [ H + ] 3 [ H α 3 P 4 ] 3 -------------------- C [ H + ] -------------------------------------------------------------------------------------------------------------- 3 [ H + ] 3 + K a [ H + ] 2 + K a K a2 [ H + ] + K a K a2 K a3 [ H α 2 P 4 ] [ H 2 --------------------- 3 P 4 ][ -------------------- H 2P 4 ] K --------------------- α a C C [ H 3 P 4 ] 3 ---------- [ H + ] ah 2 P 4, E-2 M, HCl, 5E-3 M ph 2 3 4 5 6 7 8 9 2 3 4 [H + ] [H ] - [H 3 P 4 ] [H 2 P 4 ] [HP 2 4 ] -2 5E-3 2 log[c(mol/l)] -3 [P 3 4 ] -4 [H + ]+[H 3 P 4 ] -5-6 -7-8 5 6

Amino Acids, H 2 H CH, pk a,a 2.35 H 2, pk a,a 9.78 glycinium glycine glycinate H 2 Gly + HGly Gly ph < 2.35 2.35 < ph < 9.78 ph > 9.78 + H 3 CH 2 CH + H 3 CH 2 C H 2 CH 2 C pk a 2.35 pk a 9.78 H 2 pk a,a.79 H 2 Lysine (Lys, K) H H pk a,a 3.9 H 2 H H H 2 Tryptophan (Trp, W) Aspartic Acid (Asp, D) H. M Glycine log[c(mol/l)] ph 2 3 4 5 6 7 8 9 2 3 4 - -2-3 -4-5 -6-7 -8 7 8 Buffers Isoelectric point mg /cm 3 4.5 4 3.5.5..2 3. 2.5 2.5.5 4.6 4.8 5 5.2 5.4 5.6 5.8 ph Salting In Donnan Equilibria membrane impermeable to DA α side a + Cl Cl a + β side Cl za + a + Cl DA z- a+ a + Cl Cl a + Salting ut 9 2

Solubility and Ksp Fluconazole, Example 8.8 and ln(k SLE ) 8.474 372.9/T K SLE a fluc( aq) Common Ion Effect KCl s ( ) K + ( aq) + Cl ( aq) K sp a K +a Cl K a,a [fluc][h + ]/([fluc + ]a H2 ) 2 22 Redox reactions - ILRIG Methane combustion - Li-Ion battery - LiC 6 C 6 + Li + + e, Co 2 Li + e + + LiCo 2, LiC 6 + Co 2 C 6 + LiCo 2 Half-cell rxns, relative to 2H + + 2e - H 2 g ( ) E E red E ox Potential per electron! Voltage and Gibbs Energy ΔG Faraday constant - 96,485 J/V. n e FE RTlnK a ΔG n e FE red + n e FE ox (equilibrium condition - dead when K a is reached. v v ΔG ΔG + RTln a i i or n e FE n e FE RTln a i i RT v E E -------- a i.596 v ernst Eq. n e F ln i E ------------------ a n log i i e Balancing, including non-redox. 23 24

Alkaline Battery Zn (s) and γ-mn 2(s) Zn (s), α-mnh (s)..596 E E ------------------ a Zn a log-------------------------------- MnH 2 a Zn a Mn2 a H2 Binding polynomials P 3 4 binding receptor for H + ligands Fuel Cell Biological Reactions Degree of reduction C d H a b c γ red (4d + a 2b)/d Glucose --> Ethanol 25 K bind a K a3 C P 3 [ H [ 4 ] + ] [ H ---------- + ] 2 [ H ---------------- + ] + + + ------------------------- 3 K a3 K a3 K a2 K a3 K a2 K a P 4 3 [ ]( + K bind a [ H + ] + K bind a K bind a2 [ H + ] 2 + K bind a K bind a2 K bind a3 [ H + ] 3 ) i ( ( ) + K [ H + ] + 2K 2 [ H + ] 2 + 3K 3 [ H + ] 3 ) -------------------------------------------------------------------------------------------------------- t P bind i P bind ik i [ x] i ---------- [ x] dpbind dlnp ------------- ------------------- bind dx [ ] dln[ x] P bind 26 Energy Carriers catabolic - anabolic exergonic - energonic coupling - ATP ADP + H 2 Adenine - - - - P P P 5' 4' H H D-Ribose ' H H 3' 2' H H Adenosine icotinamide (reduced) (oxidized) H H H - H 2 H 2 P + D-Ribose H H H 2 Adenine P - D-Ribose H P - - ATP 4, HATP 3, H 2 ATP 2, H 3 ATP, H 4 ATP, H 5 ATP + Standard State Transformed Gibbs Energy () Constant ph, pmg (2) Use apparent concentrations [ATP] sum of all ATP species ΔG ΔG + RT [] i ν i ln ΔG RTlnK c i ATP + H 2 ADP+ H 3 P 4 or ATP + H 2 ADP + P i [ ADP] [ P K c i ] ------------------------- [ ATP] ΔG f, ADP + ΔG f, Pi ΔG f, ATP ΔG exp f, H2 -------------------------------------------------------------------------------------------------------------- RT 27 28

Biological Fuel Cells Glucose --> Gluconolactone 2 --> H 2 2 on-ideal Solutions μ i μ i + RTln( m i γ i ) a a or m γ c γ ø Real Solution Ideal Solution air sat d V For biology, usually a ø e glucose --- ---- r r 2 r 2 Φ ρ ------- ± ( r) --------------- r ε r is radial position, Φ is electric potential, ρ ± (r) is charge distribution as a function of radial distance, ε ε o D, where ε o is the permittivity of a vacuum and D is the dielectric constant g(r) ~ exp( u Coul /kt) z log γ i2 A γ I i ---------------------- up to I. m + Ba I log γ s 2A γ M w, s ------------------------- Ba I ( Ba) 3 + ---------------------- 2 ln( + Ba I) + Ba I m or c standard state concentration m or c 2 3 a Φ -------------------------------------- lna s osmotic coefficient M w s, m i electrolytes 29 3 M w, s m i RT electrolytes Π ------ --------------------------------------Φ osmotic pressure V s Gibbs energies for electrolytes ΔG --------- T RT C ΔG T ----------- + ln a RT i i ΔG o 298 G f, 298 H + G f, 298 H + [ ] ν i Δ ( ) + ΔG f, 298 ( H ) ΔG o f, 298 ( H 2 () l ) Δ ( ) + ΔG f, 298 ( H ) + 237.8 79.98 kj/mol Transformed Gibbs Energies G' U TS + PV H μ H + Mg μ Mg 2+ Δ ΔG f T i,, H, i G f, T, H + I Mg, i G f, T, Mg 2+ I G f, T, j I Δ G f j,, ( I ph pmg) ΔG f, T, i () I { Δ () RTpH c ln( ) } { Δ () RTpMgln( ) } () ΔG f, T, j ( I) RTln( )z j2 A γ ( I ( + Ba I) ) T, ( I) --------------- ΔG 298.5 f, 298.5, j ( I) T + --------------- ΔH 298.5 f, 298.5, j ( I) 3 32

Gibbs Energies of Pseudoisomers ΔG f, T, i ( I, ph c, pmg) ΔG f, T, i( ) ( I, ph c, pmg) RTlnP bind ΔG P bind f, i( ) ΔG + -------------------------------------------------- f, i( 2) exp RT ΔG f, i( ) ΔG + exp-------------------------------------------------- f, i( 3) + RT P bind + --------- + -------------------- + ------------------------------ K a3 K a3 K a2 K a3 K a2 K a ( + K bind a + K bind a K bind a2 + K bind a K bind a2 K bind a3 ) r j ---------- P exp ΔG f, i( ) ΔG ------------------------------------------------- f, i() j bind RT ΔG f, T, i ΔG exp ------------------------------------------------ f, i() j ( RT) Example, ph c 7, pmg c 3, I.25 mol/kg [ ------------------- ATP 4 ] ---------- ---------------. P i P bind 9.7452 [ HATP 3 ] ------------------------ [ MgATP].2863 ----------------------- ---------------.3 9.7452 P i P i [ MgATP 2 ] 8.48 ---------------------------- ---------------.84 P i 9.7452 ΔG f, Pi ΔG f, Pi ( ) RTlnP bind 229.9.834( 298.5) ln9.7452 2297.5 kj/mol 33 34 Coupled Reaction and Phase Equilibria (Ideal Solutions only) Cl 2(aq) + H 2 H + + Cl + HCl (aq) a H +a Cl a HCl K a -------------------------------------- ( aq) E-3.348 a Cl2 a ( aq) H2 HCl (aq) H + + Cl a K H + a Cl a2 --------------------- a H 2 H + + H K H +a H w ------------------- a H2 a HCl ( aq) E-4 Write the VLE as reactions H K w a W /(y w P) / (P sat 2 ( v) H 2 () l w ) Ε 7.555 35 Cl 2( v) Cl 2( aq) log[c(mol/l)] K H [Cl 2(aq) ]/(y Cl2 P), Henry s Law ph 2 3 4 5 6 7 8 9 234 - -2-3 -4-5 -6-7 -8 [HCl] [Cl ] [H ] [H + ] 36