..,.,

Σχετικά έγγραφα
ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems

L p approach to free boundary problems of the Navier-Stokes equation

High order interpolation function for surface contact problem

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

ΜΑΘΗΜΑΤΙΚΗ ΠΡΟΣΟΜΟΙΩΣΗ ΤΗΣ ΔΥΝΑΜΙΚΗΣ ΤΟΥ ΕΔΑΦΙΚΟΥ ΝΕΡΟΥ ΣΤΗΝ ΠΕΡΙΠΤΩΣΗ ΑΡΔΕΥΣΗΣ ΜΕ ΥΠΟΓΕΙΟΥΣ ΣΤΑΛΑΚΤΗΦΟΡΟΥΣ ΣΩΛΗΝΕΣ ΣΕ ΔΙΑΣΤΡΩΜΕΝΑ ΕΔΑΦΗ

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

J. of Math. (PRC) 6 n (nt ) + n V = 0, (1.1) n t + div. div(n T ) = n τ (T L(x) T ), (1.2) n)xx (nt ) x + nv x = J 0, (1.4) n. 6 n

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΕΡΙΒΑΛΛΟΝΤΟΣ

: Monte Carlo EM 313, Louis (1982) EM, EM Newton-Raphson, /. EM, 2 Monte Carlo EM Newton-Raphson, Monte Carlo EM, Monte Carlo EM, /. 3, Monte Carlo EM

D Alembert s Solution to the Wave Equation

(, ) (SEM) [4] ,,,, , Legendre. [6] Gauss-Lobatto-Legendre (GLL) Legendre. Dubiner ,,,, (TSEM) Vol. 34 No. 4 Dec. 2017

Finite difference method for 2-D heat equation

( y) Partial Differential Equations

Study on Re-adhesion control by monitoring excessive angular momentum in electric railway traction

ΠΣΤΥΙΑΚΗ ΔΡΓΑΙΑ. Μειέηε Υξόλνπ Απνζηείξσζεο Κνλζέξβαο κε Τπνινγηζηηθή Ρεπζηνδπλακηθή. Αζαλαζηάδνπ Βαξβάξα

J. of Math. (PRC) Banach, , X = N(T ) R(T + ), Y = R(T ) N(T + ). Vol. 37 ( 2017 ) No. 5

Figure A.2: MPC and MPCP Age Profiles (estimating ρ, ρ = 2, φ = 0.03)..

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

6.3 Forecasting ARMA processes

The Negative Neumann Eigenvalues of Second Order Differential Equation with Two Turning Points

Lecture 26: Circular domains

P É Ô Ô² 1,2,.. Ò± 1,.. ±μ 1,. ƒ. ±μ μ 1,.Š. ±μ μ 1, ˆ.. Ê Ò 1,.. Ê Ò 1 Œˆ ˆŸ. ² μ Ê ² μ Ì μ ÉÓ. É μ ±, Ì μé μ Ò É μ Ò ² μ Ö

Lanczos and biorthogonalization methods for eigenvalues and eigenvectors of matrices

Eigenvalues and eigenfunctions of a non-local boundary value problem of Sturm Liouville differential equation

Τεχνική Έκθεση Συνοπτική παρουσίαση... 3

.. 2,.. 3 .,, (, ) [1]. - [2]. [4], [5].., [6, 7] -. [8] [9]. -. [8], - ,,?, - . -, - ( ), ,.,. ,. : ; ; - ; ;. . «..»

Ó³ Ÿ , º 2(214).. 171Ä176. Š Œ œ ƒˆˆ ˆ ˆŠ

Homomorphism in Intuitionistic Fuzzy Automata

ADVANCED STRUCTURAL MECHANICS

X g 1990 g PSRB

Eects of Gas-Surface Interaction Model in Hypersonic Rareed Gas Flow

Second Order RLC Filters

, - [1]. - [2]., - - 2:10:20,. -,. -,. -,, -,. -, 1/3,,, [5] -. -

Linearized Lifting Surface Theory Thin-Wing Theory

Graded Refractive-Index

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Eulerian Simulation of Large Deformations

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Durbin-Levinson recursive method

Second Order Partial Differential Equations

On the Galois Group of Linear Difference-Differential Equations

DuPont Suva 95 Refrigerant

N. P. Mozhey Belarusian State University of Informatics and Radioelectronics NORMAL CONNECTIONS ON SYMMETRIC MANIFOLDS

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

ΘΕΩΡΗΤΙΚΗ ΚΑΙ ΠΕΙΡΑΜΑΤΙΚΗ ΙΕΡΕΥΝΗΣΗ ΤΗΣ ΙΕΡΓΑΣΙΑΣ ΣΚΛΗΡΥΝΣΗΣ ΙΑ ΛΕΙΑΝΣΕΩΣ

Class 03 Systems modelling

4.6 Autoregressive Moving Average Model ARMA(1,1)

.. 2,.. 3,.. 4 , - [1].,, [2],. [2], 1. ,,. - ,..)., , ( - , - A n+1 A n A [5]. [6] : ; ; , - . «..»

DuPont Suva 95 Refrigerant

Higher Derivative Gravity Theories

Development of the Nursing Program for Rehabilitation of Woman Diagnosed with Breast Cancer

MOTROL. COMMISSION OF MOTORIZATION AND ENERGETICS IN AGRICULTURE 2014, Vol. 16, No. 5,

Vol. 37 ( 2017 ) No. 3. J. of Math. (PRC) : A : (2017) k=1. ,, f. f + u = f φ, x 1. x n : ( ).

Section 8.3 Trigonometric Equations

3+1 Splitting of the Generalized Harmonic Equations

DuPont Suva. DuPont. Thermodynamic Properties of. Refrigerant (R-410A) Technical Information. refrigerants T-410A ENG

Buried Markov Model Pairwise

Numerical Analysis FMN011

Space Physics (I) [AP-3044] Lecture 1 by Ling-Hsiao Lyu Oct Lecture 1. Dipole Magnetic Field and Equations of Magnetic Field Lines

- 1+x 2 - x 3 + 7x x x x x x 2 - x 3 - -

Discontinuous Hermite Collocation and Diagonally Implicit RK3 for a Brain Tumour Invasion Model

ΜΕΤΑΛΛΙΚΑ ΥΠΟΣΤΥΛΩΜΑΤΑ ΥΠΟ ΘΛΙΨΗ ΚΑΙ ΚΑΜΨΗ

GPGPU. Grover. On Large Scale Simulation of Grover s Algorithm by Using GPGPU

3-dimensional motion simulation of a ship in waves using composite grid method

1 String with massive end-points

Discretization of Generalized Convection-Diffusion

Computing the Gradient

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ ΚΡΗΤΗΣ ΣΧΟΛΗ ΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

Variational Wavefunction for the Helium Atom

Evolution of Novel Studies on Thermofluid Dynamics with Combustion

Assalamu `alaikum wr. wb.

Q L -BFGS. Method of Q through full waveform inversion based on L -BFGS algorithm. SUN Hui-qiu HAN Li-guo XU Yang-yang GAO Han ZHOU Yan ZHANG Pan

Prey-Taxis Holling-Tanner

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET

ΕΡΓΑΣΤΗΡΙΟ ΡΕΥΣΤΟΜΗΧΑΝΙΚΗΣ ΚΑΙ ΣΤΡΟΒΙΛΟΜΗΧΑΝΩΝ

Technical Information T-9100 SI. Suva. refrigerants. Thermodynamic Properties of. Suva Refrigerant [R-410A (50/50)]

Spherical Coordinates

[1] P Q. Fig. 3.1

Mathematical model for HIV spreads control program with ART treatment

Matrices and Determinants

ACTA MATHEMATICAE APPLICATAE SINICA Nov., ( µ ) ( (

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Reaction of a Platinum Electrode for the Measurement of Redox Potential of Paddy Soil

([28] Bao-Feng Feng (UTP-TX), ( ), [20], [16], [24]. 1 ([3], [17]) p t = 1 2 κ2 T + κ s N -259-

The Friction Stir Welding Process

Simplex Crossover for Real-coded Genetic Algolithms

Math 6 SL Probability Distributions Practice Test Mark Scheme

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

Example Sheet 3 Solutions

u = g(u) in R N, u > 0 in R N, u H 1 (R N ).. (1), u 2 dx G(u) dx : H 1 (R N ) R

chatzipa

Forced Pendulum Numerical approach

Global nonlinear stability of steady solutions of the 3-D incompressible Euler equations with helical symmetry and with no swirl

EE512: Error Control Coding

Επώνυμο: Βαϊρακτάρης

A summation formula ramified with hypergeometric function and involving recurrence relation

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

Wavelet based matrix compression for boundary integral equations on complex geometries

Transcript:

53.546: 59.6 DOI:.459/mmph7... E-mail: xan.h@rambler.ru. -. - -. -. -. : ; ; - ; ;. - - [ 3]. - -. -... [3 6] ρu P = λ l d P l d λ ρ u. - -.. -. - [7 8]. - - : [9 ]. -.. «..» 7 9. 5 5

- -.. l. z ( ur uϕ uz ) uz u r = u ϕ =. [4] u z u z ν u z + u P z = r < r < < t T t z r r r ρ z u z u = z = P = P = () z ϕ ρ r ρ ϕ u z P ρ ν = µ ρ µ. () uz r t P r ϕ. - P. z P P( t) u( r t) = uz ( r t) = z l () - u ν u P( t) = r + < r < < t T () t r r r ρ l P( t). ρ ν P( t). () u t= = ψ ( r) (3) r = u r= =. (4) r. (3) (4). Q( t). () π rudr = Q( t). (5) 6 Ser. Mathematics. Mechanics. Physics 7 vol. 9 no. pp. 5

... «..» 7 9. 5 π ψ ( r) dr = Q(). r t T u( r t ) () (3) (5). { } () (5) - [3 6]. (5) - () (5) - -. () (5). (5) t u dq π r dr =. t dt u t () ν u P( t) dq π r r + dr = r r r ρ l dt. (4) u ( ) ν r P t dq r= + =. r ρ l π dt r u r= () u dq r= = P( t). (6) r πν dt ρlν u( r t ) () (3) (4) (6). () (4) (6) -. {( ri t ) : ri i r t t i... n... m} ω = = = = = { r t T} r = n r t = T m t. () ω [7] ui ui ν ui+ ui ui u i = ri + / ri / + P t ri r r r ρl ui u( ri t ) P = P( t ) ri ± / = ri ± r / i = 3... n = 3... m. (3) : ui = ψ i i = n. (4) (6) -. : r/ r/ ν r/ u u u u = + P t r ρl n n n / Q Q un un n / ν rn / u u r r = P t π t r ρl 7

ψ = ψ ( r ) Q = Q( t ). i i : t aiui ciui + bi ui+ = ( ui + P ) i = 3... n = 3... m (7) ρl η ui = ψ i i n θu η n θun η u u = (8) = + (9) = + () ν tr ν tr ν tr a ; b ; c a b ; ; i / i+ / / i = i = i = i + i + θ = ri r ri r 5r/ r + ν tr/ 5r/ ru + 5 P r/ r t / ρl η = ; 5r/ r + ν tr/ ( ) π n / n n / = 5( rn / ) r + ν trn / 5 r Q Q / + 5( r ) ru 5 P r r t / ρl ; θ ν tr n / = 5( rn / ) r + ν trn / (7) () = m u( x t) - i.. u + i = n = m. ( ) [8]. (7) () - = m i αi+ + βi+ u = u i + i = n n... u i i i = 3... n :. θβn + η n = θα n α = θ bi β = η αi+ = ai βi + ui + t P / ρl βi+ = i =... n. ci aiαi ci aiαi. -. : u r= = g( t) u( r t) () (4). - (5) Q( t) () (4) (6). - r = t =. = 6 ; 3 µ = ; = / 3 ; ψ ( r) = / ; 5 P( t) = ; g( t ) = / ; l = 5. ; u t u u( r t ) /. ( ) u r t. 8 Ser. Mathematics. Mechanics. Physics 7 vol. 9 no. pp. 5

.. t = 6 t = 9 t = 5 t = 8 r t u u t u u t u u t u u 8 8 3 3 36 36 5 8 8 3 3 36 36 8 8 3 3 36 36 5 8 8 3 3 36 36 8 8 3 3 36 36 5 8 8 3 3 36 36 3 8 8 3 3 36 36 35 8 8 3 3 36 36 4 8 8 3 3 36 36 45 8 8 997 997 359 359 5 79 793 936 937 348 348 55 3 3 68 6 45 46 785 786 6 3 3 3 - µ d du P r r u ust = < r < r dr dr l 6676 6677 5 6676 6677 du r= dr π rudr = Q 6675 6676 5 6675 6676 Q P. 6674 6675 5 6673 6674 3 667 667 Q P u( r) = + ( r ). () 35 667 667 π 8µl 4 6668 6669 Q P - 45 6666 6667 - - (). 5 55 6 6663 666 6658 6664 666 6659 ρ = / 3 ; 3 µ = ; Q = 885 3 4 /c; P l = / ; = 6. ; u - /c; u st () /c. Q P -. -. - -. -. - -.. «..» 7 9. 5 9

... - /....: -... 3. 336.... /......: 987. 34. 3... /....... : 5. 544. 4... /....: 987. 84. 5... /....: 98. 78. 6.. /.. : 969. 7. 7. Neto C. Boundary slip in Newtonian liquids: a review of experimental studies / C. Neto D. Evans E. Bonaccurso // eports on Progress in Physics. 5. Vol. 68 no.. P. 859 897. 8. Lauga E. Microfluidics: the no-slip boundary condition in Handbook of Experimental Fluid Dynamics / E. Lauga M.P. Brenner H.A. Stone. New York: Springer 6. P. 9 4. 9.... /... : 8. 64.. ao I.J. The effect of the slip boundary condition on the flow of fluids in a channel / ao I.J. K.. aagopal // Acta Mechanica. 999. Vol. 35. P. 3 6.... /...... // -.. 4. (8).. 35 44.. Volker J. Slip with friction and penetration with resistance boundary conditions for the Navier Stokes equation numerical tests and aspects of the implementation / J. Volker // J. Computational and Applied Mechanics.. Vol. 47 Issue. P. 87 3. 3. Cannon J.. The solution of heat equation subect to the specification of energy / J.. Cannon // Quart. Appl. Math. 963. Vol.. P. 55 6. 4... /.. //. 977.. 3.. 94 34. 5... - /.. //. 98.. 6.. 95 935. 6... /....: 6. 73. 7... /.... 989. 66. 8... /......: 9. 48. 8 6. Series Mathematics. Mechanics. Physics 7 vol. 9 no. pp. 5 DOI:.459/mmph7 NUMEICAL METHOD FO SOLVING A NONLOCAL POBLEM ON PIPELINE TANSPOTATION OF VISCOUS LIQUID K.M. Gamzaev Azerbaian State Oil and Industry University Baku Azerbaian E-mail: xan.h@rambler.ru The paper deals with a process of unsteady axisymmetric flow of incompressible viscous liquid in the cylindrical pipeline described by the nonlinear system of Navier-Stokes differential equations. The set of equations is transformed into one linear parabolic equation with an initial and natural boundary Ser. Mathematics. Mechanics. Physics 7 vol. 9 no. pp. 5

... «..» 7 9. 5 condition on the pipeline axis. We face a problem for determining velocity distribution in a cross-section of the pipeline based on the desired law of time variation of the pressure drop along the pipeline. As in case of liquid flow in pipes it s practically impossible to define interaction models of fluid with a solid boundary the boundary condition on the pipe wall is considered as unknown. For the problem accuracy an additional condition in the form of integral flow characteristic is specified. In other words the law of time variation of volumetric flow rate in the pipeline is specified. This problem is related to nonlocal problems with an integral condition for partial differential equations. The specified integral condition is differentiated in time and the obtained ratio with the help of the differential equation is transformed into a local boundary condition. As a result the set task is altered to a direct problem with local conditions. The finite difference method is applied for numerical solution of the boundary value problem. For this purpose we create a discrete analog of the problem in the form of an implicit difference scheme using the integral method. A computational algorithm of solving the obtained difference equation system is suggested. Numerical experiments for test problems have been conducted to check the efficiency of practical application of the suggested computational algorithm. The computational algorithm has also been tried on the data of steady flow of viscous incompressible liquid in the pipeline. Keywords: pipeline transportation; viscous liquid; axisymmetric flow; non-local problem with integral condition; finite difference method. eferences. Lur'e M.V. Matematicheskoe modelirovanie protsessov truboprovodnogo transporta nefti nefteproduktov i gaza (Mathematical modeling of processes of oil oil products and gas pipeline transportation). Moscow Neft i gaz Publ. 3 336 p. (in uss.).. Leonov E.G. Isaev V.I. Gidroaeromekhanika v burenii (Aerohydromechanics in drilling). Moscow Nedra Publ.987 34 p. (in uss.). 3. Basniev K.S. Dmitriev N.M. ozenberg G.D. Neftegazovaia gidromekhanika (Oil and gas fluid mechanics). Moscow Izhevsk Institut kompiuternykh issledovanii Publ. 5 544 p. (in uss.). 4. Loitsianskii L.G. Mekhanika zhidkosti i gaza (Mechanics of liquid and gas). Moscow Nauka Publ. 987 84 p. (in uss.). 5. abinovich E.Z. Gidravlika (Hydraulics). Moscow Nedra Publ. 98 78 p. (in uss.). 6. Shlikhting G. Teoriia pogranichnogo sloia (Boundary layer theory). Moscow Nauka Publ. 969 7 p. (in uss.). 7. Neto C. Evans D. Bonaccurso E. Boundary slip in Newtonian liquids: a review of experimental studies. eports on Progress in Physics 5 Vol. 68 no. pp. 859 897. DOI:.88/34-4885/68//5 8. Lauga E. Brenner M.P. Stone H.A. Microfluidics: The No-Slip Boundary Condition. New York Springer 6 pp. 9 4. DOI:.7/978-3-54-399-5_9 9. Yankov V.I. Pererabotka voloknoobrazuyushchikh polimerov. Osnovy reologii polimerov i techenie polimerov v kanalakh (Processing of fiber-forming polymers. Basics of polymer rheology and flow of polymers in channels). Moscow Izhevsk: NITs egulyarnaya i khaoticheskaya dinamika Institut komp'yuternykh issledovaniy Publ. 8 64 p. (in uss.).. ao I.J. aagopal K.. The effect of the slip boundary condition on the flow of fluids in a channel. Acta Mechanica 999 Vol. 35 pp. 3 6. DOI:.7/BF35747. Borzenko E.I. Diakova O.A. Shrager G.. Studying the slip phenomenon for a viscous fluid flow in a curved channel. Vestn. Tomsk. Gos. Univ. Mat. Mekh. 4 no. (8) pp. 35 44. (in uss.).. Volker J. Slip with friction and penetration with resistance boundary conditions for the Navier Stokes equation numerical test s and aspects of the implementation. J. Computational and Applied Mechanics Vol. 47 Issue pp. 87 3. DOI:.6/s377-47()437-5 3. Cannon J.. The solution of heat equation subect to the specification of energy. Quart. Appl. Math. 963 Vol. no. pp. 55 6. DOI:.9/qam/6437 4. Ionkin N.I. Differentsial'nye uravneniya 977 Vol. 3 no. pp. 94 34. (in uss.). 5. Samarskiy A.A. Differentsial'nye uravneniya 98 Vol. 6 no. pp. 95 935. (in uss.). 6. Nakhusheva V.A. Differentsial'nye uravneniya matematicheskikh modeley nelokal'nykh protsessov (Differential equations of mathematical models of nonlocal processes). Moscow Nauka Publ. 6 73 p. (in uss.).

7. Samarskiy A.A. Teoriya raznostnykh skhem (Theory of difference schemes). Moscow Nauka Publ. 989 66 p. (in uss.). 8. Samarskiy A.A. Vabishchevich P.N. Chislennye metody resheniya obratnykh zadach matematicheskoy fiziki (Numerical methods of solving inverse problems of mathematical physics). Moscow LKI Publ. 9 48 p. (in uss.). eceived July 8 6 Ser. Mathematics. Mechanics. Physics 7 vol. 9 no. pp. 5