Σχετικά έγγραφα
11 Drinfeld. k( ) = A/( ) A K. [Hat1, Hat2] k M > 0. Γ 1 (M) = γ SL 2 (Z) f : H C. ( ) az + b = (cz + d) k f(z) ( z H, γ = cz + d Γ 1 (M))

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

: 1. 10:20 12:40. 12:50 13:50 14:00 14:50 15:00 16:30 Selberg ( ) 18:45 20:00 20:15 21:45 Selberg ( ) 7:00 9:00

EE512: Error Control Coding

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Congruence Classes of Invertible Matrices of Order 3 over F 2

: Monte Carlo EM 313, Louis (1982) EM, EM Newton-Raphson, /. EM, 2 Monte Carlo EM Newton-Raphson, Monte Carlo EM, Monte Carlo EM, /. 3, Monte Carlo EM

Differentiation exercise show differential equation

A summation formula ramified with hypergeometric function and involving recurrence relation

Inverse trigonometric functions & General Solution of Trigonometric Equations

SPECIAL FUNCTIONS and POLYNOMIALS

Section 8.3 Trigonometric Equations

Reminders: linear functions

2 Composition. Invertible Mappings

J. of Math. (PRC) Banach, , X = N(T ) R(T + ), Y = R(T ) N(T + ). Vol. 37 ( 2017 ) No. 5

The k-α-exponential Function

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

Quadratic Expressions

Homomorphism in Intuitionistic Fuzzy Automata

Κεφάλαιο 8. Το γενικό πολυώνυµο και το αντίστροφο πρόβληµα. 8.1 Το γενικό πολυώνυµο

([28] Bao-Feng Feng (UTP-TX), ( ), [20], [16], [24]. 1 ([3], [17]) p t = 1 2 κ2 T + κ s N -259-

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

Homework 3 Solutions

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Discriminantal arrangement

Feasible Regions Defined by Stability Constraints Based on the Argument Principle

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Spherical Coordinates

Homework 8 Model Solution Section

Bundle Adjustment for 3-D Reconstruction: Implementation and Evaluation

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

Matrices and Determinants

CRASH COURSE IN PRECALCULUS

Solutions to Exercise Sheet 5

g-selberg integrals MV Conjecture An A 2 Selberg integral Summary Long Live the King Ole Warnaar Department of Mathematics Long Live the King

Second Order Partial Differential Equations

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

CHAPTER (2) Electric Charges, Electric Charge Densities and Electric Field Intensity

( ) 1.1. (2 ),,.,.,.,,,,,.,,,,.,,., K, K.

Math221: HW# 1 solutions

On the k-bessel Functions

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

Jordan Form of a Square Matrix

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

If we restrict the domain of y = sin x to [ π 2, π 2

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

Vol. 37 ( 2017 ) No. 3. J. of Math. (PRC) : A : (2017) k=1. ,, f. f + u = f φ, x 1. x n : ( ).

On the Galois Group of Linear Difference-Differential Equations

Arithmetical applications of lagrangian interpolation. Tanguy Rivoal. Institut Fourier CNRS and Université de Grenoble 1

Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation. Mathematica StandardForm notation

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

Bessel functions. ν + 1 ; 1 = 0 for k = 0, 1, 2,..., n 1. Γ( n + k + 1) = ( 1) n J n (z). Γ(n + k + 1) k!

Solution Series 9. i=1 x i and i=1 x i.

Palestine Journal of Mathematics Vol. 2(1) (2013), Palestine Polytechnic University-PPU 2013

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Similarly, we may define hyperbolic functions cosh α and sinh α from the unit hyperbola

C.S. 430 Assignment 6, Sample Solutions

Lecture 26: Circular domains

On Inclusion Relation of Absolute Summability

Example Sheet 3 Solutions

Κβαντικη Θεωρια και Υπολογιστες

ON NEGATIVE MOMENTS OF CERTAIN DISCRETE DISTRIBUTIONS

Strain gauge and rosettes

Correction of chromatic aberration for human eyes with diffractive-refractive hybrid elements

ExpIntegralE. Notations. Primary definition. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation

A General Note on δ-quasi Monotone and Increasing Sequence

Answers - Worksheet A ALGEBRA PMT. 1 a = 7 b = 11 c = 1 3. e = 0.1 f = 0.3 g = 2 h = 10 i = 3 j = d = k = 3 1. = 1 or 0.5 l =

Πυθαγόρειες Τριάδες: από την ανακάλυψη μιας κανονικότητας στη διατύπωση και την απόδειξη μιας πρότασης

Coefficient Inequalities for a New Subclass of K-uniformly Convex Functions

page: 2 (2.1) n + 1 n {n} N 0, 1, 2

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

Numerical Analysis FMN011

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

Table 1. morphism U P 1 dominant (MMP) 2. dim = 3 (MMP) 3. (cf. [Ii77], [Miy01]) (Table 1) 3.

Exercise 1.1. Verify that if we apply GS to the coordinate basis Gauss form ds 2 = E(u, v)du 2 + 2F (u, v)dudv + G(u, v)dv 2

ST5224: Advanced Statistical Theory II

1 String with massive end-points

Generating Set of the Complete Semigroups of Binary Relations

The k-bessel Function of the First Kind

Problem 1.1 For y = a + bx, y = 4 when x = 0, hence a = 4. When x increases by 4, y increases by 4b, hence b = 5 and y = 4 + 5x.

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

COMPLEX NUMBERS. 1. A number of the form.

IUTeich. [Pano] (2) IUTeich

The Pohozaev identity for the fractional Laplacian

MATHEMATICS. 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81

Wishart α-determinant, α-hafnian

Οµάδες Κοτσίδων και δράσεις της απόλυτης οµάδας Galois

( [T]. , s 1 a as 1 [T] (derived category) Gelfand Manin [GM1] Chapter III, [GM2] Chapter 4. [I] XI ). Gelfand Manin [GM1]

ECE 468: Digital Image Processing. Lecture 8

Transcript:

1 The problem of the representation of an integer n as the sum of a given number k of integral squares is one of the most celebrated in the theory of numbers... Almost every arithmetician of note since Fermat has contributed to the solution of the problem, and it has its puzzles for us still. G. H. Hardy 1 2 3 4 2 3 4 3 4 S 3, S 4 tetsushi@math.kyoto-u.ac.jp

2 p 2 p = x 2 + y 2 (x, y Z) 1 2 1 2 1 12 2 1 2 2, 3,, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 3, 9, 61, 67, 71, 73, 79, 83, 89, 97,... 7 a, b n a b n a b (mod n) a b n 2.1 ( ). p p p = x 2 + y 2 x, y Z 2 p 1 (mod 4) 2.1 1749 4 12 2.1 p 1. p = x 2 + y 2 ( x, y Z) 2. p 1 (mod 4) 2 (1) (2) 2.2 (2) (1) 2.1 p x 2 + y 2 100 4 1 =1 2 +2 2, 13 = 2 2 +3 2, 17 = 1 2 +4 2, 29 = 2 2 + 2, 37 = 1 2 +6 2, 41 = 4 2 + 2, 3 = 2 2 +7 2, 61 = 2 +6 2, 73 = 3 2 +8 2, 89 = 2 +8 2, 97 = 4 2 +9 2 2.1 p = x 2 + y 2 x, y p 4 3 p =3, 7, 11, 19, 23,... p = x 2 + y 2

3 2.2. x, y x 2 + y 2 3 (mod 4). x 0 (mod 4) x 2 0 (mod 4) x 1 (mod 4) x 2 1 2 1 (mod 4) x 2 (mod 4) x 2 2 2 4 0 (mod 4) x 3 (mod 4) x 2 3 2 9 1 (mod 4) x 2 0 1 y 2 0 1 x 2 + y 2 0 1 2 x 2 + y 2 3 (mod 4) 2010 2 1 2010021 2010021 = 1171 3433, 1171, 3433 1171 4 3 2.2 1171 = x 2 + y 2 3433 4 1 2.1 3433 = x 2 + y 2 3433 = 27 2 + 2 2 2.1 3 [Za] S = {(x, y, z) Z 3 x, y, z > 0, x 2 +4yz = p} f (x +2z, z, y x z) x<y z f :(x, y, z) (2y x, y, x y + z) y z<x<2y (x 2y, x y + z, y) x>2y #S g :(x, y, z) (x, z, y) 2 #S S S f f(f(x, y, z)) = (x, y, z) f f(x, y, z) =(x, y, z) (x, y, z) S p 4k +1 f (1, 1,k) 2.3 (). p r 2 1 (mod p) r p 1 (mod 4). r 2 1 (mod p) r F p 1 4 4 F p p 1 p 1 4 p 1 (mod 4) 2.1 p p 1 (mod 4) 2.3 r 2 1 (mod p) r Z 0 a, b < p (a, b) ( p + 1) 2 α α p +1 > p ( p + 1) 2 > p ( p + 1) 2 p +10 a, b < p (a, b) p +1

4 a rb p p a 1 rb 1 a 2 rb 2 (mod p) (a 1,b 1 ) (a 2,b 2 ) 0 a 1,a 2,b 1,b 2 < px = a 1 a 2, y = b 1 b 2 (x, y) (0, 0) x 2 (a 1 a 2 ) 2 r 2 (b 1 b 2 ) 2 y 2 (mod p) x 2 + y 2 0 (mod p) x, y < p 0 <x 2 + y 2 < 2p x 2 + y 2 0 2p p x 2 + y 2 = p p p 1 (mod 4) p = x 2 + y 2 m mp = x 2 + y 2 (0 <m<p) (x, y, m) : 2.3 a 2 +1 0 (mod p) a (1 a<p) p a a 1 a< p 2 a2 +1< p2 4 +1<p2 a 2 +1=mp (0 <m<p) mp = x 2 + y 2 (0 <m<p) m m 0 m 0 > 1 m 0 p = x 2 + y 2 (x, y) r, s x = x rm 0, y = y sm 0, x m0 2, y m0 2 (x ) 2 +(y ) 2 x 2 + y 2 0 (mod m 0 ) (x ) 2 +(y ) 2 m 0 m 1 = (x ) 2 +(y ) 2 m 0 (x ) 2 +(y ) 2 m2 0 4 + m2 0 4 = m2 0 2 m 1 m0 2 x, y m 0 : x, y m 0 m 0 p m 2 0 0 <m 0 <p (x ) 2 +(y ) 2 0 m 1 0 (xx + yy ) 2 +(xy x y) 2 =(x 2 + y 2 ) ( (x ) 2 +(y ) 2) = m 2 0m 1 p x x (mod m 0 ),y y (mod m 0 ) xx + yy x 2 + y 2 0 (mod m 0 ), xy x y xy xy 0 (mod m 0 ) xx + yy = m 0 α, xy x y = m 0 β α 2 + β 2 = m 1 p m 1 m0 2 m 0 m 0 =1 2.1 3 2 2.1 2.1 Z 1 1 Z[ 1] Z[ 1] A 2 B 2 =(A + B)(A B) A = x, B = y 1 x 2 + y 2 =(x + y 1)(x y 1) 2.1 4 1 p p =(x + y 1)(x y 1) p Z[ 1] p Q( 1) [Ta1], [HW], [Co] p

Q Gal(Q/Q) p Q Q p Gal(Q p /Q p ) Gal(Q/Q) Gal(Q p /Q p ) Gal(Q/Q) Gal(Q p /Q p ) Gal(F p /F p ) I p p Gal(F p /F p ) Frob p : F p x x 1/p F p Frob p Gal(Q/Q) Frob p Gal(Q/Q) p Frob p Gal(Q/Q) Frob p well-defined K/Q K/Q p I p Gal(K/Q) p K/Q Frob p Gal(K/Q) well-defined p Frob p Q Q p Frob p ρ: Gal(Q/Q) GL n (C) Q n p ρ(i p ) ρ p 2 Q( 1)/Q 1 ρ Q( 1)/Q : Gal(Q/Q) Gal(Q( 1)/Q) = {±1} C = GL 1 (C) ρ Q( 1)/Q 2 p ρ Q( 1)/Q (Frob p ) GL 1 (C) well-defined GL 1 (C) 1 p Q( 1)/Q ρ Q( 1)/Q (Frob p )=1 p ρ Q( 1)/Q (Frob p ) GL 1 (C) ρ Q( 1)/Q ρ Q( 1)/Q (Frob p ) p = x 2 + y 2 Q 3.1 (Q ()). 1. n ρ: Gal(Q/Q) GL n (C) N N p ρ p ρ(frob p ) p (mod N) 2. ρ (1) N 3. N (1) ρ Gal(Q(ζ N )/Q) ζ N = exp(2π 1/N ) 1 N 1920 30 3.1 (3) Q(ζ N ) N Q

6 exp(2π 1z) ρ: Gal(Q/Q) GL n (C) ρ(frob p ) n =1 ρ(frob p ) p (mod N) (N ) ρ ρ(frob p ) 2.1 Q( 1) = Q(ζ 4 ) 3.1 ρ Q( 1)/Q (Frob p ) p (mod 4) 2.1 2.1 1. p x, y Z, p= x 2 +2y 2 p 1, 3 (mod 8) 2. 3 p x, y Z, p= x 2 +3y 2 p 1 (mod 3) 3. p x, y Z, p= x 2 +y 2 p 1, 9 (mod 20) 3.1 (1) (3) p Q 2 Q [Ta1], [HW], [Co] 4 p = x 2 + y 2 p p =6x 2 + xy + y 2 (x, y Z) x, y Z, p=6x 2 + xy + y 2 p a 1,...,a r (mod N) a 1,...,a r,n 1000 p =6x 2 + xy + y 2 23, 9, 101, 167, 173, 211, 223, 271, 307, 317, 347, 449, 463, 93, 99, 607, 691, 719, 809, 821, 829, 83, 877, 883, 991, 997 26 23 = 6 2 2 +2 ( 1) + ( 1) 2 9 = 6 2 2 +2 ( 7) + ( 7) 2 =6 2 2 +2 + 2 101 = 6 4 2 +4 ( ) + ( ) 2 =6 4 2 +4 1+1 2 p =6x 2 + xy + y 2

7 4.1. f = (1 q n )(1 q 23n )= a n q n n=1 n=1 a n p 23 x, y Z, p=6n 2 + nm + m 2 a p =2 f 1 23 4.1 p p =6x 2 + xy + y 2 f 4.1 4.1 4.1 Y X f(q) =q (1 q n )(1 q 23n )= a n q n = q q 2 q 3 +q 6 +q 8 q 13 q 16 +q 23 q 24 +q 2 +q 26 +q 27 q 29 q 31 +q 39 n=1 n=1 q 41 q 46 q 47 +q 48 +q 49 q 0 q 4 +q 8 +2q 9 +q 62 +q 64 q 69 q 71 q 73 q 7 q 78 q 81 +q 82 +q 87 +q 93 +q 94 q 98 + 2q 101 q 104 2 q 118 +q 121 +q 123 q 127 q 128 q 131 +q 138 q 139 +q 141 +q 142 +q 146 q 147 +q 10 q 11 +q 162 q 163 + 2q 167 +2q 173 q 174 2 q 177 q 179 +q 184 q 186 q 192 q 193 q 197 +q 200 2 q 202 +q 208 +2q 211 +q 213 +q 216 +q 219 + 2q 223 q 232 q 233 q 239 q 242 q 246 q 248 +q 24 q 27 +q 262 q 269 +2q 271 q 277 +q 278 q 282 +q 289 +q 294 q 299 +q 302 2 q 303 +2q 307 q 311 +q 312 +2q 317 q 32 +q 326 q 328 q 331 2 q 334 2 q 346 +2q 347 q 349 q 31 q 33 +2q 34 +q 38 + q 361 q 363 q 368 q 376 +q 377 +q 381 +q 384 +q 386 +q 392 +q 393 +q 394 q 397 q 400 +q 403 q 409 +q 417 2 q 422 q 426 q 432 q 438 q 439 q 443 2 q 446 +2q 449 +q 43 q 461 +2q 463 +q 464 +q 466 +2 q 472 +q 478 q 487 +q 489 q 491 +q 496 q 499 2 q 01 q 09 +q 12 +q 14 2 q 19 +q 29 +q 33 +q 37 +q 38 q 41 2 q 42 q 47 q 2 +q 4 q 68 +q 7 q 77 q 78 +q 79 q 84 q 87 +q 91 +2q 93 +q 98 +2q 99 q 600 q 601 +2q 606 +2q 607 +q 611 2 q 614 +q 621 +q 622 q 624 +q 62 2 q 633 2 q 634 q 637 q 647 q 648 +q 60 q 63 +q 66 +q 662 q 667 2 q 669 q 673 +q 67 q 683 +2q 691 2 q 694 +q 696 +q 698 +q 699 +q 702 + q 706 q 713 +q 717 +2q 719 q 722 q 72 +q 726 +q 729 q 739 +q 744 +q 72 q 74 q 761 q 762 2 q 767 +q 771 q 77 q 783 q 784 q 786 +q 794 q 806 +q 807 +2q 808 +2q 809 q 811 2 q 813 +q 818 +2q 821 q 823 +2q 829 +q 831 q 832 q 834 q 837 +2q 83 q 87 q 89 q 863 q 867 +2q 877 +q 878 +2q 883 +q 886 q 887 +q 897 2 q 898 +q 899 q 906 2 q 921 +q 922 +q 923 2 q 926 q 929 + q 933 q 943 2 q 944 q 947 +q 949 2 q 91 q 967 +q 968 +q 974 +q 97 q 978 +q 982 +q 984 +2q 991 +q 993 +2q 997 +q 998 + 4.1 p =6x 2 + xy + y 2 6x 2 + xy + y 2 α = x 1+ 23 2 + y (x, y Z) α α = ( x 1+ 23 2 + y )( x 1 23 2 + y ) =6x 2 + xy + y 2 α α K = Q( 23) O K = Z [ 1+ ] 23 2 p p =6x 2 + xy + y 2 O K p = α α K/Q Q K/Q 1 ρ K/Q : Gal(Q/Q) Gal(K/Q) = {±1} C = GL 1 (C) p 23 p K/Q ρ K/Q (Frob p )=1

8 23 K/Q p K/Q (p) O K (p) =Q 1 Q 2 O K K Q(ζ 23 ) p K/Q p (mod 23) p K/Q (p) =Q 1 Q 2 O K K 3 Q 1,Q 2 Q 1,Q 2 K H K H K Gal(H/K) = Cl(K) Q O K Q H Cl(K) K H/K K = Q( 23) H H p 23 x, y Z, p=6x 2 + xy + y 2 (p) =Q 1 Q 2, Q 1,Q 2 p K/Q Q 1,Q 2 H/K p H/Q Gal(H/Q) Frob p =1 K = Q( 23) H X 3 X 1 Gal(H/Q) = S 3 3 p 23 Frob p Gal(H/Q) S 3 2 τ ρ H/Q : Gal(Q/Q) Gal(H/Q) = S 3 τ GL2 (C) Q 2 S 3 x S 3 Tr(τ(x)) = 2 x x, y Z, p=6x 2 + xy + y 2 Tr ρ H/Q (Frob p )=2 2 2 ρ H/Q Tr ρ H/Q (Frob p )=2 p ρ H/Q p (mod N) 4.1 f f 2 ρ f : Gal(Q/Q) GL 2 (C) Tr ρ f (Frob p )=a p ρ f ρ H/Q 4.1 p = x 2 + y 2 p Q( 1) 1 Q( 1) Q( 1) Q( 1)/Q

9 Q p = x 2 +2y 2, p = x 2 +3y 2, p = x 2 +y 2 Q Q p =6x 2 + xy + y 2 Q( 23) H Q Gal(H/Q) = S 3 Q p 1 2 1 2 3 2 f Q( 23) H Q p =6x 2 + xy + y 2 f f f = 1 { q 6n2 +nm+m 2 } q 6n2 +nm+2m 2 2 n,m Z n,m Z 23 2 S 3 2 2 1 f Q( 23) GL(1)/Q( 23) GL(2)/Q f 1 [Se] GL(n) GL n (C).1 ( ). K ρ: Gal(K/K) GL n (C) n GL n (A K ) π L(s + n 1 2,ρ)=L(s, π).1.1 1 2 l K ρ: Gal(Q/Q) GL n (Q l )

10 K l GL n (Q l ) l ι: Q l = C l.2 ( (GL(n) )). K l ι: Q l = C n l ρ: Gal(K/K) GLn (Q l ) GL n (A K ) π L(s + n 1 2,ρ)=L(s, π) ρ π l l p l l π π = vπ v v π v π (isobaric) [Cl], p.84 GL(1) A 0 1 4.1.2 n =1 n 2 l l 2 4 n R red = T K = Q, n=2 ρ l [Sa] K = Q, n =2 mod l n 2 ρ L/K ρ Gal(K/L) ([T], [It2], [It4], [It]) 6 k (k =2, 4, 6, 8) n k r k (n) := # { (x 1,...,x k ) Z k n = x 2 1 + + x 2 } k 2.1 p r 2 (p) 0 p 1 (mod 4)

11 p r k (p) n r k (n) p r k (p) p r k (n) r k (p) p L Fundamenta Nova Theoriae Functionum Ellipticarum 1829 r 2 (n) r 4 (n) r 6 (n) r 8 (n) ϑ(q) = n= 1 2 ( ϑ(q) ) k q n2 ( ) k ϑ(q) =1+ r k (n)q n r k (n) k 2 ( ϑ(q) ) k r k (n) [Gl], [Na], [We] [Na] r 2 (p) 2.1 p 1 (mod 4) p = x 2 + y 2 (x, y Z, x, y 1) x, y x, y 8 (±x, ±y), (±y, ±x) p = x 2 + y 2 r 2 (p) =8 { χ(p) =( 1) (p 1)/2 1 p 1 (mod 4) = 1 p 3 (mod 4) n=1 r 2 (p) =4 ( 1+χ(p) ) = { 8 p 1 (mod 4) 0 p 3 (mod 4) r 4,r 6,r 8 p r 4 (p) = 8(1 + p) r 6 (p) = 16 ( χ(p)+p 2) 4 ( 1+χ(p)p 2) r 8 (p) = 16(1 + p 3 ) r 2 (p), r 4 (p), r 6 (p), r 8 (p) p (mod 4) p 7 r 10 (p) k =2, 4, 6, 8 p (mod??) r 10 (p) p r 10 (p)

12 r 10 (p) 1866 [Na] r 10 (p) = 4 ( 1+χ(p)p 4 ) + 64 ( χ(p)+p 4 ) + 8 (x + y 1) 4 p=x 2 +y 2 p = x 2 + y 2 (x, y) (x, y) (x, y) p=x 2 +y 2(x + y 1) 4 p Q( 1) r 10 (p) p = (±1) 2 0 2 2 10 C = 8064 1 (±2) 2 1 (±1) 2 8 0 2 2 2 10 9 = 360 r 10 () = 8424 χ() = 1 Re (x + y 1) 4 = x 4 + y 4 6x 2 y 2 4( 1+χ() 4 ) + 64 ( χ() + 4 ) + 8 (x + y 1) 4 =x 2 +y 2 = 4 ( 1+ 4 ) + 64 ( 1+ 4 ) + 32 (x 4 + y 4 6x 2 y 2 ) =x 2 +y 2, x,y 0 = 4268 + 32 2 (24 +1 4 6 2 2 1 2 ) 4268 448 = = 8424 r 10 (p) Q( 1) p r 10 (p) r 10 (p) 8 r 12 (p) p (mod??) p K/Q K r 12 (p) r 12 (p) r 10 (p) r 12 (p) r k (p) k 2 ( ϑ(q) ) k k 2 f 1,...,f r α 1,...,α r C f i 2 l ( ) k r ϑ(q) = α i f i i=1 ρ fi : Gal(Q/Q) GL 2 (Q l ) 2 l ρ fi p r k (p) = r α i Tr ρ fi (Frob p ) i=1

13 r k (p) r k (p) α i 2 l ρ fi Tr ρ fi (Frob p ) 2 k k =2, 4, 6, 8 ( ϑ(q) ) k f f 2 l ρ f Tr ρ f (Frob p ) p (mod??) p χ(p) =( 1) (p 1)/2 Q( 1)/Q 1 p n Q l ( n) r 10 (p) ( ϑ(q) ) 10 Q( 1) r 10 (p) (x + y 1) 4 p=x 2 +y 2 f l ρ f Q ρ f 2 Gal(Q/Q( 1)) Gal(Q/Q) Q( 1) ρ f Gal ( Q/Q( 1) ) 1 f 4.1 r 12 (p) ( ϑ(q) ) 12 6 Γ 0 (4) 6 b n g = q (1 q 2n ) 12 = b n q n n=1 n=1 r 12 (p) = 8(1 + p ) + 32 b p g b p g 2 l ρ g : Gal(Q/Q) GL 2 (Q l ) r 12 (p) r 12 (p) = 8(1 + p ) + 32 Tr ρ g (Frob p ) [BLGHT] Tr ρ g (Frob p ) [BGG] 8.1 ( g ). 0 α<β π N p C(N,α,β) lim N cos β Tr ρ g(frob p ) 2p /2 cos α C(N,α,β) (N p ) = 2 π β α sin 2 θ dθ

14, 1974 1 Tr ρ g(frob p ) 2p /2 1 p Tr ρ g(frob p ) [ 1, 1] 2p /2 1963 sin 2 θ p (mod??) K/Q r 12 (p) r 12 (p) : k r k (n) k k r k (n) k ( ϑ(q) ) k rk (n) k SL 2 (A) k =3 n n >4 24h( n) n 3 (mod 8) r 3 (n) = 12h( 4n) n 1, 2,, 6 (mod 8) 0 n 7 (mod 8) h( d) d L [Ko] [O] x 2 + y 2 + 10z 2 [OS] x 2 + y 2 + 10z 2 3, 7, 21, 31, 33, 43, 67, 79, 87, 133, 217, 219, 223, 23, 307, 391, 679, 2719 [BLGHT] Barnet-Lamb, T., Geraghty, D., Harris, M., Taylor, R., A family of Calabi-Yau varieties and potential automorphy II, preprint, to appear P.R.I.M.S. http://www.math.harvard.edu/ rtaylor/ [BGG] Barnet-Lamb, T., Gee, T., Geraghty, D., The Sato-Tate conjecture for Hilbert modular forms, preprint (http://arxiv.org/abs/0912.104) [Cl] Clozel, L., Motifs et formes automorphes: applications du principe de fonctorialité, Automorphic forms, Shimura varieties, and L-functions, Vol. I (Ann Arbor, MI, 1988), 77 19. [Co] Cox, D. A., Primes of the form x 2 + ny 2. Fermat, class field theory and complex multiplication, A Wiley-Interscience Publication. John Wiley & Sons, Inc., New York, 1989. [Gl] Glaisher, J. W. L., On the numbers of representations of a number as a sum of 2r squares, where 2r does not exceed eighteen, Proc. London Math. Soc. (2) (1907), 479 490.

1 [HW] Hardy, G. H., Wright, E. M., An Introduction to the Theory of Numbers, th ed., Oxford University Press, Oxford, 1979G. H., E. M., I,II,,, 2001 [Ko] Koblitz, N., Introduction to elliptic curves and modular forms, Graduate Texts in Mathematics, 97. Springer-Verlag, New York, 1993. ( : N. (, ),,, 2006 ) [Na] Nathanson, M. B., Elementary Methods in Number Theory, Graduate Texts in Mathematics, 19. Springer-Verlag, New York, 2000. [Neu] Neukirch, J., Algebraic number theory, Grundlehren der Mathematischen Wissenschaften, 322. Springer-Verlag, Berlin, 1999. : J. ( (), ()),,, 2003 ) [O] Ono, K., Ramanujan, taxicabs, birthdates, ZIP codes, and twists, Amer. Math. Monthly 104 (1997), no. 10, 912 917. [OS] Ono, K., Soundararajan, K., Ramanujan s ternary quadratic form. Invent. math. 130 (1997), no. 3, 41 44. [Sa],,, 2009. [Se] Serre, J-P., Modular forms of weight one and Galois representations, Algebraic number fields: L- functions and Galois properties (Proc. Sympos., Univ. Durham, Durham, 197), pp. 193 268. Academic Press, London, 1977. [We] Weisstein, E. W., Sum of Squares Function, From MathWorld A Wolfram Web Resource. http://mathworld.wolfram.com/sumofsquaresfunction.html [Za] Zagier, D, A one-sentence proof that every prime p equiv (mod 4) is a sum of two squares, Amer Math Monthly 97 (1990). [It2] [] 2009 9 34 3,. [It3] 2011 1 64 67,. [It4] 2011 1, :, 2011 1, 40 4,. [It] 20 199, 2011 4,. [Ta1] 2,, 1971. [T] : 2008.