Distances in Sierpiński Triangle Graphs

Σχετικά έγγραφα
Fractional Colorings and Zykov Products of graphs

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

2 Composition. Invertible Mappings

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

Other Test Constructions: Likelihood Ratio & Bayes Tests

Homomorphism in Intuitionistic Fuzzy Automata

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation

The Simply Typed Lambda Calculus

Trigonometric Formula Sheet

CRASH COURSE IN PRECALCULUS

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

Finite Field Problems: Solutions

Reminders: linear functions

ST5224: Advanced Statistical Theory II

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Every set of first-order formulas is equivalent to an independent set

Approximation of distance between locations on earth given by latitude and longitude

Heisenberg Uniqueness pairs

The Probabilistic Method - Probabilistic Techniques. Lecture 7: The Janson Inequality

4.6 Autoregressive Moving Average Model ARMA(1,1)

Uniform Convergence of Fourier Series Michael Taylor

C.S. 430 Assignment 6, Sample Solutions

Matrices and vectors. Matrix and vector. a 11 a 12 a 1n a 21 a 22 a 2n A = b 1 b 2. b m. R m n, b = = ( a ij. a m1 a m2 a mn. def

Cyclic or elementary abelian Covers of K 4

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Homework 3 Solutions

Commutative Monoids in Intuitionistic Fuzzy Sets

Statistical Inference I Locally most powerful tests

Overview. Transition Semantics. Configurations and the transition relation. Executions and computation

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

New bounds for spherical two-distance sets and equiangular lines

Lecture 2. Soundness and completeness of propositional logic

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

Αλγόριθμοι και πολυπλοκότητα Depth-First Search

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

w o = R 1 p. (1) R = p =. = 1

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Areas and Lengths in Polar Coordinates

Bounding Nonsplitting Enumeration Degrees

Areas and Lengths in Polar Coordinates

Solutions to Exercise Sheet 5

LTL to Buchi. Overview. Buchi Model Checking LTL Translating LTL into Buchi. Ralf Huuck. Buchi Automata. Example

Example Sheet 3 Solutions

Models for Probabilistic Programs with an Adversary

Αλγόριθμοι και πολυπλοκότητα NP-Completeness (2)

A Hierarchy of Theta Bodies for Polynomial Systems

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)

Partial Differential Equations in Biology The boundary element method. March 26, 2013

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p)

EE512: Error Control Coding

Abstract Storage Devices

A Note on Intuitionistic Fuzzy. Equivalence Relation

Inverse trigonometric functions & General Solution of Trigonometric Equations

Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequality for metrics: Let (X, d) be a metric space and let x, y, z X.

TMA4115 Matematikk 3

1. Introduction and Preliminaries.

Partial Trace and Partial Transpose

Divergence for log concave functions

Solution Series 9. i=1 x i and i=1 x i.

On the Galois Group of Linear Difference-Differential Equations

Chapter 3: Ordinal Numbers

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

SOME PROPERTIES OF FUZZY REAL NUMBERS

Dynamic types, Lambda calculus machines Section and Practice Problems Apr 21 22, 2016

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr

Homework 8 Model Solution Section

Iterated trilinear fourier integrals with arbitrary symbols

MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Affine Weyl Groups. Gabriele Nebe. Summerschool GRK 1632, September Lehrstuhl D für Mathematik

Μηχανική Μάθηση Hypothesis Testing

ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ Ä Œμ Ìμ. ±É- É Ê ± μ Ê É Ò Ê É É, ±É- É Ê, μ Ö

Generating Set of the Complete Semigroups of Binary Relations

Εγχειρίδια Μαθηµατικών και Χταποδάκι στα Κάρβουνα

F A S C I C U L I M A T H E M A T I C I

ΑΛΓΟΡΙΘΜΟΙ Άνοιξη I. ΜΗΛΗΣ

Second Order Partial Differential Equations

Solutions to the Schrodinger equation atomic orbitals. Ψ 1 s Ψ 2 s Ψ 2 px Ψ 2 py Ψ 2 pz

Section 8.3 Trigonometric Equations

de Rham Theorem May 10, 2016

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is

Jordan Journal of Mathematics and Statistics (JJMS) 4(2), 2011, pp

Section 8.2 Graphs of Polar Equations

Strain gauge and rosettes

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Στα επόμενα θεωρούμε ότι όλα συμβαίνουν σε ένα χώρο πιθανότητας ( Ω,,P) Modes of convergence: Οι τρόποι σύγκλισης μιας ακολουθίας τ.μ.

ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

Capacitors - Capacitance, Charge and Potential Difference

Galatia SIL Keyboard Information

Modbus basic setup notes for IO-Link AL1xxx Master Block

ECE 308 SIGNALS AND SYSTEMS FALL 2017 Answers to selected problems on prior years examinations

Transcript:

Distances in Sierpiński Triangle Graphs Sara Sabrina Zemljič joint work with Andreas M. Hinz June 18th 2015

Motivation Sierpiński triangle introduced by Wac law Sierpiński in 1915. S. S. Zemljič 1

Motivation S. S. Zemljič 1

Motivation S. S. Zemljič 1

Motivation S. S. Zemljič 1

Motivation S. S. Zemljič 1

Motivation Sierpiński triangle introduced by Wac law Sierpiński in 1915. Sierpiński graphs introduced by Klavžar and Milutinović in 1997, connected to the Tower of Hanoi puzzle state graphs for the Switching Tower of Hanoi puzzle. S. S. Zemljič 1

Motivation ˆ0 002 001 02 01 000 012 011 022 021 000 001 002 010 020 2 010 00 020 1 011 012 021 022 102 101 202 201 100 200 12 11 22 21 100 200 112 111 122 121 212 211 222 221 110 101 102 120 210 201 202 220 ˆ1 110 10 120 0 210 20 220 ˆ2 111 112 121 122 Graphs ST 3 3 (left) and S 3 3 (right). 211 212 221 222 S. S. Zemljič 1

Motivation Sierpiński triangle introduced by Wac law Sierpiński in 1915. Sierpiński graphs introduced by Klavžar and Milutinović in 1997, connected to the Tower of Hanoi puzzle state graphs for the Switching Tower of Hanoi puzzle. Applications outside mathemtics Physics spectral theory (Laplace operator), spanning trees (Kirchhof s Theorem), Psychology state graphs of the Tower of Hanoi puzzle. S. S. Zemljič 1

Notations [n] := {1,..., n}, [n] 0 := {0,..., n 1}, T := [3] 0 = {0, 1, 2}, T := {ˆ0, ˆ1, ˆ2}, P := [p] 0 = {0,..., p 1}, P := { ˆk k P}. S. S. Zemljič 2

Definition (Idle peg labeling) Let n N. Sierpiński triangle graphs ST n 3...... are the graphs defined as follows: S. S. Zemljič 3

Definition (Idle peg labeling) Let n N. Sierpiński triangle graphs ST n 3...... are the graphs defined as follows: ˆ0 ST 0 3 = K 3 V (ST 0 3 ) = T ˆ1 ˆ2 vertices ˆ0, ˆ1, and ˆ2 are primitive vertices S. S. Zemljič 3

Definition (Idle peg labeling) Let n N. Sierpiński triangle graphs ST n 3...... are the graphs defined as follows: V (ST3 n ) = T {s T ν ν [n]}, { } E (ST3 n ) = { ˆk, k n 1 j} k T, j T \ {k} } {{sk, sj} s T n 1, {j, k} ( T 2 ) } { {s(3 i j)i n 1 ν k, sj} s T ν 1, ν [n], i T, j, k T \ {i} S. S. Zemljič 3

Example Idle peg labeling ˆ0 ˆ1 ˆ2 S. S. Zemljič 4

Example Idle peg labeling ˆ0 2 1 ˆ1 0 ˆ2 S. S. Zemljič 4

Example Idle peg labeling ˆ0 02 01 2 00 1 12 11 22 21 ˆ1 10 0 20 ˆ2 S. S. Zemljič 4

Example Idle peg labeling ˆ0 002 001 02 000 01 012 011 022 021 2 010 00 020 1 102 101 202 201 12 11 22 21 100 200 112 111 122 121 212 211 222 221 ˆ1 110 10 120 0 210 20 220 ˆ2 S. S. Zemljič 4

Example Idle peg labeling ˆ0 02 01 2 00 1 12 11 22 21 ˆ1 10 0 20 ˆ2 S. S. Zemljič 4

Example Idle peg labeling ˆ0 000 001 002 02 01 010 020 2 011 022 012 021 00 100 200 1 101 102 201 202 12 11 22 21 110 120 210 220 111 112 121 122 211 212 221 222 ˆ1 10 0 20 ˆ2 S. S. Zemljič 4

Example Idle peg labeling ˆ0 000 002 001 02 001 002 000 01 012 010 020 011 022 021 2 011 022 012 021 010 00 020 1 100 200 102 101 202 201 12 101 102 201 202 11 22 21 100 200 112 110 120 210 220 111 121 211 122 212 222 221 111 112 121 122 211 212 221 222 ˆ1 110 10 120 0 210 20 220 ˆ2 S. S. Zemljič 4

Contraction labeling Let n N. Contraction labeling of Sierpiński triangle graphs ST n 3 ˆ0 ST 0 3 = K 3 V (ST 0 3 ) = T ˆ1 ˆ2 S. S. Zemljič 5

Contraction labeling Let n N. Contraction labeling of Sierpiński triangle graphs ST n 3 } V (ST3 n ) = T {s{i, j} s T ν 1, ν [n], {i, j} ( T 2 ), { } E (ST3 n ) = { ˆk, k n 1 {j, k}} k T, j T \ {k} { } {s{i, j}, s{i, k}} s T n 1, i T, {j, k} ( T \{i} 2 ) { } {ski n 1 ν {i, j}, s{i, k}} s T ν 1, ν [n 1], i T, {j, k} T \ {i} S. S. Zemljič 5

Basic properties ST n 3 = 3 2 (3n + 1) ST n 3 = 3 n+1 ˆ0 02 01 graphs ST n 3 are connected 2 00 1 12 11 22 21 ˆ1 10 0 20 ˆ2 S. S. Zemljič 6

Distance to a primitive vertex Lemma. If n N and ν [n] 0, then for any s, t V (ST ν 3 ) d n (s, t) = 2 n ν d ν (s, t). S. S. Zemljič 7

Distance to a primitive vertex ˆ0 002 001 02 01 000 012 011 022 021 2 010 00 020 1 102 101 202 201 12 11 22 21 100 200 112 111 122 121 212 211 222 221 ˆ1 110 10 120 0 210 20 220 ˆ2 S. S. Zemljič 7

Distance to a primitive vertex Lemma. If n N and ν [n] 0, then for any s, t V (ST3 ν) d n (s, t) = 2 n ν d ν (s, t). Proposition. If ν N and s T ν, then d 0 ( ˆk, ˆl) = (k = l), and d ν (s, ˆl) = 1 + (s 1 = l) + ν d=2 (s d = l) 2 d 1. a There are 1 + (s 1 = l) shortest paths between s and ˆl. a Here (X) is Iverson convention, which is 1 if X is true and 0 if X is false. S. S. Zemljič 7

Distances special case Let {i, j, k} = T, n N and s T n. d n+1 (is, j) = d n (s, ˆk) d n+1 (is, i) = min{d n (s, ˆk) k T \ {i}} + 2 n If s = i κ s n κ s, κ [n 1] 0, then d n+1 (is, i) = d n (s, s n κ ) + 2 n and the shortest path goes through vertex 3 i s n κ. two shortest paths between is and i iff is = i ν+1, ν [n] two shortest paths between is and j iff is = ik ν, ν [n] S. S. Zemljič 8

Distances general formula Theorem. If n N and ν [n] 0, then for any s V (ST3 n), t V (ST 3 ν ), and {i, j, k} = T, d n+1 (is, jt) = min{d n (s, ĵ) + 2 n ν d ν (t, î) ; d n (s, ˆk) + 2 n + 2 n ν d ν (t, ˆk)}. Problem of two shortest paths: shortest path either goes directly from i-subgraph to j-subgraph, or it goes through k-subgraph. It can also happen that there are two shortest paths. S. S. Zemljič 9

Comparison with metric properties of Sierpiński graphs S n 3 ST n 3 d(ss, st) = d(s, t) d n (s, t) = 2 n ν d ν (s, t) d(s, j n ) = n d=1 diam(s n 3 ) = 2n 1 d(s, i n ) = 2 n+1 2 i T (s d = j)2 d 1 d ν (s, ˆl) = 1 + (s 1 = l) + d(is, jt) = min{d dir (is, jt), d indir (is, jt)} ν d=2 diam(st n 3 ) = 2n d(s, i n ) = 2 n+1 i T (s d = l)2 d 1 S. S. Zemljič 10

Automaton (0, 2) (2, 1) (0, 1), (0, {0, 2}) ({1, 2}, {0, 2}) (2, 0), (2, {0, 1}) ({0, 2}, {0, 1}) (1, 2), (1, {1, 2}) ({0, 1}, {1, 2}) (0, ), ({1, 2}, ) (0, 0) (1, 1) (1, 0) (1, {0, 1}) ({0, 1}, {0, 1}) (1, 1) (0, 0) A B C (1, ), (, 0), (0, 1) ({0, 1}, ), (, {0, 1}), (0, {1, 2}) (, {0, 2}), ({1, 2}, ) (2, 2) (2, {1, 2}) ({0, 2}, {1, 2}) (2, 1) (0, 2) (1, 0), (1, {0, 1}), ({0, 1}, {0, 1}) (1, {0, 2}), ({0, 1}, {0, 2}) (0, {0, 1}), ({1, 2}, {0, 1}) (2, ), ({0, 2}, ) (2, 2), (2, {1, 2}), ({0, 2}, {1, 2}) (2, {0, 2}), ({0, 2}, {0, 2}) (0, {1, 2}), ({1, 2}, {1, 2}) (1, ), ({0, 1}, ) (2, ), (, 2), (0, 1) ({0, 2}, ), (, {1, 2}), (0, {0, 1}) (, {0, 2}), ({1, 2}, ) D E Example d 4 (002{0, 2}, 112{1, 2}) = 16 (direct) d 4 (020{1, 2}, 12{0, 2}) = 13 (two shortest paths) d 4 (022{0, 1}, 12{0, 2}) = 12 (indirect) S. S. Zemljič 11

Sierpiński triangle graphs ST n p Jakovac, A 2-parametric generalization of Sierpiński gasket graphs, Ars. Combin. 116 (2014) 395 405. Sierpiński triangle graphs ST n p (n N)...... are the graphs defined by: } V (STp n ) = P {s{i, j} s P ν 1, ν [n], {i, j} ( P 2 ), { } E (STp n ) = { ˆk, k n 1 {j, k}} k P, j P \ {k} { } {s{i, j}, s{i, k}} s P n 1, i P, {j, k} ( P\{i} 2 ) { } {ski n 1 ν {i, j}, s{i, k}} s P ν 1, ν [n 1], i P, {j, k} P \ {i}. As before, ST 0 p = K p and V (ST 0 p ) = P. S. S. Zemljič 12

Example ST 1 4 {0, 1} {0, 2} ˆ0 {0, 3} {1, 3} ˆ1 ˆ3 {2, 3} ˆ2 {1, 2} S. S. Zemljič 13

Distances in ST n p d ν (s{i, j}, ˆl) = 1 + (i = l)(j = l) + ν 1 d=1 (s d = l) 2 d [2 ν ] there are 1 + (p 2)(i = l)(j = l) s{i, j}, ˆl-shortest paths diam(st n p ) = 2 n s V (ST n p ) : p 1 d n (s, ˆl) = (p 1) 2 n l=0 d n+1 (is, jt) = min{d n (s, ĵ) + 2 n ν d ν (t, î) ; d n (s, ˆk) + 2 n ν d ν (t, ˆk) + 2 n k P \ {i, j}}. S. S. Zemljič 14

Open Problems explicit formula for average distance other metric properties which are known for Sierpiński graphs S n p we are currently working on the decision automaton for p > 3 S. S. Zemljič 15

THANK YOU!