SOLUTIONS & ANSWERS FOR KERALA ENGINEERING ENTRANCE EXAMINATION-2018 PAPER II VERSION B1

Σχετικά έγγραφα
2 2 2 The correct formula for the cosine of the sum of two angles is given by the following theorem.

2 2 2 The correct formula for the cosine of the sum of two angles is given by the following theorem.

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

Trigonometric Formula Sheet

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

COMPLEX NUMBERS. 1. A number of the form.

Answers - Worksheet A ALGEBRA PMT. 1 a = 7 b = 11 c = 1 3. e = 0.1 f = 0.3 g = 2 h = 10 i = 3 j = d = k = 3 1. = 1 or 0.5 l =

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

Matrices and Determinants

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET

Inverse trigonometric functions & General Solution of Trigonometric Equations

Quadratic Expressions

Example Sheet 3 Solutions

Equations. BSU Math 275 sec 002,003 Fall 2018 (Ultman) Final Exam Notes 1. du dv. FTLI : f (B) f (A) = f dr. F dr = Green s Theorem : y da

CRASH COURSE IN PRECALCULUS

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is

Rectangular Polar Parametric

F19MC2 Solutions 9 Complex Analysis

Section 8.3 Trigonometric Equations

26 28 Find an equation of the tangent line to the curve at the given point Discuss the curve under the guidelines of Section

MATHEMATICS. 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

Chapter 1 Complex numbers

Homework 8 Model Solution Section

1999 by CRC Press LLC

Section 9.2 Polar Equations and Graphs

Reminders: linear functions

Finite Field Problems: Solutions

Review Exercises for Chapter 7

Areas and Lengths in Polar Coordinates

CHEMISTRY 1. A. Paper-2 HINTS & SOLUTIONS C 3. D 4. C + + Sol: Mg N Mg N Mg ( OH) NH Cu ( NH ) 5. AD Sol: α hydrogen absent

SOLVING CUBICS AND QUARTICS BY RADICALS

AREAS AND LENGTHS IN POLAR COORDINATES. 25. Find the area inside the larger loop and outside the smaller loop

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

C.S. 430 Assignment 6, Sample Solutions

Section 7.6 Double and Half Angle Formulas

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Problem 1.1 For y = a + bx, y = 4 when x = 0, hence a = 4. When x increases by 4, y increases by 4b, hence b = 5 and y = 4 + 5x.

The ε-pseudospectrum of a Matrix

Math 6 SL Probability Distributions Practice Test Mark Scheme

1 Adda247 No. 1 APP for Banking & SSC Preparation Website:store.adda247.com

Math221: HW# 1 solutions

Second Order Partial Differential Equations

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

CBC MATHEMATICS DIVISION MATH 2412-PreCalculus Exam Formula Sheets

Cable Systems - Postive/Negative Seq Impedance

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Class 03 Systems modelling

Differential equations

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

8. f = {(-1, 2), (-3, 1), (-5, 6), (-4, 3)} - i.) ii)..

Chapter 3: Ordinal Numbers

MathCity.org Merging man and maths

Approximation of distance between locations on earth given by latitude and longitude

Answers to practice exercises

Trigonometry 1.TRIGONOMETRIC RATIOS

If we restrict the domain of y = sin x to [ π 2, π 2

ECE 308 SIGNALS AND SYSTEMS FALL 2017 Answers to selected problems on prior years examinations

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

TRIGONOMETRIC FUNCTIONS

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

Solution Series 9. i=1 x i and i=1 x i.

Notations. Primary definition. Specific values. General characteristics. Series representations. Traditional name. Traditional notation

d 2 y dt 2 xdy dt + d2 x

Volume of a Cuboid. Volume = length x breadth x height. V = l x b x h. The formula for the volume of a cuboid is

Paper Reference. Paper Reference(s) 6665/01 Edexcel GCE Core Mathematics C3 Advanced. Thursday 11 June 2009 Morning Time: 1 hour 30 minutes

Solution to Review Problems for Midterm III

Section 8.2 Graphs of Polar Equations

ΚΥΠΡΙΑΚΟΣ ΣΥΝΔΕΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY 21 ος ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ Δεύτερος Γύρος - 30 Μαρτίου 2011

EE512: Error Control Coding

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

Srednicki Chapter 55

Areas and Lengths in Polar Coordinates

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

PARTIAL NOTES for 6.1 Trigonometric Identities

Probability and Random Processes (Part II)

CHAPTER 10. Hence, the circuit in the frequency domain is as shown below. 4 Ω V 1 V 2. 3Vx 10 = + 2 Ω. j4 Ω. V x. At node 1, (1) At node 2, where V

Πρόβλημα 1: Αναζήτηση Ελάχιστης/Μέγιστης Τιμής

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

r t te 2t i t Find the derivative of the vector function. 19. r t e t cos t i e t sin t j ln t k Evaluate the integral.

EE101: Resonance in RLC circuits

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr

2x 2 y x 4 +y 2 J (x, y) (0, 0) 0 J (x, y) = (0, 0) I ϕ(t) = (t, at), ψ(t) = (t, t 2 ), a ÑL<ÝÉ b, ½-? A? 2t 2 at t 4 +a 2 t 2 = lim

Uniform Convergence of Fourier Series Michael Taylor

A Two-Sided Laplace Inversion Algorithm with Computable Error Bounds and Its Applications in Financial Engineering

Lecture 13 - Root Space Decomposition II

*H31123A0228* 1. (a) Find the value of at the point where x = 2 on the curve with equation. y = x 2 (5x 1). (6)

( )( ) La Salle College Form Six Mock Examination 2013 Mathematics Compulsory Part Paper 2 Solution

IIT JEE (2013) (Trigonomtery 1) Solutions

Arithmetical applications of lagrangian interpolation. Tanguy Rivoal. Institut Fourier CNRS and Université de Grenoble 1

Mechanical Metallurgy

ST5224: Advanced Statistical Theory II

5.4 The Poisson Distribution.

Not for reproduction

Monochromatic Radiation is Always 100% Polarized

Chapter 7 Transformations of Stress and Strain

Trigonometry Functions (5B) Young Won Lim 7/24/14

Transcript:

SOLUTIONS & ANSWERS FOR KERALA ENGINEERING ENTRANCE EXAMINATION-8 PAPER II VERSION B [MATHEMATICS]. Ans: ( i) It is (cs5 isin5 ) ( i). Ans: i z. Ans: i i i The epressin ( i) ( ). Ans: cs i sin cs i sin ( i) The number is i i ; i 5. Ans: z cs i sin cs i sin cs i sin i 6. Ans: i ω a cube rt unity z 9 z 9 ω 9 ω 9 ω ω (z 9 z 9 ) ( ω) b ia i(a ib) (b ia) i (a ib) i ( i) i. Ans: 9 α, β are rts 5 α β 5, αβ α β β α 8. Ans:, ( α β) αβ 5 6 αβ 9 α β. β α equatin required is 9 9 Equatin is (y ) i.e. Y a X where X Y y a 9. Ans: cus is, y i.e., 8 > < < () < () < () ( ) ( ) < < ( ) ( ) lim lim 8 8 ( ) ( ) By squeeze therem, ( ) lim 8. Ans: () () lim. Ans: ( ) () ( ) () ' ( ) lim Equatin is ( ) (y ) 6 e 6 6 ( ) ( y ) 6

. Ans: (, ) Equatin is Y ax where Y y, X a cus is, y i.e. (, ). Ans: y y D. Ans: 5p 5q r (p q r) p q r 6p q r 6p 6q r q q p p I α is the rt, α α 5. Ans: 6. Ans: 58 (y) () (y) () n () n n () Sum last ceicients sum st ceicients sum all ceicients. 59 58 9. Ans: NA z z z z i. Ans: sin It is lim cs. Ans:. Ans: (). Ans: cs sin sin sin is the th dd n required sum sin cs y sin λ cs sin cs sin cs sin cs sin y cs. Ans: ± 5 5,. Ans: 6 It is C ( ). C ( ) ( ) ( 6 8 6 ) 8. Ans: 6 6( ) 9(y ) 5 5 5 Fci are ±, y 5. Ans: i.e. ± 5 5, Thus a a a 6. Ans:.5 P(A B C) P A ( ) P( B C) P( A B C) 8 6 6 Mean 6 8 M D.5. Ans:

~p 8, npq q, p ; n 6 6 P(X ) 6 C 8. Ans: 9 6 sinα csα b c, sinα csα a a b c sin α cs α a a b ac a i.e. a b ac The number is 5 C 5 9 9. Ans: P(MS)., P(M).6 P(MS) P(S/M) P(M) 5. Ans: area 5. 5.. 5. Ans: ( ) 9 y 8 y ( ) 8 6 e 8 6 e. Ans: 8 i New sum ( 8...... ) 5( ) 9. Ans: S T A I C N Ι ΙΙ 9 Required prbability. 9 9 9 9 6 9 9 9 5. Ans: 9 B G Required number 6 C C 6 C C 6 C C 6 c 9 8 5 9 6. Ans:. Ans: 5 There are distinct letters required number P 5 9 5 5 8 5(6 ) 8 5[(M(5) ] remainder is 5 8. Ans: b ac b cannt be r There are nly tw cases where rts are real Ttal number cases! 6 required prbability 6 9. Ans: 9 lim lim 9. Ans: a b ac

. Ans: y 6. Ans:. Ans: h () (g()). g () h () () g () 6 y It is cs sin sin cs [ ( 5 )] cs 5 cs sin cs 5 Minimum where y & y meet i.e. when, y required minimum value. Ans:, y Equatin is (y ) (y ) i.e. ( ) (y ) Asympttes are, y i.e., y. Ans: 6 5 6 lg(6) () 6 5 6 lg6. Ans: NA 6 9. Ans: 5. Ans: ( ) n 5 m n 9 6 6 9 m m sin m lim n n sin n lim lim ( ) 8. Ans: e 5 e m m is the prbability density! P(X ) e m m 9. Ans: 5. Ans: P(X ) e m m! m 6 P(X 6) e m 6! m m P (X 6) e e 6! 5 6 The selected numbers can be (, ) r (, ) r (, ) r... r (9, ) Ttal number cases 9 Nw, a b a b (a b) ab a b ab a b (ab ) (k ), since the prduct tw cnsecutive integers is even. a b a b k, dd integer Number avurable cases 9 Prbability I a, b are the semi aes the ellipse & a > b the circle is r radius a ab required prbability a b a

5. Ans: e 8 9 m 6 ( ) 5 5. Ans: 6 m 8 m m m a b i j 6k ( i j k) b c 8i j 6k ( i j k) ( a b) ( b c) i 8(i j k) required area 8 6 6 j k 5 5 5 ( ) 5 r 5 5. Ans: b ab, b b a ab a b (a ) (b ) a r b a gives imaginary rts r a 58. Ans: sinθcsθ sinθcsθ sin θ cs θ (sinθ csθ) (sin θ sinθ csθ cs θ) (sinθ csθ) ( ). 59. Ans: 9 5. Ans: 9 a b c ( b.c c.a a.b ) 9 6 b. c b.c 6 5 6 5} Required prbability 8 6 9 5. Ans: a b a. b csθ csθ θ 55. Ans: 9 6. Ans: 9! 6 9i 5 56 9i 5 8 9 9! 5! λ 9 µ λ 6 µ λ µ 9 λ µ 6 λ 8 λ µ 8 λ µ 9 56. Ans:, 6. Ans: and rder degree 6. Ans: d ( )

6. Ans: 6. Ans: 5 ( ) d ( ) d 65. Ans: 66. Ans: ( tan ( )) tan tan ( ) d ( ) d ( ) d Q ( ( ) ) d ( ) d 6 ( ) d 5 ( ) ( ) e d ( ) e d e C e ( ' )d e () C ( ) ( ) (6 ) 5 Remainder 6. Ans: 5 Ceicient 5 8 C 68. Ans: 5 5 cs θ sin θ cs θ sin θ 69. Ans: Maimum value C a b 69 z Area. Ans: 9 8. Ans:, z () cs () sin () 56 By sectin rmula,. Ans: A 9 8, a b c b c c a a b a b c. Ans: b ay b c c a a b Midpint (a, b) satisy nly b ay y. Ans: a b 5. Ans: (8, 8) Equatin line line b ay ab any line parallel t b ay ab passing thrugh (a, b), k ab y a b a a Area a a 8 a a a 8

a () 8 a 6 a ± 6 a a centrid, (8, 8) 8. Ans: i j kˆ b î 6ĵ 6kˆ a î yĵ zkˆ a & b cllinear a. b 6. Ans:, 65 8. Ans: ± 5 a a. Ans: 9 8. Ans: 5 ( a ) ( a) (a 9 a) ±5 a a 5a 9 ±5 a ±5 a ±5 9 r a r verte is (a, a ),, Fr pair straight line abc gh a bg ch g g a b a b ( a. b) 8. Ans: 8. Ans: 5 i a b 69. 5 9 65 a b 5 5 56 P r 6 : 5 P r 8 : 56! ( 56 r 6 )! 5! ( 5 r ) 5 r r! 8 y y 5 d 5 5 tanθ 5 5 tan 9 θ 5 h ab a b 9. Ans:, y, z y z y z 5 y z back substitutin 8. Ans: sin(5 ) 5 85. Ans: 86. Ans: 9 C. C C C C 8 ( ) ( ) 6 ceicient ( 6 C ) ( 6 C ) 6 9 8. Ans: y y 5 (, ) (, 5) r 9

88. Ans: (,, ) ( h) (y k) r ( ) (y ) y y y y 5 Let P(, y, ) be a pint n y plane P(, y, ) A (,, ) B (,, ) C (,, ) PA ( ) y 9 PB ( y) PA PB PC PC y ( ) 9 (PA PC ) 9 (PA PB ) 6y y 89. Ans: () and () ( y) () (y) gives () 9. Ans: 9 n n ( a k) 6( ) k a a a... a n 6 ( n ) a (... n ) 6( n ) n ( ) a n 6 a ( n ) 6( n ) a 6 a a n C r 6 () n C r 8 () n C r 6 () ( ) () ( ) ( ) 9. Ans: n r () n 5r (5) Slving () and (5) n 9 () ( ) (, ) () is a cnstant () 9. Ans: ( ) ( ) lim 9. Ans: 5 lim () lim () lim 5 h 9. Ans: ( h) ( ) h limit eist () () 5 () 6 6 6( 5 6), () < at Maimum at 95. Ans: ( ) 96. Ans: ( ), Ι [ ( ) ] cs d C () sin C C d sin Als Ι Ι sin d ( ) d sin ( sec sec tan )d [ tan sec ] sin sin d cs

9. Ans: 98. Ans: 99. Ans: tan tan sec sec [( ) ( )] [ ] ( ) Ι ( ) sin Ι d () sin cs cs Ι d () sin cs () () Ι d Ι Ι sin t dt a lim sin. lim cs Area sin d d sq. units. Ans: y y y The slutin is y y y. Ans: NA i i [ i ] i i i ω. Ans: ( i ) ( i) ω 6 ( ) i ω 6 ( ) i ω ( ) i i Real part ( ) e lim Applying L- Hspitals rule e lim Applying L- Hspital s rule again e lim sin cs. Ans: C sin ( sin cs )( sin ) d sin ( sin cs ) [ ( sin ) ] [ ( sin ) ] ( sin cs ) d sin cs d sin cs d [ ( sin cs sin cs ) ] cs [ sin cs ] d [ ( sin cs ) ] ( sin ) ( ) t ( ) dt t ( t ) ( t ), where t sin cs t dt t dt ( t) ( t ) t t t sin cs C C t ( sin cs ) sin cs C sin. Ans: r. ( i j k) 5 i j k n ( i j k) C

5. Ans: 6. Ans: 6. Ans: Equatin is r. n d ( i j k) 5 r. A B tan A B A B cs sin sin A sinb cs A cs B A B A B cs cs A B tan Acst Bsint d A sin t B cs t dt d 6A cs t 6B sin t dt 6 n n A.M 8. Ans: 9. Ans: 9 C n C... Cn n n n Variance irst natural number is 99 number element in S 9 9. Ans: A. Ans:, A A 6 6 A ( 9) ( 6) 8 diagnal element A are 6 sum ( ) 6 R R R R 9 9 9 6 9 6 C C C, C C C 9 ( 9) ( ) ( ) 9,,. Ans: ; 5 [ ] 5 [ ] [ ] [ 6 8] 6 8 ;, 6, S {H, H, H, H, H 5, H 6, T, T, T, T, T 5, T 6} P(cin shws head and die shw ). Ans:. Ans: AA Ι

5. Ans: 6 (6 6) ( 6 6) 6 ( ) a b c d e 5a b c d e 5 6 9 ( ) d sin d ( cs ) sin cs ( ] 9. Ans: 5 6y z d 6. Ans: a b b c c a c a b a a b c b a b c C c a b c a (a b c) b c. Ans: () ( ) C C C C ( ) ( ) C C C ( ) ( ) ( ) (5) C y z Equatin is. Ans: 5(5) ( ) ( ) (y ) ( ) (z ) (6 8) 5 5 6y z 6 5 6y z 5 6y z t n 5n t 6 t 5 S [ 6 5] 5( 5) 8. Ans: () cs cs sin cs C C C C sin cs ( ) [cs (sin cs) cs( cs)] ( ) [cs sincs cs cs cs ] sincs