Article Multivariate Extended Gamma Distribution
|
|
- Χλόη Τομαραίοι
- 6 χρόνια πριν
- Προβολές:
Transcript
1 axoms Artcle Multvarate Exteded Gamma Dstrbuto Dhaya P. Joseph Departmet of Statstcs, Kurakose Elas College, Maaam, Kottayam, Kerala , Ida; Tel.: Academc Edtor: Has J. Haubold Receved: 7 Jue 2016; Accepted: 13 Aprl 2017; Publshed: 24 Aprl 2017 Abstract: I ths paper, I cosder multvarate aalogues of the exteded gamma desty, whch wll provde multvarate extesos to Tsalls statstcs ad superstatstcs. By makg use of the pathway parameter β, multvarate geeralzed gamma desty ca be obtaed from the model cosdered here. Some of ts specal cases ad lmtg cases are also metoed. Codtoal desty, best predctor fucto, regresso theory, etc., coected wth ths model are also troduced. Keywords: pathway model; multvarate exteded gamma desty; momets 1. Itroducto Cosder the geeralzed gamma desty of the form where c 1 = γ+1 a Γ( γ+1 g(x = c 1 x γ e ax, x 0, a > 0, > 0, γ + 1 > 0, (1, s the ormalzg costat. Note that ths s the geeralzato of some stadard statstcal destes such as gamma, Webull, expoetal, Maxwell-Boltzma, Raylegh ad may more. We wll exted the geeralzed gamma desty by usg pathway model of [1] ad we get the exteded fucto as where c 2 = g 1 (x = c 2 x γ [1 + a(β 1x ] 1, x 0, β > 1, a > 0, > 0 (2 γ+1 (a( Γ( 1 Γ( γ+1 Γ( 1 γ+1, s the ormalzg costat. Note that g 1 (x s a geeralzed type-2 beta model. Also lm β 1 g 1 (x = g(x, so that t ca be cosdered to be a exteded form of g(x. For varous values of the pathway parameter β a path s created so that oe ca see the movemet of the fucto deoted by g 1 (x above towards a geeralzed gamma desty. From the Fgure 1 we ca see that, as β moves away from 1 the fucto g 1 (x moves away from the org ad t becomes thcker taled ad less peaked. From the path created by β we ote that we obta destes wth thcker or ther tal compared to geeralzed gamma desty. Observe that for β < 1, wrtg β 1 = (1 β Equato (2 produce geeralzed type-1 beta form, whch s gve by g 2 (x = c 3 x γ [1 a(1 βx ] 1 1 β, 1 a(1 βx 0, β < 1, a > 0, > 0 Axoms 2017, 6, 11; do: /axoms
2 Axoms 2017, 6, 11 2 of 12 where c 3 = γ+1 (a(1 β Γ( 1 β 1 γ Γ( γ+1 Γ( 1 1 β +1, s the ormalzg costat (see [2]. Fgure 1. The graph of g 1 (x, for γ = 1, a = 1, = 2, = 1 ad for varous values of β. From the above graph, oe ca see the movemet of the exteded gamma desty deoted by g 1 (x towards the geeralzed gamma desty, for varous values of the pathway parameter β. Beck ad Cohe s superstatstcs belog to the case (2 [3,4]. For γ = 1, a = 1, = 1 we have Tsalls statstcs [5,6] for β > 1 from (2. Several multvarate extesos of the uvarate gamma dstrbutos exst the lterature [7 9]. I ths paper we cosder a multvarate aalogue of the exteded gamma desty (2 ad some of ts propertes. 2. Multvarate Exteded Gamma Varous multvarte geeralzatos of pathway model are dscussed the papers of Matha [10,11]. Here we cosder the multvarate case of the exteded gamma desty of the form (2. For X 0, = 1, 2,...,, let f β (x 1, x 2,..., x = k β x γ 1 1 xγ xγ [1 + (β 1(a 1 x 1 + a 2x a x ], β > 1, > 0, > 0, a > 0, = 1, 2,...,, (3 where k β s the ormalzg costat, whch wll be gve later. Ths multvarate aalogue ca also produce multvarate extesos to Tsalls statstcs [5,12] ad superstatstcs [3]. Here the varables
3 Axoms 2017, 6, 11 3 of 12 are ot depedetly dstrbuted, but whe β 1 we have a result that X 1, X 2,..., X wll become depedetly dstrbuted geeralzed gamma varables. That s, lm f β(x 1, x 2,..., x = f (x 1, x 2,..., x β 1 = kx γ 1 1 xγ xγ e b 1x 1... b x, x 0, b = a > 0, > 0, = 1, 2,...,, (4 where k = γ +1 b Γ( γ +1, γ + 1 > 0, = 1, 2,...,. The followg are the graphs of 2-varate exteded gamma wth γ 1 = 1, γ 2 = 1, a 1 = 1, a 2 = 1, = 2, = 2 ad for varous values of the pathway parameter β. From the Fgures 2 4, we ca see the effect of the pathway parameter β the model. Fgure 2. β = 1.2. Fgure 3. β = 1.5.
4 Axoms 2017, 6, 11 4 of 12 Specal Cases ad Lmtg Cases Fgure 4. β = Whe β 1, (3 wll become depedetly dstrbuted geeralzed gamma varables. Ths cludes multvarate aalogue of gamma, expoetal, chsquare, Webull, Maxwell- Boltzma, Raylegh, ad related models. 2. If = 1, a 1 = 1, = 1, β = 2, (3 s detcal wth type-2 beta desty. 3. If β = 2, a 1 = a 2 =... = a = 1, = =... = = 1 (3, the (3 becomes the type-2 Drchlet desty, D(x 1, x 2,..., x = dx ν x ν x ν 1 [1 + x 1 + x x ] (ν ν +1, x 0, (5 where ν = γ + 1, = 1, 2,...,, ν +1 = (ν ν ad d s the ormalzg costat (see [13,14]. A sample of the surface for = 2 s gve the Fgure 5. Fgure 5. The graph of bvarate type-2 Drchlet wth γ 1 = γ 2 = 1, = 6.
5 Axoms 2017, 6, 11 5 of Margal Desty We ca fd the margal desty of X, by tegratg out X 1, X 2,..., X 1, X +1,..., X 1, X. Frst let us tegrate out X, the the jot desty of X 1, X 2,..., X 1 deoted by f 1 s gve by f 1 (x 1, x 2,..., x 1 = x >0 f β (x 1, x 2,..., x dx = k β x γ 1 1 xγ xγ 1 1 [1 + (β 1(a 1x a 1x 1 x γ [1 + Cx ] dx, x 1 ] (6 where C = (a. By puttg y = [1+((a 1 x a 1 x 1 1 ] Cx ad tegratg we get f 1 (x 1, x 2,..., x 1 = k βγ( γ +1 Γ( γ +1 γ x 1 [a (β 1] γ+1 Γ( 1 xγ xγ 1 1 [ [1 + (β 1(a 1 x 1 + a 2x a 1x 1 1 ] γ+1 ], (7 x 0, = 1, 2,..., 1, a > 0, > 0, = 1, 2,...,, β > 1, > 0, γ +1 > 0, γ + 1 > 0. I a smlar way we ca tegrate out X 1, X 2,..., X 1, X +1,..., X 1. The the margal desty of X s deoted by f 2 ad s gve by [ f 2 (x = k 2 x γ [1 + (β 1a x ] γ+1... γ 1 +1 γ γ ], (8 where x 0, β > 1, > 0, > 0, γ + 1 > 0, γ +1 k 2 = (a ( Γ( γ+1... γ 1 +1 γ γ Γ( γ +1 Γ( γ γ+1, γ γ γ γ 1+1 > 0,... γ +1 > 0. If we take ay subset of (X 1,..., X, the margal destes belog to the same famly. I the lmtg case they wll also become depedetly dstrbuted geeralzed gamma varables. Normalzg Costat Itegratg out X from (8 ad equatg to 1, we wll get the ormalzg costat k β as γ k β = (a 1 (β 1 1 (a 2 (β 1 γ 2 +1 Γ( γ 1+1 Γ( γ Γ( γ +1 > 0, a > 0, γ + 1 > 0, = 1, 2,...,, β > 1, > 0, 4. Jot Product Momet ad Structural Represetatos... (a (β 1 γ+1 Γ( Γ(... γ +1, (9... γ +1 > 0. Let (X 1,..., X have a multvarate exteded gamma desty (3. By observg the ormalzg costat (23, we ca easly obtaed the jot product momet for some arbtrary (h 1,..., h,
6 Axoms 2017, 6, 11 6 of 12 1 xh xh = k β Γ( γ1+h1+1 =... Γ( γ +h +1 γ 1 +h (a 1 (β 1 1 Γ( γ 1+h γ +h +1 Γ(... γ +1 Γ( γ 1+h γ +h (a (β 1 γ+h+1 Γ( h [a (β 1] Γ( γ + h + 1 Γ( γ + 1, (10 γ + h + 1 > 0, γ + h + 1 > 0, β 1 = 1, 2,...,. γ + 1 > 0, γ + 1 > 0, a > 0, β > 1, > 0, Property 1. The jot product momet of the multvarate exteded gamma desty ca be wrtte as 1 xh xh = ( Γ ( Γ γ + h + 1 γ + 1 where Y s are geeralzed gamma radom varables havg desty fucto E(y h, (11 f y (y = c y γ e [a (y ], y 0, β > 1, a > 0, > 0, (12 γ +1 where c = [a (], γ Γ( γ > 0, = 1, 2,...,, s the ormalzg costat. Property 2. Lettg h 2 =... = h = 0, (10, we get γ 1+h 1 +1 =2 β > 1, > 0. (13 s the h th 1 1 = Γ( γ 1+h 1 +1 γ γ +1 γ + 1 > 0, where k 3 s the ormalzg costat. The Γ(... γ +1 h 1 [a 1 (β 1] Γ( γ 1+h Γ( γ 1+1, (13 γ 1 + h > 0, β 1 γ + 1 > 0, γ + 1 > 0, a 1 > 0, momet of a radom varable wth desty fucto of the the form (8, f 3 (x 1 = k 3 x γ 1 1 [1 + (β 1a 1x 1 ] [ 1 = k 3 x γ 1 1 [1 + a 1(β 1x 1 1 ] [ 0 γ 2 +1 γ 2 +1 ]... γ+1, (14... γ+1 ] dx 1 (15 Makg the substtuto y = a 1 (β 1x 1, the t wll be the form of a type-2 beta desty ad we ca easly obtaed the h th 1 momet as (13.
7 Axoms 2017, 6, 11 7 of 12 Property 3. Lettg h 3 =... = h = 0, (10, we get 1 xh 2 2 = Γ( γ 1+h 1 +1 γ 2+h 2 +1 Γ(... γ +1 =3... γ +1 Γ( γ 1+h 1 +1 Γ( γ 2+h 2 +1 h 1 [a 1 (β 1] 1 [a 2 (β 1] h 2 2 Γ( γ 1+1 Γ( γ 2+1, (16 γ 1+h 1 +1 γ 2+h 2 +1 γ + 1 > 0, β 1 γ + 1 > 0, β > 1, γ + h + 1 > 0, γ + 1 > 0, a > 0, > 0, = 1, 2, whch s the jot product momet of a bvarate exteded gamma desty s deoted by f 4 ad s gve by f 4 (x 1 x 2 = k 4 x γ 1 1 xγ 2 2 [1 + (β 1(a 1x 1 + a 2x 2 ] [ γ ]... γ+1, (17 where k 4 s the ormalzg costat. (17 s obtaed by tegratg out X 3,..., X from (3. By puttg h 4 =... = h = 0, (10, we get the jot product momet of trvarate exteded gamma desty ad so o. Theorem 1. Whe X 1,..., X has desty (3, the E{x h xh [1 + (β 1(a 1 x a x ] h } Γ( γ 1+h 1 +1 = k 1... Γ( γ +h +1 β γ 1 +h (a 1 (β 1 1 = Γ( h γ 1+h γ +h +1 Γ( Γ( h γ 1+h γ +h +1 Γ(... γ +1 Γ( h... (a (β 1 γ+h+1 Γ( h { [a (β 1] Γ( γ + h + 1 h Γ( γ + 1 }, (18 γ h + h + 1 > 0, γ + h + 1 > 0, > 0, > 0, = 1, 2,...,. β 1 γ + 1 > 0, γ + 1 > 0, a > 0, β > 1, Corollary 1. Whe X 1,..., X has desty (3, the E{[1 + (β 1(a 1 x a x h γ + h + 1 > 0, 4.1. Varace-Covarace Matrx ] h } = Γ( β 1 h > 0, Γ( h γ 1+h γ +h +1 Γ( β 1 > 0, = 1, 2,...,.... γ +1 Γ( h, (19 γ + 1 > 0, a > 0, β > 1, > 0, Let X be a 1 vector. Varace-covarace matrx s obtaed by takg E[(X E(X(X E(X ]. The the elemets wll be of the form
8 Axoms 2017, 6, 11 8 of 12 where ad Var(x 1 Cov(x 1, x 2... Cov(x 1, x E[(X E(X(X E(X Cov(x 2, x 1 Var(x 2... Cov(x 2, x ] =.... Cov(x, x 1 Cov(x, x 2... Var(x Cov(x, x j = E(x x j E(x E(x j,, j = 1, 2,...,, = j (20 Var(x = E(x 2 [E(x ] 2, = 1, 2,...,. (21 E(x x j s are obtaed from (10 by puttg h = h j = 1 ad all other h k = 0, k = 1, 2,...,, k =, j. E(x s ad E(x 2 s are respectvely obtaed from (10 by puttg h = 1 ad h = 2 ad all other h k = 0, k = 1, 2,...,, k =. Where 4.2. Normalzg Costat E(x 1 x 2 = 0 0 x 1 x 2 f 2 (x 1, x 2 dx 1 dx 2. (22 Itegrate out x from (8 ad equate wth 1, we wll get the ormalzg costat K α as γ K α = +1 1 (a 1 (α 1 1 (a 2 (α 1 γ 2 +1 Γ( γ 1+1 Γ( γ 2+1 Γ( γ Regresso Type Models ad Lmtg Approaches (a (α 1 γ+1 Γ( Γ( α 1 γ 1+1 γ +1 α 1. (23 The codtoal desty of X gve X 1, X 2,..., X 1, X +1,..., X s deoted by f 5 ad s gve by f 5 (x x 1, x 2,..., x 1, x +1,..., x = γ = +1 [a (β 1] Γ( Γ( γ +1 Γ( γ +1 [1 + xγ f β (x 1, x 2,..., x f 6 (x 1, x 2,..., x 1, x +1,..., x (β 1a x 1 + (β 1(a 1 x 1 + a 2x a 1x a +1x a x ] [1 + (β 1(a 1 x 1 + a 2x a 1x a +1x a x ] γ +1, (24 where f 6 s the jot desty of X 1, X 2,..., X 1, X +1,..., X. Whe we take the lmt as β 1 Equato (24, we ca see that the codtoal desty wll be the form of a geeralzed gamma desty ad s gve by lm f 5(x x 1, x 2,...,, x 1, x +1,..., x = (a β 1 Γ( γ +1 γ +1 x 0, > 0, > 0, γ + 1 > 0. xγ e a x, (25
9 Axoms 2017, 6, 11 9 of 12 Theorem 2. Let (X 1, X 2,..., X have a multvarate exteded gamma desty (3, the the lmtg case of the codtoal desty f β (x x 1, x 2,...,, x 1, x +1,..., x wll be a geeralzed gamma desty (25. Best Predctor The codtoal expectato, E(x x 1,..., x 1, s the best predctor, best the sese of mmzg the expected squared error. Varables whch are preassged are usually called depedet varables ad the others are called depedet varables. I ths cotext, X s the depedet varable or beg predcted ad X 1,..., X 1 are the preassged varables or depedet varables. Ths best predctor s defed as the regresso fucto of X o X 1,..., X 1. E(x x 1,..., x 1 = x =0 x f 7 (x x 1,..., x 1 dx = [a (β 1] γ+1 Γ( Γ( γ +1 Γ( [1 + (β 1(a 1x a 2x x =0 γ a 1x 1 x γ +1 [1 + (β 1(a 1 x 1 + a 2x a x ] dx. 1 γ+1 ] + (26 We ca tegrate the above tegral as the case of Equato (6. The after smplfcato we wll get the best predctor of X at preassged values of X 1,..., X 1 whch s gve by E(x x 1,..., x 1 = [a (β 1] 1 Γ( γ +2 Γ( γ +2 Γ( γ +1 Γ( γ +1 [1 + (β 1(a 1 x 1 + a 2x a 1x 1 1 ] 1, (27 > 0, a > 0, β > 1, x > 0, = 1, 2,..., 1, γ +2 > 0, γ + 1 > 0. We ca take the lmt β 1 (27. For takg lmt, let us apply Strlg s approxmatos for gamma fuctos, see for example [15] Γ(z + a (2π 1 2 z z+a 1 2 e z, for z ad a s bouded (28 to the gamma s (27. The we wll get lm E(x x 1,..., x 1 = β 1 Γ( γ +2 (a 1 Γ( γ +1 (29 whch s the momet of a geeralzed gamma desty as gve ( Multvarate Exteded Gamma Whe β < 1 Cosder the case whe the pathway parameter β s less tha 1, the the pathway model has the form g(x = Kx γ [1 a(1 βx ] 1 β, β < 1, a > 0, > 0, > 0, (30
10 Axoms 2017, 6, of 12 1 a(1 βx 0, ad K s the ormalzg costat. g(x s the geeralzed type-1 beta model. Let us cosder a multvarate case of the above model as g β (x 1, x 2,..., x = K β x γ 1 1 xγ xγ [1 (1 β(a 1 x 1 + a 2x a x ] 1 β, β < 1, > 0, > 0, a > 0, = 1, 2,...,, 1 (1 β(a 1 x 1 + a 2x a x 0. where K β s the ormalzg costat ad t ca be obtaed by solvg K β... x γ xγ [1 (1 β(a 1 x a x ] 1 β dx 1... dx = 1 (32 Itegrato over x yelds the followg, K β x γ 1 1 xγ xγ 1 1 [1 (1 β(a 1x a 1x 1 1 ] u 1 β x γ [1 + C 1 x ] dx, (33 0 where u = [ 1 (1 β(a 1 x a 1 x 1 1 a (1 β ] 1 ad C 1 = (1 βa (31 [1 (1 β(a 1 x a 1 x 1 1 ]. Lettg y = C 1x the the above tegral becomes a type-1 Drchlet tegral ad the ormalzg costat ca be obtaed as, K β = j=1 γ j +1 [ j ((1 βa j j ]Γ(1 + 1 β + γ γ + 1 Γ( γ Γ( γ +1 Γ(1 + 1 β (34 Whe β 1, (31 wll become the desty of depedetly dstrbuted geeralzed gamma varables. By observg the ormalzg costat (34, we ca easly obtae the jot product momet for some arbtrary (h 1,..., h, 1 xh xh = K β = j=1 h j [((1 βa j j=1 γ j +h j +1 [ j ((1 βa j Γ( γ1+h Γ( γ +h +1 Γ(1 + 1 β j ]Γ(1 + 1 β + γ 1 + h γ + h + 1 Γ(1 + 1 β + γ γ +1 Γ( γ 1+h Γ( γ +h +1 j ]Γ(1 + 1 β + γ 1 + h γ + h + 1 Γ( γ Γ( γ + 1, (35 γ + h j + 1 > 0, γ j + 1 > 0, a j > 0, β < 1, j > 0, j = 1, 2,...,. Lettg h 2 =... = h = 0, (35, we get 1 = Γ(1 + h 1 [(1 βa 1 ] 1 ]Γ(1 + 1 β + γ γ +1 Γ( γ 1+h β + γ 1+h γ γ +1 Γ( γ 1+1 γ 1 + h > 0, γ j + 1 > 0, a 1 > 0, β < 1, j > 0, > 0, j = 1, 2,...,., (36
11 Axoms 2017, 6, of 12 (13 s the h th 1 momet of a radom varable wth desty fucto, g 1 (x 1 = K 1 x γ 1 1 [1 (1 βa 1x 1 ] where K 1 s the ormalzg costat. Lettg h 3 =... = h = 0, (35, we get 1 β + γ γ+1, (37 = 1 xh j=1 h j [((1 βa j Γ(1 + 1 β + γ γ +1 Γ( γ 1+h 1 +1 Γ( γ 2+h 2 +1 j ]Γ ( β + γ + h j=3 γ j + 1 j Γ( γ Γ( γ 2 + 1, (38 γ 1 + h > 0, (γ 2 + h > 0, γ j + 1 > 0, a 1 > 0, a 2 > 0 β < 1, j > 0, γ j + 1 > 0, j = 1, 2,...,. If we proceed the smlar way as Secto 4.1, here we ca deduce the varace-covarace matrx of multvarate exteded gamma for β < Coclusos Multvarate couterparts of the exteded geeralzed gamma desty s cosdered ad some propertes are dscussed. Here we cosdered the varables as ot depedetly dstrbuted, but whe the pathway parameter β 1 we ca see that X 1, X 2,..., X wll become depedetly dstrbuted geeralzed gamma varables. Jot product momet of the multvarate exteded gamma s obtaed ad some of ts propertes are dscussed. We ca see that the lmtg case of the codtoal desty of ths multvarate exteded gamma s a geeralzed gamma desty. A graphcal represetato of the pathway s gve Fgures 1 4. Ackowledgmets: The author ackowledges gratefully the ecouragemets gve by Professor A. M. Matha, Departmet of Mathematcs ad Statstcs, McGll Uversty, Motreal, QC, Caada ths work. Coflcts of Iterest: The author declares o coflct of terest. Refereces 1. Matha, A.M. A Pathway to matrx-varate gamma ad ormal destes. Lear Algebra Appl. 2005, 396, Joseph, D.P. Gamma dstrbuto ad extesos by usg pathway dea. Stat. Pap. Ger. 2011, 52, Beck, C.; Cohe, E.G.D. Superstatstcs. Physca A 2003, 322, Beck, C. Stretched expoetals from superstatstcs. Physca A 2006, 365, Tsalls, C. Possble geeralzatos of Boltzma-Gbbs statstcs. J. Stat. Phys. 1988, 52, Matha, A.M.; Haubold, H.J. Pathway model, superstatstcs Tsalls statstcs ad a geeralzed measure of etropy. Physca A 2007, 375, Kotz, S.; Balakrshma, N.; Johso, N.L. Cotuous Multvarate Dstrbutos; Joh Wley & Sos, Ic.: New York, NY, USA, Matha, A.M.; Moschopoulos, P.G. O a form of multvarate gamma dstrbuto. A. Ist. Stat. Math. 1992, 44, Furma, E. O a multvarate gamma dstrbuto. Stat. Probab. Lett. 2008, 78, Matha, A.M.; Provost, S.B. O q-logstc ad related models. IEEE Tras. Relab. 2006, 55,
12 Axoms 2017, 6, of Haubold, H.J.; Matha, A.M.; Thomas, S. A etropc pathway to multvarate Gaussa desty. arxv 2007, arxv: v. 12. Tsalls, C. Noextesve Statstcal Mechacs ad Thermodyamcs. Braz. J. Phys. 1999, 29, Thomas, S.; Jacob, J. A geeralzed Drchlet model. Stat. Probab. Lett. 2006, 76, Thomas, S.; Thappara, A.; Matha, A.M. O a matrx-varate geeralzed type-2 Drchlet desty. Adv. Appl. Stat. 2008, 8, Matha, A.M. A Hadbook of Geeralzed Specal Fuctos for Statstcal ad Physcal Sceces; Oxford Uversty Press: Oxford, UK, 1993; pp c 2017 by the authors; lcesee MDPI, Basel, Swtzerlad. Ths artcle s a ope access artcle dstrbuted uder the terms ad codtos of the Creatve Commos Attrbuto (CC BY lcese (
CS 1675 Introduction to Machine Learning Lecture 7. Density estimation. Milos Hauskrecht 5329 Sennott Square
CS 675 Itroducto to Mache Learg Lecture 7 esty estmato Mlos Hausrecht mlos@cs.tt.edu 539 Seott Square ata: esty estmato {.. } a vector of attrbute values Objectve: estmate the model of the uderlyg robablty
Estimators when the Correlation Coefficient. is Negative
It J Cotemp Math Sceces, Vol 5, 00, o 3, 45-50 Estmators whe the Correlato Coeffcet s Negatve Sad Al Al-Hadhram College of Appled Sceces, Nzwa, Oma abur97@ahoocouk Abstract Rato estmators for the mea of
Exam Statistics 6 th September 2017 Solution
Exam Statstcs 6 th September 17 Soluto Maura Mezzett Exercse 1 Let (X 1,..., X be a raom sample of... raom varables. Let f θ (x be the esty fucto. Let ˆθ be the MLE of θ, θ be the true parameter, L(θ be
Studies on Properties and Estimation Problems for Modified Extension of Exponential Distribution
Iteratoal Joural of Computer Applcatos (975 8887) Volume 5 No. September 5 Studes o Propertes ad Estmato Problems for odfed Exteso of Expoetal Dstrbuto.A. El-Damcese athematcs Departmet Faculty of Scece
Examples of Cost and Production Functions
Dvso of the Humates ad Socal Sceces Examples of Cost ad Producto Fuctos KC Border October 200 v 20605::004 These otes sho ho you ca use the frst order codtos for cost mmzato to actually solve for cost
Multi-dimensional Central Limit Theorem
Mult-dmensonal Central Lmt heorem Outlne () () () t as () + () + + () () () Consder a sequence of ndependent random proceses t, t, dentcal to some ( t). Assume t 0. Defne the sum process t t t t () t tme
ΝΕΑ ΑΠΟΤΕΛΕΣΜΑΤΑ ΣΧΕΤΙΚΑ ΜΕ ΤΗΝ ΥΠΑΡΞΗ ΕΚΤΙΜΗΤΩΝ ΜΕΓΙΣΤΗΣ ΠΙΘΑΝΟΦΑΝΕΙΑΣ ΓΙΑ ΤΗΝ 3-ΠΑΡΑΜΕΤΡΙΚΗ ΓΑΜΜΑ ΚΑΤΑΝΟΜΗ
Ελληνικό Στατιστικό Ινστιτούτο Πρακτικά ου Πανελληνίου Συνεδρίου Στατιστικής 008, σελ 9-98 ΝΕΑ ΑΠΟΤΕΛΕΣΜΑΤΑ ΣΧΕΤΙΚΑ ΜΕ ΤΗΝ ΥΠΑΡΞΗ ΕΚΤΙΜΗΤΩΝ ΜΕΓΙΣΤΗΣ ΠΙΘΑΝΟΦΑΝΕΙΑΣ ΓΙΑ ΤΗΝ 3-ΠΑΡΑΜΕΤΡΙΚΗ ΓΑΜΜΑ ΚΑΤΑΝΟΜΗ Γεώργιος
Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-570: Στατιστική Επεξεργασία Σήµατος. ιδάσκων : Α. Μουχτάρης. εύτερη Σειρά Ασκήσεων.
Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 2015 ιδάσκων : Α. Μουχτάρης εύτερη Σειρά Ασκήσεων Λύσεις Ασκηση 1. 1. Consder the gven expresson for R 1/2 : R 1/2
One and two particle density matrices for single determinant HF wavefunctions. (1) = φ 2. )β(1) ( ) ) + β(1)β * β. (1)ρ RHF
One and two partcle densty matrces for sngle determnant HF wavefunctons One partcle densty matrx Gven the Hartree-Fock wavefuncton ψ (,,3,!, = Âϕ (ϕ (ϕ (3!ϕ ( 3 The electronc energy s ψ H ψ = ϕ ( f ( ϕ
Multi-dimensional Central Limit Theorem
Mult-dmensonal Central Lmt heorem Outlne () () () t as () + () + + () () () Consder a sequence of ndependent random proceses t, t, dentcal to some ( t). Assume t 0. Defne the sum process t t t t () t ();
Generalized Fibonacci-Like Polynomial and its. Determinantal Identities
Int. J. Contemp. Math. Scences, Vol. 7, 01, no. 9, 1415-140 Generalzed Fbonacc-Le Polynomal and ts Determnantal Identtes V. K. Gupta 1, Yashwant K. Panwar and Ompraash Shwal 3 1 Department of Mathematcs,
Discrete Fourier Transform { } ( ) sin( ) Discrete Sine Transformation. n, n= 0,1,2,, when the function is odd, f (x) = f ( x) L L L N N.
Dscrete Fourer Trasform Refereces:. umercal Aalyss of Spectral Methods: Theory ad Applcatos, Davd Gottleb ad S.A. Orszag, Soc. for Idust. App. Math. 977.. umercal smulato of compressble flows wth smple
On Hypersurface of Special Finsler Spaces. Admitting Metric Like Tensor Field
It J otem Mat Sceces Vo 7 0 o 9 99-98 O Hyersurface of Seca Fser Saces Admttg Metrc Lke Tesor Fed H Wosoug Deartmet of Matematcs Isamc Azad Uversty Babo Brac Ira md_vosog@yaoocom Abstract I te reset work
Homework for 1/27 Due 2/5
Name: ID: Homework for /7 Due /5. [ 8-3] I Example D of Sectio 8.4, the pdf of the populatio distributio is + αx x f(x α) =, α, otherwise ad the method of momets estimate was foud to be ˆα = 3X (where
Minimum density power divergence estimator for diffusion processes
A Ist Stat Math 3) 65:3 36 DOI.7/s463--366-9 Mmum desty power dvergece estmator for dffuso processes Sagyeol Lee Jumo Sog Receved: 3 March 7 / Revsed: Aprl / ublshed ole: July The Isttute of Statstcal
Other Test Constructions: Likelihood Ratio & Bayes Tests
Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :
A Class of Orthohomological Triangles
A Class of Orthohomologcal Trangles Prof. Claudu Coandă Natonal College Carol I Craova Romana. Prof. Florentn Smarandache Unversty of New Mexco Gallup USA Prof. Ion Pătraşcu Natonal College Fraţ Buzeşt
Markov Processes and Applications
Markov rocesses ad Applcatos Dscrete-Tme Markov Chas Cotuous-Tme Markov Chas Applcatos Queug theory erformace aalyss ΠΜΣ524: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης - ΕΚΠΑ) Dscrete-Tme
Cytotoxicity of ionic liquids and precursor compounds towards human cell line HeLa
Cytotoxcty of oc lqud ad precuror compoud toward huma cell le HeLa Xuefeg Wag, a,b C. Adré Ohl, a Qghua Lu,* a Zhaofu Fe, c Ju Hu, b ad Paul J. Dyo c a School of Chemtry ad Chemcal Techology, Shagha Jao
On Generating Relations of Some Triple. Hypergeometric Functions
It. Joural of Math. Aalysis, Vol. 5,, o., 5 - O Geeratig Relatios of Some Triple Hypergeometric Fuctios Fadhle B. F. Mohse ad Gamal A. Qashash Departmet of Mathematics, Faculty of Educatio Zigibar Ade
2 Composition. Invertible Mappings
Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,
SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES. Reading: QM course packet Ch 5 up to 5.6
SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES Readig: QM course packet Ch 5 up to 5. 1 ϕ (x) = E = π m( a) =1,,3,4,5 for xa (x) = πx si L L * = πx L si L.5 ϕ' -.5 z 1 (x) = L si
Optimal stopping under nonlinear expectation
Avalable ole at www.scecedrect.com SceceDrect Stochastc Processes ad ther Applcatos 124 (2014) 3277 3311 www.elsever.com/locate/spa Optmal stoppg uder olear expectato Ibrahm Ekre a, Nzar Touz b, Jafeg
α & β spatial orbitals in
The atrx Hartree-Fock equatons The most common method of solvng the Hartree-Fock equatons f the spatal btals s to expand them n terms of known functons, { χ µ } µ= consder the spn-unrestrcted case. We
Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics
Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)
Statistical Inference I Locally most powerful tests
Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided
6.1. Dirac Equation. Hamiltonian. Dirac Eq.
6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2
Matrices and Determinants
Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z
1. For each of the following power series, find the interval of convergence and the radius of convergence:
Math 6 Practice Problems Solutios Power Series ad Taylor Series 1. For each of the followig power series, fid the iterval of covergece ad the radius of covergece: (a ( 1 x Notice that = ( 1 +1 ( x +1.
IIT JEE (2013) (Trigonomtery 1) Solutions
L.K. Gupta (Mathematic Classes) www.pioeermathematics.com MOBILE: 985577, 677 (+) PAPER B IIT JEE (0) (Trigoomtery ) Solutios TOWARDS IIT JEE IS NOT A JOURNEY, IT S A BATTLE, ONLY THE TOUGHEST WILL SURVIVE
Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)
Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts
The Simply Typed Lambda Calculus
Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and
4.6 Autoregressive Moving Average Model ARMA(1,1)
84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this
Solution Series 9. i=1 x i and i=1 x i.
Lecturer: Prof. Dr. Mete SONER Coordinator: Yilin WANG Solution Series 9 Q1. Let α, β >, the p.d.f. of a beta distribution with parameters α and β is { Γ(α+β) Γ(α)Γ(β) f(x α, β) xα 1 (1 x) β 1 for < x
Fractional Colorings and Zykov Products of graphs
Fractional Colorings and Zykov Products of graphs Who? Nichole Schimanski When? July 27, 2011 Graphs A graph, G, consists of a vertex set, V (G), and an edge set, E(G). V (G) is any finite set E(G) is
Variance of Trait in an Inbred Population. Variance of Trait in an Inbred Population
Varance of Trat n an Inbred Populaton Varance of Trat n an Inbred Populaton Varance of Trat n an Inbred Populaton Revew of Mean Trat Value n Inbred Populatons We showed n the last lecture that for a populaton
Congruence Classes of Invertible Matrices of Order 3 over F 2
International Journal of Algebra, Vol. 8, 24, no. 5, 239-246 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.2988/ija.24.422 Congruence Classes of Invertible Matrices of Order 3 over F 2 Ligong An and
Latent variable models Variational approximations.
CS 3750 Mache Learg Lectre 9 Latet varable moel Varatoal appromato. Mlo arecht mlo@c.ptt.e 539 Seott Sqare CS 750 Mache Learg Cooperatve vector qatzer Latet varable : meoalty bary var Oberve varable :
3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β
3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle
8.1 The Nature of Heteroskedasticity 8.2 Using the Least Squares Estimator 8.3 The Generalized Least Squares Estimator 8.
8.1 The Nature of Heteroskedastcty 8. Usng the Least Squares Estmator 8.3 The Generalzed Least Squares Estmator 8.4 Detectng Heteroskedastcty E( y) = β+β 1 x e = y E( y ) = y β β x 1 y = β+β x + e 1 Fgure
Differentiation exercise show differential equation
Differentiation exercise show differential equation 1. If y x sin 2x, prove that x d2 y 2 2 + 2y x + 4xy 0 y x sin 2x sin 2x + 2x cos 2x 2 2cos 2x + (2 cos 2x 4x sin 2x) x d2 y 2 2 + 2y x + 4xy (2x cos
Areas and Lengths in Polar Coordinates
Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the
ST5224: Advanced Statistical Theory II
ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known
Homework 3 Solutions
Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For
Areas and Lengths in Polar Coordinates
Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the
Neutralino contributions to Dark Matter, LHC and future Linear Collider searches
Neutralno contrbutons to Dark Matter, LHC and future Lnear Collder searches G.J. Gounars Unversty of Thessalonk, Collaboraton wth J. Layssac, P.I. Porfyrads, F.M. Renard and wth Th. Dakonds for the γz
Example Sheet 3 Solutions
Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note
Boundary-Fitted Coordinates!
Computatoal Flud Damcs I Computatoal Flud Damcs I http://users.wp.edu/~gretar/me.html! Computatoal Methods or Domas wth! Comple Boudares-I! Grétar Trggvaso! Sprg 00! For most egeerg problems t s ecessar
Commutative Monoids in Intuitionistic Fuzzy Sets
Commutative Monoids in Intuitionistic Fuzzy Sets S K Mala #1, Dr. MM Shanmugapriya *2 1 PhD Scholar in Mathematics, Karpagam University, Coimbatore, Tamilnadu- 641021 Assistant Professor of Mathematics,
INTEGRATION OF THE NORMAL DISTRIBUTION CURVE
INTEGRATION OF THE NORMAL DISTRIBUTION CURVE By Tom Irvie Email: tomirvie@aol.com March 3, 999 Itroductio May processes have a ormal probability distributio. Broadbad radom vibratio is a example. The purpose
Partial Differential Equations in Biology The boundary element method. March 26, 2013
The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet
SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions
SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)
Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit
Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal
L.K.Gupta (Mathematic Classes) www.pioeermathematics.com MOBILE: 985577, 4677 + {JEE Mai 04} Sept 0 Name: Batch (Day) Phoe No. IT IS NOT ENOUGH TO HAVE A GOOD MIND, THE MAIN THING IS TO USE IT WELL Marks:
derivation of the Laplacian from rectangular to spherical coordinates
derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used
k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +
Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b
Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1
Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test
Markov Processes and Applications
Markov Processes ad Alcatos Dscrete-Tme Markov Chas Cotuous-Tme Markov Chas Alcatos Queug theory Performace aalyss Dscrete-Tme Markov Chas Books - Itroducto to Stochastc Processes (Erha Clar), Cha. 5,
Durbin-Levinson recursive method
Durbin-Levinson recursive method A recursive method for computing ϕ n is useful because it avoids inverting large matrices; when new data are acquired, one can update predictions, instead of starting again
b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!
MTH U341 urface Integrals, tokes theorem, the divergence theorem To be turned in Wed., Dec. 1. 1. Let be the sphere of radius a, x 2 + y 2 + z 2 a 2. a. Use spherical coordinates (with ρ a) to parametrize.
Second Order Partial Differential Equations
Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y
C.S. 430 Assignment 6, Sample Solutions
C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order
Ψηφιακή Επεξεργασία Εικόνας
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ψηφιακή Επεξεργασία Εικόνας Φιλτράρισμα στο πεδίο των συχνοτήτων Διδάσκων : Αναπληρωτής Καθηγητής Νίκου Χριστόφορος Άδειες Χρήσης Το παρόν εκπαιδευτικό
EE512: Error Control Coding
EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3
On Inclusion Relation of Absolute Summability
It. J. Cotemp. Math. Scieces, Vol. 5, 2010, o. 53, 2641-2646 O Iclusio Relatio of Absolute Summability Aradhaa Dutt Jauhari A/66 Suresh Sharma Nagar Bareilly UP) Idia-243006 aditya jauhari@rediffmail.com
Section 9.2 Polar Equations and Graphs
180 Section 9. Polar Equations and Graphs In this section, we will be graphing polar equations on a polar grid. In the first few examples, we will write the polar equation in rectangular form to help identify
Latent variable models Variational approximations.
CS 3750 Mache Learg Lectre 9 Latet varable moel Varatoal appromato. Mlo arecht mlo@c.ptt.e 539 Seott Sqare CS 750 Mache Learg Cooperatve vector qatzer Latet varable : meoalty bary var Oberve varable :
Solutions to Exercise Sheet 5
Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X
MATH 38061/MATH48061/MATH68061: MULTIVARIATE STATISTICS Solutions to Problems on Matrix Algebra
MATH 38061/MATH48061/MATH68061: MULTIVARIATE STATISTICS Solutios to Poblems o Matix Algeba 1 Let A be a squae diagoal matix takig the fom a 11 0 0 0 a 22 0 A 0 0 a pp The ad So, log det A t log A t log
ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?
Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least
Uniform Convergence of Fourier Series Michael Taylor
Uniform Convergence of Fourier Series Michael Taylor Given f L 1 T 1 ), we consider the partial sums of the Fourier series of f: N 1) S N fθ) = ˆfk)e ikθ. k= N A calculation gives the Dirichlet formula
Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in
Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in : tail in X, head in A nowhere-zero Γ-flow is a Γ-circulation such that
Reminders: linear functions
Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U
g-selberg integrals MV Conjecture An A 2 Selberg integral Summary Long Live the King Ole Warnaar Department of Mathematics Long Live the King
Ole Warnaar Department of Mathematics g-selberg integrals The Selberg integral corresponds to the following k-dimensional generalisation of the beta integral: D Here and k t α 1 i (1 t i ) β 1 1 i
Introduction of Numerical Analysis #03 TAGAMI, Daisuke (IMI, Kyushu University)
Itroductio of Numerical Aalysis #03 TAGAMI, Daisuke (IMI, Kyushu Uiversity) web page of the lecture: http://www2.imi.kyushu-u.ac.jp/~tagami/lec/ Strategy of Numerical Simulatios Pheomea Error modelize
n r f ( n-r ) () x g () r () x (1.1) = Σ g() x = Σ n f < -n+ r> g () r -n + r dx r dx n + ( -n,m) dx -n n+1 1 -n -1 + ( -n,n+1)
8 Higher Derivative of the Product of Two Fuctios 8. Leibiz Rule about the Higher Order Differetiatio Theorem 8.. (Leibiz) Whe fuctios f ad g f g are times differetiable, the followig epressio holds. r
ECE Spring Prof. David R. Jackson ECE Dept. Notes 2
ECE 634 Spring 6 Prof. David R. Jackson ECE Dept. Notes Fields in a Source-Free Region Example: Radiation from an aperture y PEC E t x Aperture Assume the following choice of vector potentials: A F = =
Finite Field Problems: Solutions
Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The
Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------
Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin
ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ
ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΕΚΘΕΤΙΚΗ ΟΙΚΟΓΕΝΕΙΑ ΚΑΤΑΝΟΜΩΝ ΛΕΜΟΝΙΑ ΓΕΩΡ. ΜΠΟΥΤΣΚΟΥ ΕΡΓΑΣΙΑ Που υποβλήθηκε στο Τμήμα Στατιστικής του Οικονομικού Πανεπιστημίου ΑΘηνών ως μέρος των απαιτήσεων
w o = R 1 p. (1) R = p =. = 1
Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 205 ιδάσκων : Α. Μουχτάρης Τριτη Σειρά Ασκήσεων Λύσεις Ασκηση 3. 5.2 (a) From the Wiener-Hopf equation we have:
Homomorphism in Intuitionistic Fuzzy Automata
International Journal of Fuzzy Mathematics Systems. ISSN 2248-9940 Volume 3, Number 1 (2013), pp. 39-45 Research India Publications http://www.ripublication.com/ijfms.htm Homomorphism in Intuitionistic
Lecture 17: Minimum Variance Unbiased (MVUB) Estimators
ECE 830 Fall 2011 Statistical Sigal Processig istructor: R. Nowak, scribe: Iseok Heo Lecture 17: Miimum Variace Ubiased (MVUB Estimators Ultimately, we would like to be able to argue that a give estimator
Srednicki Chapter 55
Srednicki Chapter 55 QFT Problems & Solutions A. George August 3, 03 Srednicki 55.. Use equations 55.3-55.0 and A i, A j ] = Π i, Π j ] = 0 (at equal times) to verify equations 55.-55.3. This is our third
Math221: HW# 1 solutions
Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin
DIRECT PRODUCT AND WREATH PRODUCT OF TRANSFORMATION SEMIGROUPS
GANIT J. Bangladesh Math. oc. IN 606-694) 0) -7 DIRECT PRODUCT AND WREATH PRODUCT OF TRANFORMATION EMIGROUP ubrata Majumdar, * Kalyan Kumar Dey and Mohd. Altab Hossain Department of Mathematics University
SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM
SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr T t N n) Pr max X 1,..., X N ) t N n) Pr max
Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1
Conceptual Questions. State a Basic identity and then verify it. a) Identity: Solution: One identity is cscθ) = sinθ) Practice Exam b) Verification: Solution: Given the point of intersection x, y) of the
Μηχανική Μάθηση Hypothesis Testing
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Μηχανική Μάθηση Hypothesis Testing Γιώργος Μπορμπουδάκης Τμήμα Επιστήμης Υπολογιστών Procedure 1. Form the null (H 0 ) and alternative (H 1 ) hypothesis 2. Consider
Multi-Body Kinematics and Dynamics in Terms of Quaternions: Langrange Formulation in Covariant Form Rodriguez Approach
Nemaa D. Zorc Research Assstat Uversty of Belgrade Faculty of Mechacal Egeerg Mhalo P. Lazarevc Full Professor Uversty of Belgrade Faculty of Mechacal Egeerg Alesadar M. Smoovc Assstat Professor Uversty
Last Lecture. Biostatistics Statistical Inference Lecture 19 Likelihood Ratio Test. Example of Hypothesis Testing.
Last Lecture Biostatistics 602 - Statistical Iferece Lecture 19 Likelihood Ratio Test Hyu Mi Kag March 26th, 2013 Describe the followig cocepts i your ow words Hypothesis Null Hypothesis Alterative Hypothesis
SPECIAL FUNCTIONS and POLYNOMIALS
SPECIAL FUNCTIONS and POLYNOMIALS Gerard t Hooft Stefan Nobbenhuis Institute for Theoretical Physics Utrecht University, Leuvenlaan 4 3584 CC Utrecht, the Netherlands and Spinoza Institute Postbox 8.195
Section 8.3 Trigonometric Equations
99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.
5 Haar, R. Haar,. Antonads 994, Dogaru & Carn Kerkyacharan & Pcard 996. : Haar. Haar, y r x f rt xβ r + ε r x β r + mr k β r k ψ kx + ε r x, r,.. x [,
4 Chnese Journal of Appled Probablty and Statstcs Vol.6 No. Apr. Haar,, 6,, 34 E-,,, 34 Haar.., D-, A- Q-,. :, Haar,. : O.6..,..,.. Herzberg & Traves 994, Oyet & Wens, Oyet Tan & Herzberg 6, 7. Haar Haar.,
A Note on Intuitionistic Fuzzy. Equivalence Relation
International Mathematical Forum, 5, 2010, no. 67, 3301-3307 A Note on Intuitionistic Fuzzy Equivalence Relation D. K. Basnet Dept. of Mathematics, Assam University Silchar-788011, Assam, India dkbasnet@rediffmail.com
8.324 Relativistic Quantum Field Theory II
Lecture 8.3 Relatvstc Quantum Feld Theory II Fall 00 8.3 Relatvstc Quantum Feld Theory II MIT OpenCourseWare Lecture Notes Hon Lu, Fall 00 Lecture 5.: RENORMALIZATION GROUP FLOW Consder the bare acton
Homework 4.1 Solutions Math 5110/6830
Homework 4. Solutios Math 5/683. a) For p + = αp γ α)p γ α)p + γ b) Let Equilibria poits satisfy: p = p = OR = γ α)p ) γ α)p + γ = α γ α)p ) γ α)p + γ α = p ) p + = p ) = The, we have equilibria poits
A study on generalized absolute summability factors for a triangular matrix
Proceedigs of the Estoia Acadey of Scieces, 20, 60, 2, 5 20 doi: 0.376/proc.20.2.06 Available olie at www.eap.ee/proceedigs A study o geeralized absolute suability factors for a triagular atrix Ere Savaş
Universal Levenshtein Automata. Building and Properties
Sofa Uversty St. Klmet Ohrdsk Faculty of Mathematcs ad Iformatcs Departmet of Mathematcal Logc ad Applcatos Uversal Leveshte Automata. Buldg ad Propertes A thess submtted for the degree of Master of Computer
CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS
CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =