19 34 2015 08 20 Chinese Journal of Tissue Engineering Research August 20, 2015 Vol.19, No.34 β Ti 35 Nb 3 Zr 2 Ta ( 075100) 1 β Ti 6Al 4V Ti 6Al 4V V Al Ti 6Al 4V 2 β Ti 35Nb 3Zr 2Ta 48 GPa 880 MPa 3 β Ti 35Nb 3Zr 2Ta β Ti 35Nb 3Zr 2Ta (1321120D) 1975 2010 :R318 :A :2095-4344 (2015)34-05536-05 2015-07-13 http://www.crter.org Ti 6Al 4V β Ti 35Nb 3Zr 2Ta β Ti 35Nb 3Zr 2Ta PubMed 2010 2015 β β Ti 35Nb 3Zr 2Ta Ti 6Al 4V Ti 35Nb 3Zr 2Ta Ti 6Al 4V. β Ti 35Nb 3Zr 2Ta [J]. 2015 19(34):5536-5540. doi:10.3969/j.issn.2095-4344.2015.34.024 Biocompatibility of Ti 35 Nb 3 Zr 2 Ta, a new beta-titanium alloy, as joint prosthesis material Duan Yong-gang, Ding Ying-qi, Zhang Long, Liu Yu-zhang, Tang Xiao-long (Department of Orthopedic Surgery, the Second Hospital Affiliated to Hebei North University, Zhangjiakou 075100, Hebei Province, China) Abstract BACKGROUND: Ti 6Al 4V is a titanium alloy that is widely used in human joint replacement, but its modulus of elasticity is greater than human bone, resulting in the bad stability of the prosthesis. Ti 35Nb 3Zr 2Ta, a new β titanium alloy, has a lower modulus of elasticity, and maybe becomes a new-generation human joint prosthesis material that has a better biocompatibility. OBJECTIVE: To study the biocompatibility of Ti 35Nb 3Zr 2Ta in prosthesis. METHODS: Wanfang, CNKI and PubMed databases were retrieved using a computer with new β titanium; prosthesis; biocompatible as keywords, and the retrieval time ranged from 2010 to 2015. Articles focusing on current application status for medical prosthesis materials and the biocompatibility of Ti 35Nb 3Zr 2Ta in prosthesis were selected. RESULTS AND CONCLUSION: Compared with Ti 6Al 4V, Ti 35Nb 3Zr 2Ta has higher surface roughness and smaller surface contact angle; the alkaline phosphatase activity and amount of calcium deposits in osteoblasts cultured at Ti 35Nb 3Zr 2Ta is significantly higher than that at Ti 6Al 4V. Ti 35Nb 3Zr 2Ta has good biocompatibility, and can be considered to be widely used as joint prosthesis material further. Duan Yong-gang, Master, Associate chief physician, Department of Orthopedic Surgery, the Second Hospital Affiliated to Hebei North University, Zhangjiakou 075100, Hebei Province, China Accepted: 2015-07-13 5536 P.O. Box 10002, Shenyang 110180
. β Ti 35Nb 3Zr 2Ta Subject headings: Titanium; Joint Prosthesis; Biocompatible Materials; Bioprosthesis Funding: the Self-Raised Project of Zhangjiakou Technology Bureau and Seismological Bureau, No. 1321120D Duan YG, Ding YQ, Zhang L, Liu YZ, Tang XL. Biocompatibility of Ti 35Nb 3Zr 2Ta, a new beta-titanium alloy, as joint prosthesis material. Zhongguo Zuzhi Gongcheng Yanjiu. 2015;19(34):5536-5540. 0 Introduction 18 ( ) [1-3] CoCr 20 30 20 40 [4-7] Ti 6 Al 4 V 20 70 [8-10] Ti 5 Al 2.5 F Ti 6 AI 7 Nb 20 80 Ti 13 Nb 13 Zr 20 90 [11-23] [24] [25] [26] β β β [27-29] Ti 6 Al 4 V Ti 6 Al 4 V V Al Ti 6 Al 4 V 100 120 GPa (20 30 GPa) [30] β β Ti 35 Nb 3 Zr 2 Ta 48 GPa 880 MPaTi 6 Al 4 V β Ti 35 Nb 3 Zr 2 Ta 1 Data and methods 1.1 (http://www.wanfangdata. com.cn.dincheng.cn/)(http://search.bjdgm. cn/ kns/ default.htm) Pubmed(http:// www. ncbi.nlm.nih. gov/pubmed) 2010 2015 β 1.2 β Ti 35 Nb 3 Zr 2 Ta 1.3 69 57 25 32 57 [1-24] [25-30] [31-57] β Ti 35 Nb 3 Zr 2 Ta 1.4 SPSS 17.0 t ( 2 ) P < 0.05 2 Results 2.1 Ti 35Nb 3Zr 2Ta Ti 6Al 4V 2.1.1 Ti 35 Nb 3 Zr 2 Ta Ti 6 Al 4 V X Ti 35 Nb 3 Zr 2 Ta Ta Zr Nb Ti1.99% 2.87% 34.85% 60.29%Ti 35 Nb 3 Zr 2 Ta 2 [27] 2.1.2 ( 500 ) Ti 35 Nb 3 Zr 2 Ta Ti 6 Al 4 V (38.36±5.86) (24.49±6.75) nm Ti 35 Nb 3 Zr 2 Ta T i6 Al 4 V(P < 0.05) Ti 35 Nb 3 Zr 2 Ta Ti 6 Al 4 V (29.3±2.9) (39.4±4.2) ISSN 2095-4344 CN 21-1581/R CODEN: ZLKHAH 5537
. β Ti 35Nb 3Zr 2Ta Ti 35 Nb 3 Zr 2 Ta Ti 6 Al 4 V (P < 0.05) [30] 2.2 Ti 35Nb 3Zr 2Ta Ti 6Al 4V Ti 35 Nb 3 Zr 2 Ta Ti 6 Al 4 V Ti 35 Nb 3 Zr 2 Ta Ti 6 Al 4 V Ti 35 Nb 3 Zr 2 Ta Ti 6 Al 4 V (P < 0.05 1) [8] 1 Ti 35Nb 3Zr 2Ta Ti 6Al 4V (x _ ±s mol/min mg) 4 8 16 Ti 35Nb 3Zr 2Ta 0.23±0.03 0.49±0.02 1.41±0.01 Ti 6Al 4V 0.15±0.02 0.38±0.01 0.78±0.02 t 1.947 1.850 2.349 P 0.036 0.038 0.018 2.3 T i35nb 3Zr 2Ta Ti 6Al 4V Ti 35 Nb 3 Zr 2 Ta Ti 6 Al 4 V Ti 35 Nb 3 Zr 2 Ta Ti 6 Al 4 V (P < 0.05 2) [31] 2 Ti 35Nb 3Zr 2Ta Ti 6Al 4V (x _ ±s g/l) 8 16 Ti 35Nb 3Zr 2Ta 0.80±0.02 1.44±0.03 Ti 6Al 4V 0.48±0.01 1.23±0.02 t 2.568 1.783 P 0.015 0.039 3 Discussion [32] 4 [31] 1% 10% [33] [34] ( Ti 6 Al 4 V) Al VV Ni C [9] 20 80 [31] Ti 6 Al 4 V [30] β β β β β Ti 6 Al 4 V β Ti 35 Nb 3 Zr 2 Ta 48 GPa 880 MPa [31] [35] Olivares-Navarrete [36] Ti(Ra=0.2 µm) (Ra=3.22 µm) Wnt5a [37-54] 5538 P.O. Box 10002, Shenyang 110180
. β Ti 35Nb 3Zr 2Ta [55] Ti 35 Nb 3 Zr 2 Ta Ti 6 Al 4 V Ti 6 Al 4 V Ti 35 Nb 3 Zr 2 Ta Sagomonyant [56] Ta Nb Nb Ti 25 Ta 25 Nb Ti 35 Nb 4 Sn 55 40 GPa [57] [57] Ti 13 Nb 13 Zr Ti 6 Al 4 V Ti 35 Nb 3 Zr 2 Ta [8],,. Ti 6Al 4V [J].,2014(14):95-97,100. [9],,,. Ti6Al4V [J].,2013(2):50-52,71-72. [10],,.Ti 6Al 4V [J]. (),2012,29(3):44-46. [11],,,.Ti-3Zr-2Sn-3Mo-25Nb [J]. ( ),2012,22(12):3046-3052. [12],. ZrO 2/HA [J].,2012,41(2): 298-303. [13],,,. Ti-25Nb-10Ta-1Zr-0.2 Fe [J]. ( ),2012,37(12):79. [14]. Ti-25Nb-10Ta-1Zr-0.2Fe(TNTZ) [D]. :,2012. [15] Niinomi M. Metallic biomaterials. J Artif Organs. 2008;11(3): 105-110. [16] Li Z, Kawashita M. Current progress in inorganic artificial biomaterials. J Artif Organs. 2011;14(3):163-170. [17] Niinomi M, Nakai M, Hieda J. Development of new metallic alloys for biomedical applications. Acta Biomater. 2012;8(11): 3888-3903. [18] Zhao X, Niinomi M, Nakai M, et al. Optimization of Cr content of metastable β-type Ti-Cr alloys with changeable Young's modulus for spinal fixation applications. Acta Biomater. 2012; 8(6):2392-2400. 5% [19] Gao S, Zhai Y, Hu J. Study of blood compatibility on TiO 2 coated biomedical Ni-Ti shape memory alloy. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2011;28(5):968-971, 1000. [20] Kesteven J, Kannan MB, Walter R, et al. Low elastic modulus Ti-Ta alloys for load-bearing permanent implants: enhancing the biodegradation resistance by electrochemical surface engineering. Mater Sci Eng C Mater Biol Appl. 2015;46: 226-231. [21] Laheurte P, Prima F, Eberhardt A, et al. Mechanical properties of low modulus beta titanium alloys designed from the electronic approach. J Mech Behav Biomed Mater. 2010; 3(8):565-573. [22] Li Q, Niinomi M, Hieda J, et al. Deformation-induced ω phase in modified Ti-29Nb-13Ta-4.6Zr alloy by Cr addition. Acta 4 References Biomater. 2013;9(8):8027-8035. [1],,,. [J].,2014,30(3): 336-339. [23] Zhao X, Niinomi M, Nakai M, et al. Microstructures and mechanical properties of metastable Ti-30Zr-(Cr, Mo) alloys [2],,,. [J].,2014,23(2):143-148. with changeable Young's modulus for spinal fixation applications. Acta Biomater. 2011;7(8):3230-3236. [3],,,.4 L929 [J].,2013,31(3): 242-246. [24],,,. [J].,2014(1):34-40. [25],,. /TiC [4] Chen J, Chen C, Chen Z, et al. Collagen/heparin coating on titanium surface improves the biocompatibility of titanium applied as a blood-contacting biomaterial. J Biomed Mater Res A. 2010;95(2):341-349. [J].,2013,42(10):2068-2072. [26],. 316L [J].,2013,42(10): 2004-2008. [27],,. [J]. [5] Ge S, Wang Y, Tian J, et al. An in vitro study on the biocompatibility of WE magnesium alloys. J Biomed Mater Res B Appl Biomater. 2015. in press.,2012,41(11):2058-2063. [28],,,. β [J].,2013,42(10): [6],,,. [J].,2013,44(16):2362-2366. 2034-2038. [29],,. [7],,. [J].,2012,43(18):2483-2487. [J]., 2014, (6):1466-1473. ISSN 2095-4344 CN 21-1581/R CODEN: ZLKHAH 5539
. β Ti 35Nb 3Zr 2Ta [30],,,.β Ti 35Nb 3Zr 2Ta [J].,2013, 21(10):1017-1024. [31],,,. : [J].,2015,19(8): 1267-1271. [32],. [J].,2012,16(21):3949-3958. [33],,,. [J].,2014,24(32):1-4. [34]. [J].,2014,36(5): 369-373. [35],. [J].,2008,12(19): 3721-3724. [36] Olivares-Navarrete R, Hyzy SL, Hutton DL, et al. Role of non-canonical Wnt signaling in osteoblast maturation on microstructured titanium surfaces. Acta Biomater. 2011;7(6): 2740-2750. [37] Vlacic-Zischke J, Hamlet SM, Friis T, et al. The influence of surface microroughness and hydrophilicity of titanium on the up-regulation of TGFβ/BMP signalling in osteoblasts. Biomaterials. 2011;32(3):665-671. [38] Gu YX, Du J, Si MS, et al. The roles of PI3K/Akt signaling pathway in regulating MC3T3-E1 preosteoblast proliferation and differentiation on SLA and SLActive titanium surfaces. J Biomed Mater Res A. 2013;101(3):748-754. [39] Chakravorty N, Ivanovski S, Prasadam I, et al. The microrna expression signature on modified titanium implant surfaces influences genetic mechanisms leading to osteogenic differentiation. Acta Biomater. 2012;8(9):3516-3523. [40] Ziebart T, Schnell A, Walter C, et al. Interactions between endothelial progenitor cells (EPC) and titanium implant surfaces. Clin Oral Investig. 2013;17(1):301-309. [41] Miron RJ, Oates CJ, Molenberg A, et al. The effect of enamel matrix proteins on the spreading, proliferation and differentiation of osteoblasts cultured on titanium surfaces. Biomaterials. 2010;31(3):449-460. [42] Klein MO, Bijelic A, Toyoshima T, et al. Long-term response of osteogenic cells on micron and submicron-scale-structured hydrophilic titanium surfaces: sequence of cell proliferation and cell differentiation. Clin Oral Implants Res. 2010;21(6): 642-649. [43] Galli C, Piemontese M, Lumetti S, et al. GSK3b-inhibitor lithium chloride enhances activation of Wnt canonical signaling and osteoblast differentiation on hydrophilic titanium surfaces. Clin Oral Implants Res. 2013;24(8):921-927. [44] An N, Rausch-fan X, Wieland M, et al. Initial attachment, subsequent cell proliferation/viability and gene expression of epithelial cells related to attachment and wound healing in response to different titanium surfaces. Dent Mater. 2012; 28(12):1207-1214. [45] Hamlet S, Alfarsi M, George R, et al. The effect of hydrophilic titanium surface modification on macrophage inflammatory cytokine gene expression. Clin Oral Implants Res. 2012;23(5): 584-590. [46] Chakravorty N, Hamlet S, Jaiprakash A, et al. Pro-osteogenic topographical cues promote early activation of osteoprogenitor differentiation via enhanced TGFβ, Wnt, and Notch signaling. Clin Oral Implants Res. 2014;25(4):475-486. [47] Hyzy SL, Olivares-Navarrete R, Hutton DL, et al. Microstructured titanium regulates interleukin production by osteoblasts, an effect modulated by exogenous BMP-2. Acta Biomater. 2013;9(3):5821-5829. [48] Olivares-Navarrete R, Hyzy S, Wieland M, et al. The roles of Wnt signaling modulators Dickkopf-1 (Dkk1) and Dickkopf-2 (Dkk2) and cell maturation state in osteogenesis on microstructured titanium surfaces. Biomaterials. 2010;31(8): 2015-2024. [49] Klein MO, Bijelic A, Ziebart T, et al. Submicron scale-structured hydrophilic titanium surfaces promote early osteogenic gene response for cell adhesion and cell differentiation. Clin Implant Dent Relat Res. 2013;15(2): 166-175. [50] Wu Y, Zitelli JP, TenHuisen KS, et al. Differential response of Staphylococci and osteoblasts to varying titanium surface roughness. Biomaterials. 2011;32(4):951-960. [51] Park JW, Kim YJ, Jang JH, et al. Positive modulation of osteogenesis- and osteoclastogenesis-related gene expression with strontium-containing microstructured Ti implants in rabbit cancellous bone. J Biomed Mater Res A. 2013;101(1):298-306. [52] Alfarsi MA, Hamlet SM, Ivanovski S. The Effect of Platelet Proteins Released in Response to Titanium Implant Surfaces on Macrophage Pro-Inflammatory Cytokine Gene Expression. Clin Implant Dent Relat Res. 2014. in press. [53] Lai HC, Zhuang LF, Liu X, et al. The influence of surface energy on early adherent events of osteoblast on titanium substrates. J Biomed Mater Res A. 2010;93(1):289-296. [54] Olivares-Navarrete R, Hyzy SL, Hutton DL, et al. Role of non-canonical Wnt signaling in osteoblast maturation on microstructured titanium surfaces. Acta Biomater. 2011; 7(6):2740-2750. [55] Padial-Molina M, Galindo-Moreno P, Fernández-Barbero JE, et al. Role of wettability and nanoroughness on interactions between osteoblast and modified silicon surfaces. Acta Biomater. 2011;7(2):771-778. [56] Sagomonyants KB, Hakim-Zargar M, Jhaveri A, et al. Porous tantalum stimulates the proliferation and osteogenesis of osteoblasts from elderly female patients. J Orthop Res. 2011; 29(4):609-616. [57]. Ti-13Nb-13Zr[J].,2014(3):43-44. 5540 P.O. Box 10002, Shenyang 110180