CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

Σχετικά έγγραφα
CHAPTER 103 EVEN AND ODD FUNCTIONS AND HALF-RANGE FOURIER SERIES

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Math221: HW# 1 solutions

Section 8.3 Trigonometric Equations

derivation of the Laplacian from rectangular to spherical coordinates

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Section 8.2 Graphs of Polar Equations

2 Composition. Invertible Mappings

Areas and Lengths in Polar Coordinates

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Inverse trigonometric functions & General Solution of Trigonometric Equations

D Alembert s Solution to the Wave Equation

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is

Section 7.6 Double and Half Angle Formulas

1. If log x 2 y 2 = a, then dy / dx = x 2 + y 2 1] xy 2] y / x. 3] x / y 4] none of these

CRASH COURSE IN PRECALCULUS

Solutions to Exercise Sheet 5

Integrals in cylindrical, spherical coordinates (Sect. 15.7)

Fourier Analysis of Waves

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Second Order Partial Differential Equations

Areas and Lengths in Polar Coordinates

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

Uniform Convergence of Fourier Series Michael Taylor

Trigonometric Formula Sheet

PARTIAL NOTES for 6.1 Trigonometric Identities

Example Sheet 3 Solutions

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

If we restrict the domain of y = sin x to [ π 2, π 2

Section 9.2 Polar Equations and Graphs

Matrices and Determinants

EE512: Error Control Coding

Differential equations

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Homework 3 Solutions

4.6 Autoregressive Moving Average Model ARMA(1,1)

AREAS AND LENGTHS IN POLAR COORDINATES. 25. Find the area inside the larger loop and outside the smaller loop

2. Μηχανικό Μαύρο Κουτί: κύλινδρος με μια μπάλα μέσα σε αυτόν.

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr

MathCity.org Merging man and maths

Solution Series 9. i=1 x i and i=1 x i.

Srednicki Chapter 55

Review Test 3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Homework 8 Model Solution Section

Bessel functions. ν + 1 ; 1 = 0 for k = 0, 1, 2,..., n 1. Γ( n + k + 1) = ( 1) n J n (z). Γ(n + k + 1) k!

Section 7.7 Product-to-Sum and Sum-to-Product Formulas

C.S. 430 Assignment 6, Sample Solutions

EE1. Solutions of Problems 4. : a) f(x) = x 2 +x. = (x+ǫ)2 +(x+ǫ) (x 2 +x) ǫ

Logsine integrals. Notes by G.J.O. Jameson. log sin θ dθ = π log 2,

Spherical Coordinates

1 String with massive end-points

Solution to Review Problems for Midterm III

*H31123A0228* 1. (a) Find the value of at the point where x = 2 on the curve with equation. y = x 2 (5x 1). (6)

Differentiation exercise show differential equation

ECE 308 SIGNALS AND SYSTEMS FALL 2017 Answers to selected problems on prior years examinations

F19MC2 Solutions 9 Complex Analysis

Math 6 SL Probability Distributions Practice Test Mark Scheme

University of Illinois at Urbana-Champaign ECE 310: Digital Signal Processing

1. Ηλεκτρικό μαύρο κουτί: Αισθητήρας μετατόπισης με βάση τη χωρητικότητα

6.3 Forecasting ARMA processes

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)

Review-2 and Practice problems. sin 2 (x) cos 2 (x)(sin(x)dx) (1 cos 2 (x)) cos 2 (x)(sin(x)dx) let u = cos(x), du = sin(x)dx. = (1 u 2 )u 2 ( du)

SPECIAL FUNCTIONS and POLYNOMIALS

Second Order RLC Filters

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

Finite Field Problems: Solutions

Answer sheet: Third Midterm for Math 2339

Statistical Inference I Locally most powerful tests

Reminders: linear functions

Problem 1.1 For y = a + bx, y = 4 when x = 0, hence a = 4. When x increases by 4, y increases by 4b, hence b = 5 and y = 4 + 5x.

Derivation of Optical-Bloch Equations

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

Forced Pendulum Numerical approach

Quadratic Expressions

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

Lecture 26: Circular domains

Problem 3.1 Vector A starts at point (1, 1, 3) and ends at point (2, 1,0). Find a unit vector in the direction of A. Solution: A = 1+9 = 3.

Probability and Random Processes (Part II)

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint

1. A fully continuous 20-payment years, 30-year term life insurance of 2000 is issued to (35). You are given n A 1

Potential Dividers. 46 minutes. 46 marks. Page 1 of 11

Strain gauge and rosettes

w o = R 1 p. (1) R = p =. = 1

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

Approximation of distance between locations on earth given by latitude and longitude

11.4 Graphing in Polar Coordinates Polar Symmetries

Q1a. HeavisideTheta x. Plot f, x, Pi, Pi. Simplify, n Integers

Trigonometry 1.TRIGONOMETRIC RATIOS

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Transcript:

CHAPTER FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD EXERCISE 36 Page 66. Determine the Fourier series for the periodic function: f(x), when x +, when x which is periodic outside this rge of period. The periodic function is shown in the diagram below. The Fourier series is given by: f(x) a + ( cos nx + sin nx) () n [ ] [ ] a f( x)dx dx dx x x + + [() ( ) ] + [( ) ()] f ( x)cos nx d x cos nx d x cos nx d x + sin nx + sin nx n n f ( x)sin nx d x sin nx d x sin nx d x + cos nx cos nx cos cos n( ) cos n cos n + n n [ ] [ ] 57 4, John Bird

n When n is even, b n [ ] [ ] 8 n n n When n is odd, b n [ ] [ ] ( 4) 8 8 Hence, b, b3 3, 8 b 5 5 d so on Substituting onto equation () gives: f(x) + + 8 sin x+ 8 sin 3x+ 8 sin 5 x+... 3 5 i.e. f(x) 8 sin sin 3 x+ x+ sin 5 x+... 3 5. For the Fourier series in Problem, deduce a series for 4 at the point where x 8 8 3 8 5 When x, f(x), hence sin + sin + sin +... 3 5 i.e. 8 + +... 3 5 7 d i.e. + +... 8 3 5 7 + +... 4 3 5 7 3. For the waveform shown below determine (a) the Fourier series for the function d (b) the sum of the Fourier series at the points of discontinuity. (a) The Fourier series is given by: f(x) a + ( cos nx + sin nx) () n 58 4, John Bird

[ ] / / / / / / a f( x)dx dx+ dx+ dx x / / / f ( x) cos nx d x () cos nx d x cos nx d x () cos nx d x + + / When n, a ( ) cos nx d x / / sin nx sin n sin n / n n a a4 a6 d so on for all even values of n When n, ( ) 3 3 When n 3, a ( ) 5 5 When n 5, a5 ( ) Hence, a7 7, a 9 9 d so on / / / / f ( x)sin nx d x ()sin nx d x sin nx d x ()sin nx d x + + Whatever value of n is chosen, b n Substituting onto equation () gives: / / sin nx d x cos nx cos n cos / n n n f(x) + cox cos 3x + cos 5x cos 7 x +... + 3 5 7 i.e. f(x) cos cos3 + x x+ cos5 x+... 3 5 (b) The sum of the Fourier series at the points of discontinuity (i.e. at /,, 3/,...) is: + 4. For Problem 3, draw graphs of the first three partial sums of the Fourier series d show that as the series is added together term by term the result approximates more d more closely to the 59 4, John Bird

function it represents. In the diagram below graphs of cos x, cos 3x d 3 5 cos 5x d f(x) are shown A graph of cos x cos 3x + cos 5x is also shown 3 5 Finally, a graph of f(x) + cos x cos 3x + cos 5x is sketched. If further harmonics 3 5 were added then the waveform would approach that shown in Problem 3 5 4, John Bird

5. Find the term representing the third harmonic for the periodic function of period given by: f(x), when x, when x The periodic function is shown in the diagram below. sin nx f ( x)cos nx d x cos nx d x n f ( x)sin nx d x sin nx d x The third harmonic is when n 3, cos nx n n n cos n cos cos n 3 3 3 i.e. b3 cos 3 Since the Fourier series is given by: f(x) a + ( cos nx + sin nx), n the 3rd harmonic term is: sin 3 x 3 6. Determine the Fourier series for the periodic function of period defined by: f(t), when t, when t, when t The function has a period of 5 4, John Bird

The periodic function is shown in the diagram below / / [ ] [ ] / / a f( t)dt dt dt dt t t + + + ( ) + ( ) / / f ( t)cos nt d t cos nt d t cos nx d x + When n is even, a n / sin nt sin nt sin n sin n sin n n n / n When n, a sin sin sin [ ] [ ] 3 3 3 3 3 When n 3, a3 sin sin 3 sin [ ] [ ] 5 5 5 5 5 When n 5, a5 sin sin 5 sin [ ] [ ] It follows that a7 7, a 9 9 d so on / / f ( t)sin nt dt sin nt dt sin nt dt + / cos nt cos nt cos n cos cos n cos n + + n n / n n cos n n cos n cos cos + + cos n n n n When n is odd, b n 5 4, John Bird

4 + When n is even, b ( ) b b 4 6 () 4 + 4 ( ) 6 + 6 3 Similarly, b 8, b 5, d so on Substituting into f(t) a + ( cos nt + sin nt) n gives: f(x) + cost cos 3t+ cos 5t cos 7 t+... 3 5 7 + sin t+ sin 6t+ sin t+... 3 5 i.e. f(x) cos cos 3 cos 5... sin sin 6 t t+ t + t+ t+ sin t+... 3 5 3 5 7. Show that the Fourier series for the periodic function of period defined by: f(θ) θ, when θ sin θ, when θ is given by: f(θ) cos θ cos 4θ cos 6θ... (3) (3)(5) (5)(7) The periodic function is shown in the diagram below a [ ] ( ) ( ) f( )d d sin d cos cos cos θ θ θ + θ θ θ ( cos ) ( ) 53 4, John Bird

cos θ dθ sinθ cos θ dθ n + n sin θ θ sin θ θ sinθ sinθ dθ ( + n ) + ( n ) ( + n) + ( n) from 6, page 76 ( n) ( n) ( n) ( n) of the textbook cosθ + θ cos + cos cos + n n + n n + n n When n is odd, a n + + + n n + n n When n, cos 3 cos( ) 4 a + + + 3 3 3 3 3 3 When n 4, cos 5 cos( 3 ) a4 + + + 5 3 5 3 5 3 5 3 3 5+ 35 4 (3)(5) (3)(5) (3)(5) When n 6, cos 7 cos( 5 ) a6 + + + 7 5 7 5 7 5 7 5 5 7+ 57 4 (5)(7) (5)(7) (5)(7) sin θdθ sinθsin θdθ n + n sin θ( + n) sin θ( n) + + n n from 9, page cos( θ nθ) cos( θ nθ) Substituting into f(θ) a + ( cos nθ + sin nθ) n 76 of the textbook gives: f(θ) cos θ cos 4θ cos 6 θ... + 3 (3)(5) (5)(7) i.e. f(θ) cos θ cos 4 θ cos 6 θ... (3) (3)(5) (5)(7) 54 4, John Bird