34 34 Vo.34 o.34 Dec.5, 2014 6050 2014 12 5 Proceens of the CSEE 2014 Chn.Soc.for Eec.En. DOI10.13334/.0258-8013.pcsee.2014.34.005 0258-8013 (2014) 34-6050-08 TM 74 1 2 1 1 3 3 (1() 100084 2. 55108 3. 37996) Ientfcaton of Inactve Constrants for SCED Moe Consern Uncertan Power Inecton DIG Tao 1, BO Ru 2, GUO Qna 1, SU Honbn 1, HUAG Can 3, LI Fanxn 3 (1. State Key Lab of Contro an Smuaton of Power Systems an Generaton Equpments (Dept. of Eectrca Enneern, Tsnhua Unversty), Haan Dstrct, Ben 100084, Chna; 2. Mwest ISO, St. Pau, M 55108, USA; 3. Department of Eectrca Enneern an Computer Scence, The Unversty of Tennessee, Knoxve, T 37996, USA) ABSTRACT: Wth the constant expanson of power r, a are number of securty constrants have put tremenous chaenes to the onne economc spatch. An effcent too to emnate the nactve constrants becomes necessary for securty constrants economc spatch (SCED) n are power systems. In ths paper, consern the uncertanty of renewabe enery nteraton, a fast an effectve metho to entfy the nactve securty constrants was propose. Frsty, the efnton of uncertan nactve securty constrants an a necessary an suffcent conton to entfy those were presente respectvey. Consern the tme-consumn entfcaton, we reaxe the feasbe reon of orna SCED moe an utze reey aorthm to qucky emnate part of nactve constrants. Then another necessary an suffcent conton was propose an verfe, where the remann nactve constrants cou be entfe. Throuh the smuaton of 24-tme peros 9-bus system an 96-tme peros IEEE 118-bus system, the spee an effectveness of propose metho were verfe. Moreover, the resuts can hep spatch operators to ocate the transmsson nes wth the hhest coneston rsk. (973 )(2013CB 228203)(51277105) (51025725) The atona Basc Research Proram of Chna (973 Proram) (2013CB228203); atona atura Scence Founaton of Chna (51277105); atona Scence Fun for Dstnushe Youn Schoars (51025725). KEY WORDS: securty constrants economc spatch (SCED); nactve constrants; poyheron; reey aorthm; uncertanty 24 9 96 IEEE 118 0 [1-5] (securty constrane economc spatchsced) [1-2] [3] [4-6]
34 6051 () () SCED L T T LT [7-8] SCED [9] [10-11] Larane [12] [13] 85% [13] [13] SCED 1 SCED SCED SCED mn T 2 { [ ap, () t bp, () t c]} (1) t1 1 a b c T P, (t) t 1 P, ( t) P, ( t), t 1,2... T (2) 1 1 P, (t) t 2 P () t P () t P (), t t 1,2... T (3), () mn,,, P mn t P t t, () 3 R ( t) P ( t) P ( t1) R ( t), t 1,2... T (4) own up,, R own () t R up () t t 4 P () t P () t P (), t 1,2... (5) L, L, L, L P L, () t ( ) L [14](5) L,, k, k, k, k L, k 1 k 1 (6) P () t G P () t H P () t P () t G,k H,k
6052 34 P () t [ P (), t P ()], t 1,2... (7),,, [ P ( t), P ( t)] t,, / (2)(3)(4)(6)(7) (Poyheron) (7) SCED (8)(8) 1 (2) 2 (4) (3) 3 (6) 4 (7) SP MP 0 F EP F, P P P PL GP HP PL P [ P, P ] mn mn (8) 2 SCED 1 {xr n Axb} Ax b {xr n A - xb - } Ax b 1 F. 1 Defnton of certan an uncertan nactve constrant * ={xr n A - xb - A x=b } * Farkas Fourer-Monzkn [15] B- [16] [17] * * {xr n AxbA x b } 1() Z Ax Zb x y {xr n yr m Ax+BybCxy[y mn y ]} 1 Z Ax+By Zb yx, (9) - Ax+By Ax+By (9) mn yx, y yy x (9)- n x nm z(x T, y T ) T R nm (9) Z D z Π{zR nm Dzf } z A B C 0 D 0 I 0 I f b y y mn T [ ] (10) I m Zf
34 6053 3 3.1 SCED (8) 3 2 (11) + (11) 2 GP HP P GP HP P (11) L, L, 2 [13] T Larane (11) P, P P, P Z G, P, H, P, 1 1 Z G, P, H, P, 1 1 s.t. (12) (13) P, P, (14) 1 1 P P P P P P mn,,, mn,,, (15) (12)(14)(15) Z (13)(15) Z 1 Z Z Z Z Z Z Z P L, Z P L, Z Z P L, Z P L, P L, Z P L, (12)(15) (12)(15) P P P P P P (12)(15) + ( P T, P T ) T ( P T, P T ) T (12)(16) (17)(13)(18) mn G, P, H, P, G, P, P, 1 1 1 H, ( P, P, ) (16) 1 ( ) mn Z G, P, H, P, G, P, 1 1 1 H, P, (17) 1 mn Z H, P, G, P, G, P, 1 1 1 H, P, (18) 1 (19)(20) mn ( P, P, ) ( P, P, ) (19) 1 1 mn P, P, P, P, (20) 1 1 1 1 (21) (22) P P P P P P P P mn mn,,,, mn,,,, 0 P P P 0 P P P mn,,, mn,,, + (21) (22) (23)(25)(26) Z Z (24)(26),,,, mn Q G P H P 1 1 2 2() Z Q P Z Q PL, L,
6054 34-1 s.t. P, P Z G P + H P P, P,,,, 1 1 Z G P H P,,,, 1 1 (23) (24) mn P, P, P, P, (25) 1 1 1 1 0 P P P 0 P P P mn,,, mn,,, 3.2 (26) (23)(26) [18] (23) (27) (28) P [ P, P,..., P, P,,1,2,, 1 T P, 2,..., P, ] T,1,2,, 1, 2, (27) c [ G, G,..., G, H, H,..., H ] (28) ΔP c mn P, P, 1 1 1 c S 1, S 2,, S 2 V0 W01 mn 3 P P P S S S S,, 4V P P P W c P S S mn W 1 1 V V P S +1 3 S,, 1 1 mn Z W mn V P P P 5 ( P P V),, 1 1 W W c S 5 ( )o( ) Z Z 2 4 4.1 SCED x1 [6,14] x1 2 2[6,14] 55 2 x1 [6,14] 22 x1, x1 2 [6,14] 4 x1, [0,10] x1 y 0 x1 2 2y55 2x1 y22 x1,, y x1 2 y 4 0 x1, 10, 6 y14 2 1 1 1 2 Z ( x 2 x 2 y) x1 y 14 s.t. 0 x1, 10,0 y 8 212x 2 10 x 1 4x 3 0 Z 1 24 Q 1 28 1 1 1 Z Z Q =52<55 Z 2 38>22 Z 3 30>-4 2 3 1 2 3
34 6055 2(a) 1 3 1 3 2 2 1 2 2 3 2 3 1 2 3 2(a) 2 2 x 1 (a) 2 x 1 1 3 (c) 2 x 1 (b) 1 1 3 x 1 () 3 2 F. 2 Reatonshp of securty constrants an reaxe feasbe reons 4.2 24 IEEE 9 matpower [19] 9 3 9 24 ( 3) 2 2924432 5% 1 0.9 1 2 1 SCED 1 20 s 2 1.8 1.4 1.0 0.6 0.2 0 5 10 15 20 25 3 24 F. 3 Loa curve for 24 tme peros 1 (1 ) Tab. 1 Resuts wth orna transmsson capacty /s 1 0 20.02 2 23 0.046 2+ 1 0 2.28 193 23 1 2 1 2.28 s 1 0.9 2 SCED 9 1 9 20 s 2 178 38 1 2 1 9 3.76 s 1 1 2 2 (t, ) t 2 0.9 ( 3) 5 2 0.9 Tab. 2 Resuts wth 0.9 transmsson capacty /s 1 9 20.13 2 38 0.051 2+ 1 9 3.76
6056 34 3 2 Tab. 3 Tme peros an ne number n Tabe 2 (t,) (11,5); (13,5); (15,5); (16,5); 1 (17,5); (18,5); (21,5); (22,5); (23,5) (1,5); (1,3); (2,5); (2,3); (3,5); (3,3); (4,5); (4,3); (5,5); (5,3); (6,5); (6,3); (7,5); (7,3); (8,5); (8,3); (9,5); (9,3); (10,5); (10,3); 2 (11,5); (11,3); (13,5); (14,5); (14,3); (15,5); (15,3); (16,5); (16,3); (17,5); (18,5); (21,5); (22,5); (22,3); (23,5); (23,3); (24,5); (24,3) 4.3 96 118 IEEE 118 54 186 96 ( 4) 21869635712 10% 1 2 1.5 1.0 0.5 0.0 0 20 40 60 80 4 96 F. 4 Loa curve for 96 tme peros 4 2 881 8.8 s 1 74 3 h 2 1 1 4.88 mn 5 20% 1 3 h 35 712 2 34 772 ( 4 (10%) Tab. 4 Resuts wth orna transmsson capacty (10% uncertanty) 1 74 3 2 881 8.79 2+ 1 74 4.88 5 (20%) Tab. 5 Resuts wth 1.1 transmsson capacty (20% uncertanty) 1 96 3 2 940 9.13 2+ 1 96 5.21 97%) 940 1 5.21 mn 5 90% SCED [1] [J] E 201242(7)815-829 Yu YxnWan JnranLü XaoyanSecurty vaue base expanson pannn of power system wth nteraton of are-scae wn power[j]scence Chna Technooca Scences 2012 42(7) 815-829(n Chnese) [2] [J] 200929(4)41-47 Sun YuanzhanWu JunL Guoeet adynamc economc spatch consern wn power penetraton base on wn spee forecastn an stochastc prorammn[j]proceens of the CSEE200929(4) 41-47(n Chnese) [3] [J]201135(2)132-136 Yan ZhennTan GuoqnA eneraton scheun
34 6057 optmzaton moe sutabe to compete pero an varabe ntervas an conformn to prncpes of openness equty an ustness[j] Power System Technooy201135(2)132-136(n Chnese) [4] [J]2009 29(16)63-68 Yu JeL YanXa AnbanDstrbute optmzaton of eneraton spatch scheun consern envronmenta protecton an economc profts[j]proceens of the CSEE200929(16)63-68(n Chnese) [5] [J]200832(34)43-47 Chen ZhxuXe KaZhan JnFuncton esn for orth Chna r securty constrane conventon spatch optmzaton system[j]automaton of Eectrc Power Systems200832(34)43-47(n Chnese) [6] [J]200933(1) 10-14 Chen ZhxuXe KaZhan Jnet aoptma moe an aorthm for ay-ahea eneraton scheun of transmsson r securty constrane conventon spatch[j]automaton of Eectrc Power Systems2009 33(1)10-14(n Chnese) [7] Zhon H WXa QWan YKan C QDynamc economc spatch consern transmsson osses usn quaratcay constrane quaratc proram metho [J]IEEE Transon Power System201328(3) 2232-2241 [8] knamtazzpanah-abarhooee RRoosta AReserve constrane ynamc economc spatch a new fast sef-aaptve mofe frefy aorthm[j]ieee Trans. on Power System20126(4)635-646 [9] Xa XEaw A MOptma ynamc economc spatch of eneraton A revew[j] Eectrc Power Systems Research201080(8)975-986 [10] Wan S JShahehpour S MKrschen D SShort-term eneraton scheun wth transmsson an envronmenta constrants usn an aumente Laranan reaxaton[j]ieee Trans. on Power Systems1995 10(3)1294-1301 [11] [J]200428(18)76-79 Zhao QnboSun LanGuo Yanet aa eneraton resources scheun system base on Laranan reaxaton approach[j]automaton of Eectrc Power Systems200428(18)76-79 (n Chnese) [12] Shaw J JA rect metho for securty constrane unt commtment[j]ieee Trans. on Power System1995 10(3)1329-1342 [13] Zha Q ZGuan X HChen J Het afast entfcaton of nactve securty constrants n SCUC probems [J]IEEE Transon Power System201024(4) 1946-1954 [14] [M] 2007 Zhan BomnChen ShousunYan ZhenAvance power network anayss[m]bentsnhua Unversty Press2007(n Chnese) [15] Duffn R JOn Fourer s anayss of near nequaty systems[m]pvotn an ExtensonSprner Bern Heeber197471-95 [16] Ban R Gew fnte pvotn rues for the smpex metho[j]mathematcs of Operatons Research1977 103-107 [17] Schrver ATheory of near an nteer prorammn [M]Wey1998 [18] DeVore R ATemyakov V Some remarks on reey aorthms[j]avances n computatona Mathematcs 19965(1)173-187 [19]Matpower[DB/OL][2013-09-19]http://www.pserc.cor ne.eu/matpower 2014-04-30 (1986) yuhan1986 0601@sna.com (1978) (1969) (1979) V2G (1986) (1973) ( )