Παράλληλος προγραμματισμός: Σχεδίαση παράλληλων προγραμμάτων



Σχετικά έγγραφα
Παράλληλος προγραμματισμός: Σχεδίαση και υλοποίηση παράλληλων προγραμμάτων

Παράλληλος προγραμματισμός: Σχεδίαση και υλοποίηση παράλληλων προγραμμάτων

Παράλληλος προγραμματισμός: Σχεδίαση παράλληλων προγραμμάτων

Παράλληλος προγραμματισμός: Σχεδίαση παράλληλων προγραμμάτων

Παράλληλος προγραμματισμός: Σχεδίαση και υλοποίηση παράλληλων προγραμμάτων

Συστήµατα Παράλληλης Επεξεργασίας. Παράλληλος προγραµµατισµός: Σχεδιασµός παράλληλων προγραµµάτων

Παράλληλος προγραμματισμός: παράλληλες λ υπολογιστικές πλατφόρμες και ανάλυση προγραμμάτων

Σύνοψη παρουσίασης. Παράλληλες υπολογιστικές πλατφόρμες. Ανάλυση παράλληλων προγραμμάτων. Σχεδίαση παράλληλων προγραμμάτων

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

Παρουσίαση 2 ης Άσκησης:

Παράλληλος προγραμματισμός: Σχεδίαση και υλοποίηση παράλληλων προγραμμάτων

2. Στοιχεία Αρχιτεκτονικής Παράλληλων Υπολογιστών... 45

13.2 Παράλληλος Προγραµµατισµός Γλωσσάρι, Σελ. 1

Παρουσίαση 3ης Άσκησης

Παράλληλος προγραμματισμός: Σχεδίαση και υλοποίηση παράλληλων προγραμμάτων

Παράλληλος προγραμματισμός: Σχεδίαση και υλοποίηση παράλληλων προγραμμάτων

ΣΥΣΤΗΜΑΤΑ ΠΑΡΑΛΛΗΛΗΣ ΕΠΕΞΕΡΓΑΣΙΑΣ 9o εξάμηνο ΗΜΜΥ, ακαδημαϊκό έτος

8. Παράλληλη εκτέλεση βρόχων

Παράλληλος προγραμματισμός: Σχεδίαση και υλοποίηση παράλληλων προγραμμάτων

Παράλληλος προγραμματισμός: Υλοποίηση παράλληλων προγραμμάτων

Παρουσίαση 2 ης Άσκησης:

Μετρικές & Επιδόσεις. Κεφάλαιο V

Συστήµατα Παράλληλης Επεξεργασίας. Παράλληλοςπρογραµµατισµός: Υλοποίηση παράλληλων προγραµµάτων

Αρχιτεκτονική Υπολογιστών

Παράλληλος προγραμματισμός: Σχεδίαση και υλοποίηση παράλληλων προγραμμάτων

Οργάνωση επεξεργαστή (2 ο μέρος) ΜΥΥ-106 Εισαγωγή στους Η/Υ και στην Πληροφορική

Παράλληλη Επεξεργασία Κεφάλαιο 1 Γιατί Παράλληλος Προγραμματισμός;

Παράλληλος προγραμματισμός: Σχεδίαση και υλοποίηση παράλληλων προγραμμάτων

Παράλληλος προγραμματισμός: Σχεδίαση και υλοποίηση παράλληλων προγραμμάτων

Η πολυνηματική γλώσσα προγραμματισμού Cilk

Άσκηση 3 (ανακοινώθηκε στις 14 Μαΐου 2018, προθεσμία παράδοσης: 8 Ιουνίου 2018, 12 τα μεσάνυχτα).

Παρουσίαση 1 ης Άσκησης:

FORTRAN και Αντικειμενοστραφής Προγραμματισμός

Matrix Algorithms. Παρουσίαση στα πλαίσια του μαθήματος «Παράλληλοι. Αλγόριθμοι» Γ. Καούρη Β. Μήτσου

Λειτουργικά Συστήματα 7ο εξάμηνο, Ακαδημαϊκή περίοδος

Διεργασίες και Νήματα (2/2)

10. Με πόσους και ποιους τρόπους μπορεί να αναπαρασταθεί ένα πρόβλημα; 11. Περιγράψτε τα τρία στάδια αντιμετώπισης ενός προβλήματος.

Συνόρθωση κατά στάδια και αναδρομικοί αλγόριθμοι βέλτιστης εκτίμησης

Εισαγωγικά & Βασικές Έννοιες

ΠΛΕ- 074 Αρχιτεκτονική Υπολογιστών 2

ΠΛΕ- 074 Αρχιτεκτονική Υπολογιστών 2

Παράλληλη Επεξεργασία

Εισαγωγή στον Προγραμματισμό Η/Υ (Fortran 90/95/2003)

Χρονοδρομολογητής Κυκλικής Επαναφοράς

Εικονική Μνήμη (1/2)

Παρουσίαση 5 ης Άσκησης:

Ε-85: Ειδικά Θέµατα Λογισµικού

ΠΑΡΑΛΛΗΛΗ ΕΠΕΞΕΡΓΑΣΙΑ

Διπλωματική Εργασία του φοιτητή του Τμήματος Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών της Πολυτεχνικής Σχολής του Πανεπιστημίου Πατρών

Ένα αφαιρετικό πραγματικού χρόνου μοντέλο λειτουργικού συστήματος για MPSoC

Matrix Algorithms. Παρουσίαση στα πλαίσια του μαθήματος «Παράλληλοι Αλγόριθμοι» Γ. Καούρη Β. Μήτσου

ΑΕΠΠ Ερωτήσεις θεωρίας

Παρουσίαση 5 ης Άσκησης:

Παράλληλη Επεξεργασία Κεφάλαιο 7 ο Αρχιτεκτονική Συστημάτων Κατανεμημένης Μνήμης

Επιστημονικοί Υπολογισμοί - Μέρος ΙΙΙ: Παράλληλοι Υπολογισμοί

Εισαγωγικά & Βασικές Έννοιες

Παράλληλη Επεξεργασία

9. Συστολικές Συστοιχίες Επεξεργαστών

Επιστημονικοί Υπολογισμοί - Μέρος ΙΙΙ: Παράλληλοι Υπολογισμοί

Ανάλυση αλγορίθμων. Χρόνος εκτέλεσης: Αναμενόμενη περίπτωση. - απαιτεί γνώση της κατανομής εισόδου

Κεφάλαιο 5 Ανάλυση Αλγορίθμων

Υ- 07 Παράλληλα Συστήματα Συνέπεια και συνοχή μνήμης

ΘΕΜΑ Α ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ

Πιο συγκεκριμένα, η χρήση του MATLAB προσφέρει τα ακόλουθα πλεονεκτήματα.

ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΚΑΙ ΜΕΘΟΔΟΣ SIMPLEX, διαλ. 3. Ανωτάτη Σχολή Παιδαγωγικής και Τεχνολογικής Εκπαίδευσης 29/4/2017

«Σχεδιασμός Ψηφιακών Συστημάτων σε FPGA» Εαρινό εξάμηνο Διάλεξη 8 η : Μηχανές Πεπερασμένων Κaταστάσεων σε FPGAs

ΠΛΕ- 074 Αρχιτεκτονική Υπολογιστών 2

Εισαγωγή στις Αρχές της Επιστήμης των ΗΥ

Προγραμματισμός Συστημάτων Υψηλών Επιδόσεων (ΗΥ421) 3η Εργαστηριακή Άσκηση

Ερωτήσεις πολλαπλής επιλογής - Κεφάλαιο 2

Αλγοριθμικές Τεχνικές. Brute Force. Διαίρει και Βασίλευε. Παράδειγμα MergeSort. Παράδειγμα. Τεχνικές Σχεδιασμού Αλγορίθμων

Διεργασίες (μοντέλο μνήμης & εκτέλεσης) Προγραμματισμός II 1

Αποθήκες Δεδομένων και Εξόρυξη Δεδομένων:

Θέματα Προγραμματισμού Η/Υ

ΜΕΤΡΗΣΕΙΣ ΚΑΙ ΕΦΑΡΜΟΓΕΣ ΥΨΗΛΩΝ ΤΑΣΕΩΝ

Κατανεμημένος και Παράλληλος Προγραμματισμός

Ηρώων Πολυτεχνείου 9, Ζωγράφου, Αθήνα, Τηλ: , Fax: URL

ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΔΙΑΚΡΙΤΩΝ ΕΝΑΛΛΑΚΤΙΚΩΝ ΣΕ ΠΡΟΒΛΗΜΑΤΑ ΣΧΕΔΙΑΣΜΟΥ ΚΑΙ ΣΥΝΘΕΣΗΣ ΔΙΕΡΓΑΣΙΩΝ

Εφαρµογές µε ανάγκες για υψηλές επιδόσεις Αξιολόγηση επίδοσης Παραλληλοποίηση εφαρµογών

Συστήματα Παράλληλης & Κατανεμημένης Επεξεργασίας

Αλγοριθμικές Τεχνικές

Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών H/Y Department of Electrical and Computer Engineering. Εργαστήριο 8. Χειμερινό Εξάμηνο

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ Π ΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ Π ΕΡΙΒΑΛΛΟΝ

Ελαχιστοποίηση της Καταναλισκόμενης Ενέργειας σε Φορητές Συσκευές

Συστήματα Αναμονής (Queuing Systems)

ιεργασίες και νήµατα Προγραµµατισµός ΙΙΙ 1 lalis@inf.uth.gr

ΠΕΡΙΕΧΟΜΕΝΑ Υλικό και Λογισμικό Αρχιτεκτονική Υπολογιστών Δομή, Οργάνωση και Λειτουργία Υπολογιστών 6

Πρόβλημα 37 / σελίδα 207

Δυναμικός Προγραμματισμός

Το μάθημα. Λειτουργικά Συστήματα Πραγματικού Χρόνου Βασικές Έννοιες 6. Ενσωματωμένα Συστήματα (embedded systems) Παραδείγματα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ

Λειτουργικά Συστήματα Πραγματικού Χρόνου

Μηχανοτρονική. Τμήμα Μηχανικών Παραγωγής και Διοίκησης 7 ο Εξάμηνο,

Ανάλυση Επιδόσεων Συστημάτων Πραγματικού Χρόνου

ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΑΞΗ : Γ ΛΥΚΕΙΟΥ ΣΠΟΥΔΕΣ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ

Λειτουργικά Συστήματα (ΗΥ222)

Παράλληλη Επεξεργασία Εργαστηριακή Ασκηση Εαρινού Εξαµήνου 2008

Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος

Κατανεμημένος και Παράλληλος Προγραμματισμός. Ύλη μαθήματος. Βιβλιογραφία Μαθήματος 2/27/2016

Διεργασίες (μοντέλο μνήμης & εκτέλεσης) Προγραμματισμός II 1

Transcript:

Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχ. και Μηχανικών Υπολογιστών Εργαστήριο Υπολογιστικών Συστημάτων Παράλληλος προγραμματισμός: Σχεδίαση παράλληλων προγραμμάτων 9 ο Εξάμηνο

Σχεδιασμός παράλληλων προγραμμάτων Δεν υπάρχει αυστηρά ορισμένη διαδικασία για το σχεδιασμό και την υλοποίηση παράλληλων προγραμμάτων It s more art than science Μετρικές αξιολόγησης: Επίδοση του παραγόμενου κώδικα Επιτάχυνση Αποδοτικότητα Κλιμακωσιμότητα Παραγωγικότητα (code productivity) Χαμηλός χρόνος υλοποίησης Μεταφερσιμότητα (portability) Ευκολία στη συντήρηση (maintainability) 2

4 βασικά στάδια (όχι τελείως ανεξάρτητα) Στάδιο 1: Κατανομή υπολογισμών και δεδομένων Στάδια σχεδιασμού Στάδιο 2: Σχεδιασμός αλληλεπίδρασης ανάμεσα στα tasks Στάδιο 3: Απεικόνισητωνtasks σεδιεργασίες (ή threads) Στάδιο 4: Ενορχήστρωση της επικοινωνίας ή/και του συγχρονισμού Σημείωση: Πολλέςαπότιςεπιλογέςσεκάθεστάδιοεξαρτώνται στάδιο εξαρτώνται από την τελική πλατφόρμα εκτέλεσης 3

Στάδιο 1: Κατανομή υπολογισμών και δεδομένων Στόχος: κατανομή των υπολογισμών και των δεδομένων σε επεξεργαστικά στοιχεία Τι να μοιράσω πρώτα; Υπολογισμούς ή δεδομένα; Προσέγγιση παραλληλοποίησης task centric: πρώτα μοιράζονται οι υπολογισμοί και βάσει αυτού τα δεδομένα data centric: πρώτα μοιράζονται τα δεδομένα, και βάσει αυτού οι υπολογισμοί Τελικά θα προκύψουν tasks και κατανομή δεδομένων Παράδειγμα: Πολλαπλασιασμός πινάκων (C = A B) task centric: διαμοιρασμός των υπολογισμών με βάση τα γινόμενα διανυσμάτων, δηλ. 1 task = ένα γινόμενο διανυσμάτων data centric: διαμοιρασμός των υπολογισμών ανά στοιχείο του πίνακα C, δηλ. 1 task = πράξεις που χρειάζονται για τον υπολογισμό ενός στοιχείου C ij του πίνακα C Ειδική περίπτωση της task centric προσέγγισης είναι η function centric: η κατανομή γίνεται με βάση τις συναρτήσεις (διαφορετικές λειτουργίες) function centric: διαμοιρασμός των υπολογισμών ανά πράξη: 1 task = πολλαπλασιαμός, 1 task = πρόσθεση 4

Επιλογή στρατηγικής ανάλογα με τον αλγόριθμο Η task centric προσέγγιση είναι η πιο γενική Στάδιο 1: Κατανομή υπολογισμών και δεδομένων Οι task centric και data centric μπορεί να οδηγήσουν σε ακριβώς την ίδια κατανομή Απαιτήσεις: Αποδοτικότητα Μεγιστοποίηση παραλληλίας Ελαχιστοποίηση επιβαρύνσεων λόγω διαχείρισης tasks, συγχρονισμού, επικοινωνίας Ισοκατανομή φορτίου Απλότητα Ευελιξία (ανεξαρτησία από απαιτήσεις υλοποίησης) 5

Αναλογία: παρασκευή πίτσας Μάγειρας Processing element Υλικά (ζύμη, σάλτσα, topping) data Στόχος: παραλληλοποίηση της παρασκευής Ν ταψιών πίτσας Υπόθεση: Συνεργάζονται >1 μάγειρες task centric προσέγγιση: «μοιράζω τη δουλειά» 1 task = παρασκευή 1 ταψιού πίτσας data centric προσέγγιση: «μοιράζω τα δεδομένα (υλικά)» η κατανομή της δουλειάς προκύπτει σαν φυσικό επακόλουθο του διαμοιρασμού των δεδομένων μοιράζω τα υλικά σε τμήματα (σε Κ μέρη / ανά μάγειρα / ανά πίτσα, θα αποφασιστεί αργότερα) function centric προσέγγιση: διαχωρίζω τις διαφορετικές δουλειές παρασκευή ζύμης, παρασκευή σάλτσας, προετοιμασία topping, άπλωμα ζύμης, τοποθέτηση σάλτσας, τοποθέτηση topping 6

Rule of thumb Αλγόριθμοι σε κανονικές δομές δεδομένων (π.χ. regular computational grids, αλγεβρικοί πίνακες) ευνοούν τη data centric κατανομή: Πολλαπλασιασμός πινάκων (γενικά βασικές αλγεβρικές ρουτίνες) Επίλυση γραμμικών συστημάτων Stencil computations Όταν μπορεί να εφαρμοστεί, η data centric προσέγγιση οδηγεί σε κομψές λύσεις: δοκιμάζουμε πρώτα την data centric και αν δεν πετύχει, καταφεύγουμε στην task centric 7

Rule of thumb H task centric προσέγγιση αποτελεί λύση για πιο δυναμικούς αλγορίθμους σε ακανόνιστες δομές δεδομένων (irregular data structures) Αλγόριθμοι σε λίστες, δέντρα, γράφους, κλπ Αναδρομικοί αλγόριθμοι Event based εφαρμογές 8

Παράδειγμα: Εξίσωση θερμότητας Αλγόριθμος του Jacobi (2 διάστατο πλέγμα Χ Υ) A[step+1][i][j] = 1/5 (A[step][i][j] + A[step][i-1][j] + A[step][i+1][j] + A[step][i][j-1] + A[step][i][j+1]) Data centric Task centric Μοιράζουμε τα δεδομένα ανά σημείο / 1 task = υπολογισμός θερμότητας για κάθε γραμμή / στήλη / μπλοκ σημείο του χωρίου Κάθε task αναλαμβάνει να υπολογίσει την τιμή σε κάθε διαμοιρασμένο δεδομένο 1 task = υπολογισμός θερμότητας για κάθε χρονικό βήμα 1 task = υπολογισμός θερμότητας για μία γραμμή / στήλη / block του δισδιάστατου πλέγματος για όλες τις χρονικές στιγμές 1 task = υπολογισμός θερμότητας για μία γραμμή / στήλη / block του δισδιάστατου πλέγματος για μία χρονική στιγμή Κατανομή δεδομένων: Κάθε task κατέχει (owns) τα δεδομένα που γράφει 9

Κατανομή δεδομένων Τα δεδομένα του προβλήματος μπορούν να κατανεμηθούν ως: Μοιραζόμενα δεδομένα (shared data): Μπορεί να υποστηριχθεί μόνο από προγραμματιστικά μοντέλα κοινού χώρου διευθύνσεων Αποτελεί ένα πολύ βολικό τρόπο «κατανομής» Χρειάζεται ιδιαίτερη πρόνοια όταν τα δεδομένα εγγράφονται από διαφορετικά tasks Κατανεμημένα δεδομένα (distributed data): ) Τα δεδομένα διαμοιράζονται ανάμεσα στα tasks Αποτελεί τη βασική προσέγγιση στα προγραμματιστικά μοντέλα ανταλλαγής μηνυμάτων Επιβάλλει επιπλέον προγραμματιστικό κόστος Αντιγραμμένα δεδομένα (replicated data): Για αντιγραφή μικρών read only δομών δεδομένων Για αντιγραφή υπολογισμών 10

Κατανομή κανονικών δομών 1 dimensional 2 dimensional 11

Ανάγκη για αλληλεπίδραση: Στάδιο 2: Σχεδιασμός αλληλεπίδρασης ης ανάμεσα στα tasks Κοινά δεδομένα προσπελαύνονται από διαφορετικά tasks Τουλάχιστον μία πρόσβαση είναι εγγραφή Race condition: Το αποτέλεσμα της (παράλληλης) εκτέλεσης εξαρτάται από τη σειρά με την οποία τα tasks προσπελαύνουν τα κοινά δεδομένα Π.χ. producer consumer (counter++, counter ) critical section Εξάρτηση ανάμεσα σε tasks: Η σημασιολογικά ορθή εκτέλεση απαιτεί συγκεκριμένα σειρά πρόσβασης στα δεδομένα ordering 12

Εξαρτήσεις Εξαρτήσεις δεδομένων υπάρχουν ήδη από το σειριακό πρόγραμμα Εξάρτηση ηυπάρχει όταν 2 εντολές αναφέρονται στα ίδια δεδομένα (θέση η μνήμης) 4 είδη εξαρτήσεων Read After Write Wi (RAW) ή true dependenced Write After Read (WAR) ή anti dependence Write After Write (WAW) )ήή output dependence Read After Read (not really a dependence) Η παράλληλη εκτέλεση πρέπει να σεβαστεί τις εξαρτήσεις του προβλήματος Η κατανομή των δεδομένων στα tasks δημιουργεί κατά κανόνα εξαρτήσεις ανάμεσα στα tasks (π.χ. το task1 πρέπει να διαβάσει δεδομένα που παράγει το task2) 13

Ή απλά task graph Κορυφές: tasks Label κορυφής: κόστος υπολογισμού του task Ακμές: εξαρτήσεις ανάμεσα στα tasks Γράφος εξαρτήσεων (task dependence graph) Βάρος ακμής: όγκος δεδομένων που πρέπει να μεταφερθούν (στην περίπτωση της επικοινωνίας) 14

Εξαρτήσεις στην εξίσωση θερμότητας 1 task = υπολογισμός θερμότητας για κάθε σημείο του χωρίου A[step+1][i][j] = 1/5 (A[step][i][j] + A[step][i-1][j] + A[step][i+1][j] + A[step][i][j-1] + A[step][i][j+1]) 15

Εξαρτήσεις στην εξίσωση θερμότητας 1 task = υπολογισμός θερμότητας για κάθε χρονικό βήμα Δεν υπάρχουν ταυτόχρονα tasks! A[step+1][i][j] = 1/5 (A[step][i][j] + A[step][i-1][j] + A[step][i+1][j] + A[step][i][j-1] + A[step][i][j+1]) 16

Εξαρτήσεις στην εξίσωση θερμότητας 1 task = υπολογισμός θερμότητας για μία γραμμή του δισδιάστατου πλέγματος για όλες τις χρονικές στιγμές Δεν υπάρχει έγκυρη παράλληλη εκτέλεση! A[step+1][i][j] = 1/5 (A[step][i][j] + A[step][i-1][j] + A[step][i+1][j] + A[step][i][j-1] + A[step][i][j+1]) 17

Εξαρτήσεις στην εξίσωση θερμότητας 1 task = υπολογισμός θερμότητας για μία γραμμή του δισδιάστατου πλέγματος για μία χρονική στιγμή A[step+1][i][j] = 1/5 (A[step][i][j] + A[step][i-1][j] + A[step][i+1][j] + A[step][i][j-1] + A[step][i][j+1]) 18

Στάδιο 3: Απεικόνιση των tasks σε διεργασίες (ή threads) Κατάλληλη ομαδοποίηση tasks μπορεί να οδηγήσει σε μείωση ή και σε εξάλειψη εξαρτήσεων (ελαχιστοποίηση αναγκών συγχρονισμού επικοινωνίας) 19

Ομαδοποίηση tasks Κατάλληλη ομαδοποίηση tasks μπορεί να οδηγήσει σε μείωση ή και σε εξάλειψη εξαρτήσεων (ελαχιστοποίηση αναγκών συγχρονισμού επικοινωνίας) 20

Ομαδοποίηση tasks Κατάλληλη ομαδοποίηση tasks μπορεί να οδηγήσει σε μείωση ή και σε εξάλειψη εξαρτήσεων (ελαχιστοποίηση αναγκών συγχρονισμού επικοινωνίας) 21

Ομαδοποίηση tasks Η ομαδοποίηση των tasks κάνει τη συνέχεια της υλοποίησης πιο ευέλικτη (π.χ. ανεξάρτητη από το μέγεθος του προβλήματος) Π.χ. στην εξίσωση διάχυσης η ομαδοποίηση tasks σε δύο διαστάσεις του χωρικού πλέγματος παραμετρικά (π.χ. B 1 B 2 αρχικά tasks δημιουργούν ένα νέο task) παρέχει ευελιξία στη συνέχεια της υλοποίησης 22

Στατική απεικόνιση: Στατική vs. Δυναμική απεικόνιση tasks Διαμοιρασμός των tasks σε threads πριν την έναρξη της εκτέλεσης Κατάλληλη στρατηγική για εφαρμογές με: ομοιόμορφη και γνωστή εξαρχής κατανομή φορτίου ανομοιόμορφη αλλά προβλέψιμη κατανομή φορτίου Πλεονεκτήματα : Απλή στην υλοποίηση Καλή επίδοση για «κανονικές εφαρμογές» Μηδενικό overhead Μειονεκτήματα: Κακή επίδοση για δυναμικές και ακανόνιστες εφαρμογές 23

Δυναμική απεικόνιση: Στατική vs. Δυναμική απεικόνιση tasks Διαμοιρασμός των tasks σε threads κατά την εκτέλεση Κατάλληλη στρατηγική για εφαρμογές με: μη προβλέψιμο φορτίο δυναμικά δημιουργούμενα tasks Πλεονεκτήματα: Εξισορρόπηση φορτίου σε δυναμικές και ακανόνιστες εφαρμογές Μειονεκτήματα: Δύσκολη στην υλοποίηση (συνήθως το αναλαμβάνει το run time σύστημα) Μπορεί να δημιουργήσει bottleneck σε περίπτωση υλοποίησης με ένα κεντρικό scheduling thread (απαιτούνται κατανεμημένοι αλγόριθμοι) 24

data centric, στατική απεικόνιση 1-dim 2-dim (block) sequential cyclic sequential cyclic 25

//LU decomposition kernel for(k=0; k<n-1; k++) for(i=k+1; i<n; i++){ L[i] = A[i][k] / A[k][k]; for(j=k+1; j<n; j++) A[i][j]=A[i][j]-L[i]*A[j][i]; } Παράδειγμα: Επιλογή απεικόνισης για LU και stencil //stencil for (t=1; t<t; t++){ for (i=1; i<x; i++) for (j=1; j<y; j++) A[t][i][j] = 0.2*(A[t-1][i][j] + A[t-1][i-1][j] + A[t-1][i+1][j] + A[t-1][i][j-1] + A[t-1][i][j]); } 26

Στάδιο 4: Ενορχήστρωση της επικοινωνίας ή/και του συγχρονισμού Η κατανομή των υπολογισμών και των δεδομένων δημιουργεί ανάγκες για επικοινωνία και συγχρονισμό Επικοινωνία: Κατανεμημένα δεδομένα 1 task χρειάζεται να διαβάσει δεδομένα που κατέχει ένα άλλο task Σημείο προς σημείο και συλλογική Συγχρονισμός: Διατήρηση των εξαρτήσεων: σειριοποίηση μεταξύ tasks Αμοιβαίος αποκλεισμός: ελεγχόμενη πρόσβαση σε shared δεδομένα Τυπικά patterns συγχρονισμού: critical section ordering barrier 27

Στάδιο 4: Ενορχήστρωση της επικοινωνίας ή/και του συγχρονισμού Συχνή επικοινωνία / συγχρονισμός μπορούν να «σκοτώσουν» την επίδοση ενός παράλληλου προγράμματος Βελτιστοποίηση επικοινωνίας Κατάλληλη κατανομή δεδομένων μείωση αναγκών επικοινωνίας Επικάλυψη υπολογισμών επικοινωνίας Ζητήματα συγχρονισμού Δύσκολη υλοποίηση ορθά συγχρονισμένων προγραμμάτων Κόστος εκτέλεσης: fine grain vs coarse grain συγχρονισμός Εναλλακτικές προσεγγίσεις: Non blocking data structures Transactional memory 28

Σύνοψη σχεδιασμού παράλληλων προγραμμάτων Δεν υπάρχει ξεκάθαρη μεθοδολογία παραλληλοποίησης προγραμμάτων Δύο σημαντικά βήματα (συχνά όχι σειριακά): Σχεδιασμός Αναζήτηση παραλληληλίας (κατανομή υπολογισμού και δεδομένων σε tasks) Δεν λαμβάνονται ιδιαίτερα υπόψη τα εργαλεία προγραμματισμού και η πλατφόρμα εκτέλεσης Υλοποίηση (επόμενο μάθημα) Έκφραση παραλληλίας Επιλογή προγραμματιστικού μοντέλου και εργαλείων Λαμβάνεται υπόψη η πλατφόρμα εκτέλεσης 2 βασικές προσεγγίσεις σχεδιασμού: task parallelism: κατανέμονται πρώτα οι υπολογισμοί και μετά τα δεδομένα data parallelism: κατανέμονται πρώτα τα δεδομένα και μετά οι υπολογισμοί Σημαντική προσέγγιση: functional parallelism (υποπερίπτωση του task parallelism) Επιλογή προσέγγισης ανάλογα με τα χαρακτηριστικά της εφαρμογής 29