NONTERMINATING EXTENSIONS OF THE SEARS TRANSFORMATION

Σχετικά έγγραφα
Estimators when the Correlation Coefficient. is Negative

A Class of Orthohomological Triangles

Generalized Fibonacci-Like Polynomial and its. Determinantal Identities

Examples of Cost and Production Functions

On Generating Relations of Some Triple. Hypergeometric Functions

One and two particle density matrices for single determinant HF wavefunctions. (1) = φ 2. )β(1) ( ) ) + β(1)β * β. (1)ρ RHF

1. For each of the following power series, find the interval of convergence and the radius of convergence:

SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES. Reading: QM course packet Ch 5 up to 5.6

Fractional Colorings and Zykov Products of graphs

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

A summation formula ramified with hypergeometric function and involving recurrence relation

α & β spatial orbitals in

Multi-dimensional Central Limit Theorem

A study on generalized absolute summability factors for a triangular matrix

C.S. 430 Assignment 6, Sample Solutions

Matrices and Determinants

On Inclusion Relation of Absolute Summability

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Commutative Monoids in Intuitionistic Fuzzy Sets

Multi-dimensional Central Limit Theorem

Discrete Fourier Transform { } ( ) sin( ) Discrete Sine Transformation. n, n= 0,1,2,, when the function is odd, f (x) = f ( x) L L L N N.

Math221: HW# 1 solutions

CRASH COURSE IN PRECALCULUS

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-570: Στατιστική Επεξεργασία Σήµατος. ιδάσκων : Α. Μουχτάρης. εύτερη Σειρά Ασκήσεων.

On Hypersurface of Special Finsler Spaces. Admitting Metric Like Tensor Field

Homework 3 Solutions

derivation of the Laplacian from rectangular to spherical coordinates

2 Composition. Invertible Mappings

4.6 Autoregressive Moving Average Model ARMA(1,1)

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ

Srednicki Chapter 55

n r f ( n-r ) () x g () r () x (1.1) = Σ g() x = Σ n f < -n+ r> g () r -n + r dx r dx n + ( -n,m) dx -n n+1 1 -n -1 + ( -n,n+1)

Reminders: linear functions

Article Multivariate Extended Gamma Distribution

CS 1675 Introduction to Machine Learning Lecture 7. Density estimation. Milos Hauskrecht 5329 Sennott Square

On a four-dimensional hyperbolic manifold with finite volume

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

Statistical Inference I Locally most powerful tests

Presentation of complex number in Cartesian and polar coordinate system

ΠΤΥΧΙΑΚΗ/ ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

( y) Partial Differential Equations

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Congruence Classes of Invertible Matrices of Order 3 over F 2

Homework for 1/27 Due 2/5

8.324 Relativistic Quantum Field Theory II

Example Sheet 3 Solutions

ON NEGATIVE MOMENTS OF CERTAIN DISCRETE DISTRIBUTIONS

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

Concrete Mathematics Exercises from 30 September 2016

Homework 8 Model Solution Section

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΕΠΑΝΑΣΧΕΔΙΑΣΜΟΣ ΓΡΑΜΜΗΣ ΣΥΝΑΡΜΟΛΟΓΗΣΗΣ ΜΕ ΧΡΗΣΗ ΕΡΓΑΛΕΙΩΝ ΛΙΤΗΣ ΠΑΡΑΓΩΓΗΣ REDESIGNING AN ASSEMBLY LINE WITH LEAN PRODUCTION TOOLS

Uniform Convergence of Fourier Series Michael Taylor

ST5224: Advanced Statistical Theory II

Degenerate Perturbation Theory

Section 8.3 Trigonometric Equations

Section 7.6 Double and Half Angle Formulas

Markov Processes and Applications

6.1. Dirac Equation. Hamiltonian. Dirac Eq.


ΝΕΑ ΑΠΟΤΕΛΕΣΜΑΤΑ ΣΧΕΤΙΚΑ ΜΕ ΤΗΝ ΥΠΑΡΞΗ ΕΚΤΙΜΗΤΩΝ ΜΕΓΙΣΤΗΣ ΠΙΘΑΝΟΦΑΝΕΙΑΣ ΓΙΑ ΤΗΝ 3-ΠΑΡΑΜΕΤΡΙΚΗ ΓΑΜΜΑ ΚΑΤΑΝΟΜΗ

Second Order Partial Differential Equations

Generating Set of the Complete Semigroups of Binary Relations

HIV HIV HIV HIV AIDS 3 :.1 /-,**1 +332

POWER SUMS OF PELL AND PELL LUCAS POLYNOMIALS

A General Note on δ-quasi Monotone and Increasing Sequence

SOLVING CUBICS AND QUARTICS BY RADICALS

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Solutions to Exercise Sheet 5

!! " &' ': " /.., c #$% & - & ' ()",..., * +,.. * ' + * - - * ()",...(.

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p)

Homework 4.1 Solutions Math 5110/6830

1. Introduction and Preliminaries.

MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS

J. of Math. (PRC) Banach, , X = N(T ) R(T + ), Y = R(T ) N(T + ). Vol. 37 ( 2017 ) No. 5

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Quadratic Expressions

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Other Test Constructions: Likelihood Ratio & Bayes Tests

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

department listing department name αχχουντσ ϕανε βαλικτ δδσϕηασδδη σδηφγ ασκϕηλκ τεχηνιχαλ αλαν ϕουν διξ τεχηνιχαλ ϕοην µαριανι

Trigonometric Formula Sheet

George S. A. Shaker ECE477 Understanding Reflections in Media. Reflection in Media

Variance of Trait in an Inbred Population. Variance of Trait in an Inbred Population

: Monte Carlo EM 313, Louis (1982) EM, EM Newton-Raphson, /. EM, 2 Monte Carlo EM Newton-Raphson, Monte Carlo EM, Monte Carlo EM, /. 3, Monte Carlo EM

Lecture 15 - Root System Axiomatics

J. of Math. (PRC) Shannon-McMillan, , McMillan [2] Breiman [3] , Algoet Cover [10] AEP. P (X n m = x n m) = p m,n (x n m) > 0, x i X, 0 m i n. (1.

DIRECT PRODUCT AND WREATH PRODUCT OF TRANSFORMATION SEMIGROUPS

Multi-Body Kinematics and Dynamics in Terms of Quaternions: Langrange Formulation in Covariant Form Rodriguez Approach

Exam Statistics 6 th September 2017 Solution

Approximation of distance between locations on earth given by latitude and longitude

Universal Levenshtein Automata. Building and Properties

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Sequent Calculi for the Modal µ-calculus over S5. Luca Alberucci, University of Berne. Logic Colloquium Berne, July 4th 2008

Transcript:

SARAJEVO JOURNAL OF MATHEMATICS Vol1 (5), No, (016), 05 15 DOI: 105644/SJM107 NONTERMINATING EXTENSIONS OF THE SEARS TRANSFORMATION WENCHANG CHU AND NADIA N LI Abstract By meas of two ad three term relatos of 3φ -seres, we vestgate the otermatg 4φ 3-seres Eght trasformato formulaes to double seres are establshed Four of them are show to be otermatg extesos of the Sears trasformato 1 Itroducto ad motvato For the two determates x ad, the shfted factoral of x wth base reads as (x; ) 0 1 ad (x; ) (1 x) (1 x) (1 1 x) for N Whe < 1, we have two well defed fte products (x; ) (1 x) ad (x; ) (x; ) / ( x; ) 0 The product ad fracto of shfted factorals are abbrevated respectvely to α, β,, γ; (α; ) (β; ) (γ; ), α, β,, γ (α; ) (β; ) (γ; ) A, B,, C (A; ) (B; ) (C; ) Followg Gasper Rahma 4, the basc hypergeometrc seres s defed by a0, a 1,, a r ; { 1+rφ s z ( 1) b 1,, b ( ) } s r a 0, a 1,, a r z s, b 1,, b s 0 where the base wll be restrcted to < 1 for otermatg -seres Most of the -seres results cocer the case r s Whe the parameters 010 Mathematcs Subject Classfcato Prmary 33D15; Secodary 05A15 Key words ad phrases Basc hypergeometrc seres; The -Pfaff Saalschütz theorem; The Sears trasformato; The -Kampé de Féret seres Copyrght c 016 by ANUBIH

06 WENCHANG CHU AND NADIA N LI satsfy the codto a 0 a 1 a a r b 1 b b r, the seres s sad to be balaced There are umerous mportat summato ad trasformato formulae the -seres theory Oe of them s due to Sears 5 (cf 4, III 15), whch cocers the termatg balaced 4 φ 3 -seres subject to the codto αβγ 1 bcd: 4φ, b, c, d α/c, γ/c 3 ; α, β, γ α, γ 4φ, c, β/b, β/d 3 ; (1) β, αβ/bd, βγ/bd The am of ths paper s to vestgate ts otermatg form b, c, d, e 4φ 3 ; αβγ ( c, e, bd/β αβγ ) b, d () α, β, γ bcde, α, γ 0 bcde β, bd/β Recall the -Pfaff Saalschütz summato theorem (cf 1, 84 ad 4, II-1) 3φ, a, b c/a, c/b c, 1 ; (3) ab/c c, c/ab Ths ca be utlzed to rewrte the afore-dsplayed 4 φ 3 -seres as b, c, d, e 4φ 3 ; αβγ ( c, e, bd/β αβγ α, β, γ bcde, α, γ 0 bcde ( c, e, bd/β αβγ ), α, γ 0 bcde ) 3φ, β/b, β/d β, 1 β/bd 0, β/b, β/d β, 1 β/bd ; Lettg + the last double sum ad the terchagg the summato order, we get the followg expresso b, c, d, e 4φ 3 ; αβγ ( c, e, β/b, β/d αγ ) α, β, γ bcde, α, β, γ 0 ce 3 φ c, e, bd/β α, ; αβγ (4) γ bcde Ths wll be our startg pot for the subseuet developmet By meas of the -Kummer Thomae Whpple trasformato ad the Hall trasformato (cf Gasper Rahma 4, III 9 & 10), we shall derve four double seres expressos for the 4 φ 3 -seres gve () the ext secto The the thrd secto, further four trasformato formulae wll be establshed by utlzg the two three term trasformatos (cf Gasper Rahma 4, III 33 & 34) Fally, the paper wll ed wth a dscusso of some ow results that are cotaed as partcular cases of the ma theorems proved ths paper

NONTERMINATING EXTENSIONS OF THE SEARS TRANSFORMATION 07 Trasformatos to double seres Based o the double sum expresso dsplayed (4), we shall derve four trasformato theorems ths secto The ma tools are the -Kummer Thomae Whpple trasformato (cf Gasper Rahma 4, III 9) 3φ b, c, d α, γ ; αγ bcd α/d, αγ/bc α, αγ/bcd 3φ d, γ/b, γ/c γ, αγ/bc ; α d ad the Hall trasformato (cf Gasper Rahma 4, III 10) b, c, d 3φ ; αγ b, αγ/bd, αγ/bc α/b, γ/b, αγ/bcd α, γ bcd α, γ, αγ/bcd 3φ ; b αγ/bd, αγ/bc (6) 1 Accordg to (5), we ca reformulate the 3 φ -seres dsplayed (4) as 3φ c, e, bd/β α, ; αβγ αγ/ce, αβ/bd γ bcde α, αβγ/bcde bd/β, γ/c, γ/e 3 φ αγ/ce, ; αβ γ bd Substtutg the last expresso to (4), we get the frst trasformato formula Theorem 1 (Double sum expresso) b, c, d, e 4φ 3 ; αβγ αβ/bd, αγ/ce α, β, γ bcde α, αβγ/bcde ( c, e, β/b, β/d αγ ) bd/β, γ/c, γ/e (γ; ) +, β, αβ/bd ce, αγ/ce, 0 ( αβ ) bd Whe d 1, the last theorem gves, uder the replacemet b bβ, the followg closed formula for the double seres, whch s euvalet to Gasper s oe (cf Gasper Rahma 4, P300) Corollary (Summato formula of double seres) α, αγ/bce ( c, e, 1/b αγ ) ( b, γ/c, γ/e α ) α/b, αγ/ce (γ; ) +, α/b, 0 ce, αγ/ce b The last formula may be cosdered as a double seres exteso of the well ow -Gauss summato theorem (cf Baley1, 84 ad Gasper Rahma 4, II 8) because for γ e, t reduces euvaletly to the followg a, b φ 1 ; c c/a, c/b where c/ab < 1 (7) c ab c, c/ab (5)

08 WENCHANG CHU AND NADIA N LI Alteratvely, applyg (5) to the 3 φ -seres dsplayed (4) 3φ c, e, bd/β α, ; αβγ c, αγ/ce, αβγ/bcd γ bcde α, γ, αβγ/bcde α/c, γ/c, αβγ/bcde 3 φ αγ/ce, ; c αβγ/bcd we derve from (4) the secod trasformato formula Theorem 3 (Double sum expresso) b, c, d, e 4φ 3 ; αβγ c, αγ/ce, αβγ/bcd α, β, γ bcde α, γ, αβγ/bcde c ( e, β/b, β/d αγ ) α/c, γ/c, αβγ/bcde (αβγ/bcd; ) +, β ce, αγ/ce, 0 Lettg β e bd the last theorem, we get the followg terestg reducto formula for the -Appell le Φ (3) -seres (cf Gasper Rahma 4, 10) Corollary 4 (Reducto formula of double seres) b, c, d 3φ ; αγ α, γ α, γ bcd c, αγ/c c b, d (αγ/c; ) +, 0 ( αγ bcd ) α/c, γ/c Ths detty exteds aga the -Gauss summato theorem (7), whch correspods, fact, to the partcular case d 1 of the formula dsplayed the last corollary 3 By meas of (6), the 3 φ -seres (4) ca be reformulated as 3φ c, e, bd/β α, ; αβγ γ bcde α/e, αβγ/bcd α, αβγ/bcde 3φ e, γ/c, βγ/bd γ, ; α αβγ/bcd e Substtutg ths expresso to (4), we get the thrd trasformato formula Theorem 5 (Double sum expresso) b, c, d, e 4φ 3 ; αβγ α/e, αβγ/bcd α, β, γ bcde α, αβγ/bcde

NONTERMINATING EXTENSIONS OF THE SEARS TRANSFORMATION 09 e, βγ/bd γ, αβγ/bcd, 0 + ( αγ ce ) c, β/b, β/d, β, βγ/bd (γ/c; ) ( α ) (; ) e Lettg β 0 the last theorem, we fd aother terestg summato formula for the -Appell Φ (1) -seres (cf Gasper Rahma 4, 10) Corollary 6 (Summato formula of double seres) (α; ) (e; ) + (c; ) ( αγ ) (γ/c; ) ( α ) (α/e; ) (γ; ) + (; ) ce (; ) e, 0 Whe γ 0, ths detty recovers the -bomal seres (cf 1, 8 ad 4, II 3) a 1φ 0 ; x (ax; ) where x < 1 (8) (x; ) 4 Aalogously, by utlzg (6), we ca restate 3 φ -seres (4) as 3φ c, e, bd/β α, ; αβγ bd/β, αβγ/bcd, αβγ/bde γ bcde α, γ, αβγ/bcd αβγ/bcde, 3 φ αβ/bd, βγ/bd αβγ/bcd, ; bd αβγ/bde β Ths leads (4) to the fourth trasformato formula Theorem 7 (Double sum expresso) b, c, d, e 4φ 3 ; αβγ bd/β, αβγ/bcd, αβγ/bde αβ bd, βγ bd α, β, γ bcde α, γ, αβγ/bcde αβγ, 0 bcd, αβγ bde c, e, β/b, β/d ( αγ ) (αβγ/bcde; ) ( bd ), β, αβ bd, βγ bd ce (; ) β Lettg d 1 ad the replacg b by bβ the last theorem, we obta the followg terestg summato formula Corollary 8 (Summato formula of double seres) α, γ, αγ/bce α/b, γ/b b, αγ/bc, αγ/be αγ/bc, αγ/be, 0 + c, e, 1/b (αγ ) (αγ/bce; ) b, α/b, γ/b ce (; ) Whe c 1, ths detty recovers aga the -Gauss summato theorem (7) +

10 WENCHANG CHU AND NADIA N LI 3 Two terms trasformatos I ths secto, four trasformato theorems volvg two double sums wll be establshed by employg the followg two three term trasformato formulae (cf Gasper Rahma 4, III 33 & 34): b, c, d 3φ ; αγ α/b, α/c b, c, γ/d α, γ abc α, α/bc 3φ ; γ, bc/α (9) b, c, γ/d, αγ/bc α/b, α/c, αγ/bcd + 3φ ; ; α, γ, bc/α, αγ/bcd b, c, d 3φ ; αγ α, γ bcd α/b, α/c, c/d, /γ α, c/γ, /d, α/bc /γ, α/γ, b, c, γ/d, αγ/bc, bc/αγ γ/, α, b/γ, c/γ, /d, α/bc, bc/α αγ/bc, α/bc c, γ/d, c/α 3φ ; b c/d, bc/α γ b γ 3φ, c γ, d γ γ, α ; αγ bcd γ (10) 31 Accordg to (9), we ca reformulate the 3 φ -seres (4) as 3φ c, e, bd/β α, ; αβγ α/e, αβ/bd γ bcde α, αβ/bde 3φ e, γ/c, bd/β ; γ, bde/αβ γ/c, bd/β, + e, αβγ/bde α/e, α, γ, bde/αβ, αβγ/bcde 3φ αβ/bd, αβγ/bcde ; αβγ/bde, αβ/bde Substtutg ths to (4) results the frst trasformato formula Theorem 9 (Double sum expresso) b, c, d, e 4φ 3 ; αβγ α/e, αβ/bd (e; ) ( + αγ ) α, β, γ bcde α, αβ/bde (γ; ) + ce, 0 c, β/b, β/d γ/c, bd/β, β, αβ/bd, bde/αβ e, γ/c, bd/β, αβγ/bde + α, γ, bde/αβ, αβγ/bcde (αβ/bd; ) ( + c, β/b, β/d αγ ) α/e, αβγ/bcde (αβγ/bde; ) +, β, αβ/bd ce, αβ/bde, 0 Whe d 1, the last theorem yelds the followg two-term relato Corollary 10 (Two term summato formula) (αβγ/bce; ) α/e, αβ/b, αβγ/bce (αβγ/be; ) α, αβ/be, αβγ/be (e; ) ( + αγ ) c, β/b γ/c, b/β (γ; ) + ce, αβ/b, be/αβ e, γ/c, b/β + α, γ, be/αβ, 0

, 0 NONTERMINATING EXTENSIONS OF THE SEARS TRANSFORMATION 11 (αβ/b; ) + (αβγ/be; ) + c, β/b, αβ/b ( αγ ce ) α/e, αβγ/bce, αβ/be 3 By meas of (9), the 3 φ -seres dsplayed (4) ca be expressed as 3φ c, e, bd/β α, ; αβγ α/c, α/e γ bcde α, α/ce 3 φ c, e, βγ/bd 1+ ce/α, ; + c, e, βγ/bd, αγ/ce γ α, γ, ce/α, αβγ/bcde α/c, α/e, αβγ/bcde 3 φ αγ/ce, 1 ; α/ce The correspodg (4) yelds the secod trasformato formula Theorem 11 (Double sum expresso) b, c, d, e 4φ 3 ; αβγ α/c, α/e α, β, γ bcde α, α/ce β/b, β/d, β, βγ/bd, 0 ( )+ ( γ) (α/ce; ), 0 c, e, βγ/bd ce/α, γ ()+ ( γ) c, e, αγ/ce, βγ/bd + (; ) α, γ, ce/α, αβγ/bcde β/b, β/d α/c, α/e, αβγ/bcde, β, βγ/bd, αγ/ce Whe d 1, the last theorem gves aother two-term relato Corollary 1 (Two term summato formula) (αβγ/bce; ) (αγ/ce; ) α/c, α/e, αβγ/bce α, α/ce, αγ/ce c, e, βγ/b + α, γ, ce/α, 0, 0 ( )+ ( γ) (α/ce; ) c, e, βγ/b ce/α, γ + β/b, βγ/b β/b, βγ/b + ( )+ ( γ) (; ) α/c, α/e, αβγ/bce, αγ/ce 33 Applyg (10) to the 3 φ -seres (4), we get the expresso 3φ c, e, bd/β α, ; αβγ γ 3 φ e, αβ/bd, e/γ bcde 1+ eβ/bd, 1+ ; c ce/γ α γ/c, γ/e, 1 /α, 1+ eβ/bd c/α, e/α, e/α, β/bd, γ, γ/ce 3 φ 1 bd/αβ γ/α, ; αβγ /α bcde

1 WENCHANG CHU AND NADIA N LI γ/α, 1 /α, c, e, αβ/bd, αγ/ce, ce/αγ 1 α, γ, c/α, e/α, β/bd, γ/ce, 1+ ce/γ Substtutg the last euato to (4) gves rse to the thrd trasformato formula Theorem 13 (Double sum expresso) b, c, d, e 4φ 3 ; αβγ /α, γ/c, γ/e, βe/bd α, β, γ bcde γ, γ/ce, e/α, β/bd e, αβ/bd c, β/b, β/d (e/γ; ) eβ/bd, ce/γ, β, αβ/bd, 0 + (; ) + /α, γ/α, c, e, αβ/bd, αγ/ce, ce/αγ α α, γ, c/α, e/α, β/bd, γ/ce, ce/γ (α/; ) β/b, β/d c/α, e/α (αβ/bd; ), β, γ/α, 0 ( c ) α ( αγ ) ce For ths theorem ad the ext oe, we shall ot produce the two term relatos correspodg to the case d 1, whch wll resemble Corollares 10 ad 1 34 Fally, the 3 φ -seres dsplayed (4) ca be reformulated through (10) as 3φ c, e, bd/β α, ; αβγ γ/e, βγ/bd, 1 /α, 1 bd/cβ γ bcde βγ/bde, 1 /c, γ, 1 bd/αβ bd/β, α/c, 3 φ 1 bd/βγ bde/βγ, 1 ; e c bd/cβ 3 φ α, e α, 1 bd αβ α γ/α, ; αβγ /α bcde γ/α, 1 /α, e, bd/β, α/c, 1 αβγ/bde, bde/αβγ 1 α, γ, e/α, βγ/bde, 1 bd/αβ, 1 /c, bde/βγ whch leads (4) to the fourth trasformato formula Theorem 14 (Double sum expresso) b, c, d, e 4φ 3 ; αβγ γ/e, βγ/bd, bd/cβ, /α α, β, γ bcde γ, bd/αβ, /c, βγ/bde (cβ/bd; ) ( e, β/b, β/d αγ ) α/c, bd/β (βγ/bd; ), β, αβ/bd, 0 ce, bde/βγ + /α, γ/α, e, bd/β, α/c, αβγ/bde, bde/αβγ α α, γ, bd/αβ, e/α, /c, βγ/bde, bde/βγ ( ce ) αγ

NONTERMINATING EXTENSIONS OF THE SEARS TRANSFORMATION 13, 0 (α/; ) (αβ/bd; ) β/b, β/d, β c/α, e/α, γ/α ( αγ ) ce It s wdely ow that some two term relatos ca be rewrtte compact form terms of -tegrals For the -double seres, there s also such a example Gasper Rahma 4, Exercse 1016) However, t s ulely to do so for the theorems derved ths secto because the two double sums volved are very dfferet ther structure The oly excepto s Theorem 9 wth the two double sums havg the same symmetrc form However, t seems a ueasy tas to express t -tegrals due to the presece of varable (αγ/ce) 4 Further ow examples The four theorems establshed the last secto are all reduced to the Sears trasformato (1) whe the 4 φ 3 -seres s termatg balaced oe I fact, for αβγ bcde, the 4 φ 3 -seres Theorem 9 s balaced The correspodg result ca be stated as the followg proposto Proposto 15 (αβγ bcde) b, c, d, e α/e, αβ/bd 4φ 3 ; α, β, γ α, αβ/bde c, β/b, β/d (bd/β; ), β, αβ/bd c (; ) γ ( αγ ) c, β/b, β/d ce, β, αβ/bd, 0, 0 (e; ) ( + αγ (γ; ) + ce e, c, bd/β, α, γ ) (αβ/bd; ) + (α/e; ) (c; ) + (αβ/bde; ) +1 Whe e, the secod part wll be ahlated by the zero factor ( ; ), whle the frst sum ca be mapulated as follows ( ; ) ( + αγ ) c, β/b, β/d (bd/β; ) (γ; ) + c, β, αβ/bd +, 0 (; ) (, c, β/b, β/d αγ ), β, γ, αβ/bd φ, bd/β 1 0 c ; γ Evaluatg the φ 1 -seres by meas of the -Chu Vadermode Gauss formula (cf 4, II 6) φ, bd/β 1 ; ( βγ/bd; ) ( bd ) γ ( γ; ) β (βγ/bd; ) (γ; ) (βγ/bd; ) (γ; ) ( bd β )

14 WENCHANG CHU AND NADIA N LI we fd that the last double sum reduces to a sgle oe The the resultg expresso gves the Sears trasformato (1) after some route smplfcato Two further partcular cases of Proposto 15 may be worthy of metog The frst case α e results a specal form of (5) whe the seres s balaced Aother oe s the otermatg -Vadermode sum (cf 4, II 3) whch correspods to the case c 1 Corollary 16 (αβγ bde) a, b /c, ab/c φ 1 ; c a/c, b/c + /c, a, b a/c, b/c c c, a/c, b/c φ 1 ; /c Aalogously, we may exame Theorem 13 Whe αβγ bcde, the 4 φ 3 - seres s balaced The the frst double sum ca be reduced to a sgle oe e, αβ/bd (e/γ; ) ( c, β/b, β/d c ) eβ/bd, ce/γ, 0 + (; ), β, αβ/bd α c, e, β/b, β/d e/γ,, β, αβ/bd, eβ/bd φ e 1 1+ ; c eβ/bd 0 α c, e, β/b, β/d βγ/bd, β/bd, β, αβ/bd, βe/bd 1+ eβ/bd, c/α 0 βγ/bd, β/bd c, e, β/b, β/d eβ/bd, c/α 4φ 3 ;, β, αβ/bd, βγ/bd where the last φ 1 -seres has bee evaluated through (7) Hece, Theorem 13 uder the balaced codto αβγ bcde becomes the followg trasformato formula Proposto 17 (αβγ bcde) b, c, d, e /α, γ/c, γ/e, ce/α c, e, β/b, β/d 4φ 3 ; α, β, γ γ, c/α, e/α, γ/ce 4φ 3 ; β, αβ/bd, βγ/bd + /α, c, e, bd/β, γ/α α α, c/α, e/α, bd/αβ, γ β/b, β/d (α/) ( c/α, e/α bd ), β (αβ/bd), γ/α β, 0 Furthermore, we ca chec wthout dffculty that the termatg case e of ths proposto recovers aga the Sears trasformato (1) Istead, whe β d, Proposto 17 reduces to the followg otermatg -Pfaff-Saalschütz theorem (cf 4, II 4)

NONTERMINATING EXTENSIONS OF THE SEARS TRANSFORMATION 15 Corollary 18 (αγ bcd) b, c, d /γ, α/b, α/c, α/d 3φ ; α, γ α, b/γ, c/γ, d/γ + α/γ, /γ, b, c, d γ α, γ, b/γ, c/γ, d/γ 3φ b/γ, c/γ, d/γ /γ, α/γ ; Before edg the paper, we would le to pot out that all the theorems obtaed ths paper volve the double -seres Oe mportat class of them s called -Kampé de Féret Seres (cf Gasper Rahma 4, 10 for example) The formed reader ca chec wthout dffculty that Theorem 3 s, fact, euvalet to a trasformato due to Chu Ja, Proposto 3, whle Theorem 7 s essetally a reducto formula Further summato ad trasformato formulae ca be foud the papers by Chu et al, 3 Acowledgemet The authors are scerely grateful to a aoymous referee for the crtcal commets ad valuable suggestos, that helped us substatally to mprove the mauscrpt revso Refereces 1 W N Baley, Geeralzed Hypergeometrc Seres, Cambrdge Uversty Press, Cambrdge, 1935 W Chu ad C Ja, Trasformato ad reducto formulae for double -Clause hypergeometrc seres, Math Methods Appl Sc, 31 (1) (008), 1 17 3 W Chu ad N N L, Termatg -Kampé de Féret seres Φ 1:3;λ 1:;µ ad Φ:;λ :1;µ, Hroshma Math J, 4 () (01), 33 5 4 G Gasper ad M Rahma, Basc Hypergeometrc Seres (d ed), Cambrdge Uversty Press, Cambrdge, 004 5 D B Sears, O the trasformato theory of basc hypergeometrc fuctos, Proc Lodo Math Soc, 53 (1951), 158 180 (Receved: August 30, 015) (Revsed: Jauary 1, 016) Wechag Chu Dpartmeto d Matematca e Fsca Eo De Gorg Uverstá del Saleto Lecce Aresao P O Box 193 73100 Lecce Italy chuwechag@usaletot Nada N L Departmet of Mathematcs Zhouou Normal Uversty Zhouou 466000 P R Cha la3718@163com