Degrees of freedom and coordinates

Σχετικά έγγραφα
1 String with massive end-points

Spherical Coordinates

Integrals in cylindrical, spherical coordinates (Sect. 15.7)

Reminders: linear functions

D Alembert s Solution to the Wave Equation

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Homework 8 Model Solution Section

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Geodesic Equations for the Wormhole Metric

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

EE512: Error Control Coding

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Areas and Lengths in Polar Coordinates

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Appendix A. Curvilinear coordinates. A.1 Lamé coefficients. Consider set of equations. ξ i = ξ i (x 1,x 2,x 3 ), i = 1,2,3

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Statistical Inference I Locally most powerful tests

The kinetic and potential energies as T = 1 2. (m i η2 i k(η i+1 η i ) 2 ). (3) The Hooke s law F = Y ξ, (6) with a discrete analog

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Section 8.3 Trigonometric Equations

CHAPTER (2) Electric Charges, Electric Charge Densities and Electric Field Intensity

Parametrized Surfaces

Solutions to Exercise Sheet 5

Example Sheet 3 Solutions

Derivation of Optical-Bloch Equations

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint

Second Order Partial Differential Equations

Answer sheet: Third Midterm for Math 2339

Lifting Entry (continued)

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Areas and Lengths in Polar Coordinates

Approximation of distance between locations on earth given by latitude and longitude

CYLINDRICAL & SPHERICAL COORDINATES

derivation of the Laplacian from rectangular to spherical coordinates

Dr. D. Dinev, Department of Structural Mechanics, UACEG

The Simply Typed Lambda Calculus

Congruence Classes of Invertible Matrices of Order 3 over F 2

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

Μονοβάθμια Συστήματα: Εξίσωση Κίνησης, Διατύπωση του Προβλήματος και Μέθοδοι Επίλυσης. Απόστολος Σ. Παπαγεωργίου

Exercise 1.1. Verify that if we apply GS to the coordinate basis Gauss form ds 2 = E(u, v)du 2 + 2F (u, v)dudv + G(u, v)dv 2

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

DETERMINATION OF DYNAMIC CHARACTERISTICS OF A 2DOF SYSTEM. by Zoran VARGA, Ms.C.E.

Second Order RLC Filters

Lecture 26: Circular domains

2 Composition. Invertible Mappings

If we restrict the domain of y = sin x to [ π 2, π 2

Homework 3 Solutions

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Strain gauge and rosettes

the total number of electrons passing through the lamp.

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

Numerical Analysis FMN011

Lifting Entry 2. Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion MARYLAND U N I V E R S I T Y O F

On the Galois Group of Linear Difference-Differential Equations

Math221: HW# 1 solutions

SPECIAL FUNCTIONS and POLYNOMIALS


Example 1: THE ELECTRIC DIPOLE

Physics 339 Gibbs-Appell November 2017

Space-Time Symmetries

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Forced Pendulum Numerical approach

Uniform Convergence of Fourier Series Michael Taylor

PARTIAL NOTES for 6.1 Trigonometric Identities

Empirical best prediction under area-level Poisson mixed models

Potential Dividers. 46 minutes. 46 marks. Page 1 of 11

( y) Partial Differential Equations

4.6 Autoregressive Moving Average Model ARMA(1,1)

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C

Srednicki Chapter 55

6.4 Superposition of Linear Plane Progressive Waves

CHAPTER 70 DOUBLE AND TRIPLE INTEGRALS. 2 is integrated with respect to x between x = 2 and x = 4, with y regarded as a constant

Lecture 21: Scattering and FGR

Matrices and Determinants

Section 9.2 Polar Equations and Graphs

Divergence for log concave functions

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

CURVILINEAR COORDINATES

Modelling the Furuta Pendulum

The kinetic energy ( ) T. 1 2 n n ( ) n n0. m11 m12 m1n. m21 m22 m2n n n T

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

The Hartree-Fock Equations

Dynamics of Flexible Multibody Systems: A Finite Element Approach

( ) 2 and compare to M.

Broadband Spatiotemporal Differential-Operator Representations For Velocity-Dependent Scattering

ΗΜΥ 220: ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι Ακαδημαϊκό έτος Εαρινό Εξάμηνο Κατ οίκον εργασία αρ. 2

Every set of first-order formulas is equivalent to an independent set

Problem 3.16 Given B = ˆx(z 3y) +ŷ(2x 3z) ẑ(x+y), find a unit vector parallel. Solution: At P = (1,0, 1), ˆb = B

Finite Field Problems: Solutions

Depth versus Rigidity in the Design of International Trade Agreements. Leslie Johns

ADVANCED STRUCTURAL MECHANICS

6.3 Forecasting ARMA processes

Transcript:

Degrees of freedom and coordinates Multibody containing N rigid parts: α, α =,..., N Configuration coordinates: ς = ς, ς,..., ς, ς 6N 6N (6N DOF, Gross) 3 4 5 6 ς = x, ς = y, ς = z, ς = ψ, ς = θ, ς = φ,..., etc. c c c Configuration ς

ς Constraints For a specific multibody the - coordinates will, in general, not be independent. Due to the interconnections (different types of joints ) between parts of the multibody there may, for instance, be a number of geometric constraints requiring specific relationships between the ς coordinates. Geometrical constraints: 6N 6N C( t, ς) = C( t, ς, ς,..., ς, ς ) = 0 6N 6N C( t, ς) = C( t, ς, ς,..., ς, ς ) = 0 6N 6N Cm( t, ς) = Cm( t, ς, ς,..., ς, ς ) = 0 Number of constraint equations: m

Constraints By differentiating the constraint conditions with respect to time: Holonomic kinematical constraints: C i 6N Ci Ci k = + ς = 0, i =,..., m k ς t k= k ς, i=,..., 6N are not independent. They are related by this equations. C i m ( 6N) C i Constraint matrix: ( ), rank( ) j j ς ς = m 3

Configuration space (manifold) { 6N ς C ς } Ct( ) = i( t, ) = 0, i =,..., m n-dimensional surface in 6N We introduce independent, configuration coordinates: n q= q, q,..., q n= 6N m C ( ) ˆ t ς = ς( tq, ), q Ω n ς = ˆ( ς tq, ) Motion: q = qt () n x= χ( Xt, ) = χ ( tq, ( t), q( t),..., q( t); X) = χ ( tqt, ( ); X) q q 4

Multibody in motion Rigid body: α α α χ (, tqx ; ) = x(, tq) + (, tq)( X X), X B, q= qt () q c R c 0 5

6

The configuration space: S 7

The configuration space: T Example 9. continued. The planar double pendulum has two degrees of freedom. We introduce angular configuration coordinates q = θ and q = φ according to the Figure 9.6. Considering the bars as one-dimensional parts, the transplacement of the double pendulum may be written xo + ( isinθ jcos θ) X, 0 X l, ( for ) x= χq ( θφ, ; X) = xo + ( isinθ jcos θ) l+ ( isinφ jcos φ) X, 0 X l, ( for ) { } ( θφ, ) Ω= ( θφ, ) π< θ< π, π< φ< π where the RON-basis (, i jk, ) is shown in the figure above. The configuration coordinate system is thus scleronomic. Note that the transplacement for may be written x= χ( θφ, ; X) = x + i( l sinθ + X sin φ) j ( l cosθ + X cos φ), 0 X l q O The configuration space is, in this case, a torus T = S S. ϕ θ 8

Multibody kinematics Motion: q = qt () n x= χ( Xt, ) = χ ( tq, ( t), q( t),..., q( t); X) = χ ( tqt, ( ); X), X B 0 q q Velocity: χ n χ x = x q (, tqqx, ; ) = + q k t q q q k k= x q q k = χ q q k n Generalized velocity: q = ( q q ) 9

0

Multibody kinematics Deformation measures Deformation gradient: F (, tqx χq = Fq ; ) = X F = F + F = F q t q q n n q q k q q k k k= k= 0 k Velocity gradient: G= FF = F F n q k k q q k= 0 q, n T q q D= ( F Fq + F F q ) q k k q q k= 0 T k Green-St. Venant: n T Fq Fq E = F DF = ( Fq + Fq) q k k q q T T k k= 0

The principal of virtual power Virtual power of external, internal and inertial forces: VP e e ( w) = w df, P P VP i i ( w) = w df, P P VP a ( w) = w a dm P P P VP e ( w) + VP i ( w) = VP a ( w), w W 0, ( Pvp) { w: V w w( ) } 0 W = = P is a continuous mapping

Virtual powers: The principal of virtual power in continuum mechanics e VP ( w ): = w Pn da( X ) + w bρ dv( X ) 0 0 P 0 P 0 i VP ( w) : = P Gradwdv( X ), B 0 VP a ( w): = w x ρ dv( X ) P 0 0 VP e ( w) + VP i ( w) = VP a ( w), w W 0, ( Pvp) Virtual velocity field: { w: B0 V w w( ) } W = = X is a continuously differentiable mapping 3

Virtual velocity fields Motion: x= χ ( tqt, ( ); X), X B 0 q Virtual velocity field: w n α χq (, tqx ; ) k k = wq ( tqwx,, ; ) = w, w k q k= Space of virtual velocity fields: n α χ (, tqx ; ) α Wq = w: B0 V w = w, X B0, w= ( w, w,..., w ) k k= q q k n n 4

9.4 The virtual power of the internal forces i VP ( w) = P Gradwdv( X ) B 0 n α n α Grad χq k q k Grad w = w = w, X k F B k q q k= k= α 0 Proposition 9. The virtual power of the internal forces may be written VP n i i k ( w ) = Qk w k= where the so-called generalized internal forces are defined by Fq E i q Qk = P dv( X ) = dv( X ) k k q S q B B 0 0 5

The virtual power of the external forces Proposition 9.3 The virtual power of the external forces may be written VP n e e k ( w ) = Qk w where the so-called generalized external forces are defined by k= Q χ e q da q k 0 ( X χ = Pn ) + ρ dv 0 ( X ) k k q b q B 0 B 0 The boundary of B 0 : N α 0 U B0 α = B = 6

The virtual power of the inertial forces Proposition 9.4 The virtual power of the inertial forces is given by VP n a a k ( w) = Qk w k= (9.30) where the so-called generalized inertial forces are defined by Q d T T = ( ) dt q q (9.3) a k k k where T denotes the kinetic energy of the multibody given as a function of tqq,, q q T = T (, t q, q) = x x ρ0dv( X ) B 0 7

The principle of virtual power Lagrange s equations Proposition 9.5 n k= ( Q Q Q ) w = 0, w a i e k n k k k Theorem 9. (Lagrange s equations) d T T i e ( ) Qk Qk = 0, k =,..., n k k dt q q Lagrange s equations constitute a set of n second order ordinary differential k k equations for the determination of the functions q = q ( t), k =,..., n Initial conditions: q k ( 0) = q k, q k ( 0) = q k, k =,..., n 0 0 8

Summary 9

Lagrange s equations d T T i e ( ) Qk Qk = 0, k =,..., n k k dt q q What needs to be discussed? Kinetic energy Coordinate change Internal forces, constitutive assumptions Interactions between parts External forces Power theorem 0

Particle in plane circular motion y r ϕ x x= rcosϕ y = rsinϕ q = ϕ x= χ ( t, ϕ; P) = x + ircosϕ+ jrsinϕ q O χ t q χq = 0, = i( rsin ϕ) + jrcosϕ ϕ x q q = x χ χ q ( ϕϕ, ; X) = + ϕ= ( ( rsin ) + rcos ) t i ϕ j ϕϕ ϕ

Particle in plane circular motion Kinetic energy y r ϕ x Ek = T( ϕϕ, ) = x m= ( i( rsin ϕ) + jrcos ϕ) ϕm= rm ϕ

Particle in plane circular motion External forces, internal forces e = + F N mg χq N = 0 ϕ mg = j( mg) r y O χ q ϕ ϕ N P mg x g = j( g) χq χ e e q χq Qϕ = F = ( N + mg) = mg = ϕ ϕ ϕ ( i( rsin ϕ) + jrcos ϕ) mg = mgrcosϕ i Q = ϕ 0 3

Particle in plane circular motion Lagranges equations y T T( ϕϕ, ) = rm ϕ, = rm ϕ, ϕ T = 0 ϕ r ϕ x Q e ϕ = mgr cos ϕ, i Q = ϕ 0 Lagranges equations: d T T i e g ( ) Q Q = 0 r m + mgr cos = 0 ϕ ϕ ϕ ϕ ϕ+ cosϕ = 0 dt ϕ ϕ r 4

The spherical pendulum g = e ( g) z x = Lsinθcosϕ y = Lsinθsinϕ z = L cosθ q = θ, q = ϕ x= χ( t, θϕ, ; P) = x + e Lsinθcosϕ+ e Lsinθsin ϕ+ e ( Lcos θ) q O x y z χ t q χq = 0, = exlcosθcosϕ+ eylcosθsinϕ+ ezlsin θ, θ χq = ex( Lsinθsin ϕ) + eylsinθcosϕ ϕ 5

The spherical pendulum Material velocity e z O e y e x θ L ϕ P χ χ x = x (,, ; ) q q q q tqqx = + χ θ + ϕ = ( exlcosθcosϕ+ eylcosθsinϕ+ t θ ϕ e Lsin θθ ) + ( e ( Lsinθsin ϕ) + e Lsinθcos ϕϕ ) = z x y e L( θ cos θcosϕ ϕsinθsin ϕ) + e L( θ cos θsinϕ+ ϕsinθcos ϕ) + e Lθ sinθ x y z 6

The spherical pendulum Kinetic energy e z O e y e x θ L ϕ P Ek = T( θθϕϕ,,, ) = x m= ( θ + ϕ sin θ) Lm 7

Spherical pendulum External forces, internal forces e F = S+ mg pop S = S pop g = ez ( g) θ ϕ S mg S = ( e Lsinθcosϕ+ e Lsinθsin ϕ+ e ( Lcos θ)) S, S 0 x y z χq χq χq S = S = 0, mg = mglsin θ, θ ϕ θ χq mg = 0 ϕ 8

Spherical pendulum Lagranges equations T( θθϕϕ,,, ) = ( θ + ϕ sin θ) Lm, T = Lm T, θ = Lm ϕ sinθcos θ, θ θ T = Lm ϕsin θ, ϕ T = 0 ϕ Q e θ e = mglsin θ, Q 0, ϕ = i i Qθ = Qϕ = 0 Lagranges equations: d T T i e ( ) Q Q = 0 Lm Lm sin cos + mgl sin = 0 dt θ θ θ ϕ θ θ θ θ θ d T T i e d ( ) Q Q = 0 ( Lm ϕ ϕ ϕsin θ) = 0 dt ϕ ϕ dt 9

The kinetic energy q q T = T (, t q, q) = x x ρ0dv( X ) B 0 χ n n q χq χ k q x = x q (, tqqx, ; ) = + q = q k k t q q k= k= 0 k χ χ χ χ x x = = n n n q k q l q q k l q k q l qq k l k= 0 q l= 0 q k, l= 0 q q n χ χ T = T (, t q, q ) = 0dv( X ) q q k l ρ q q kl, = 0 B 0 q q k l 30

The kinetic energy 3

The kinetic energy where the matrix elements, m, kl, = 0,,..., n, are defined by kl χq χq m00 = m00 (, t q) = ρ 0dv( X ) t t B 0 χq χq m0k = m0k( t, q) = 0dv( X ) mk0, k,..., n k ρ = = t q B 0 χq χq mkl = mkl ( t, q) = 0dv( X ) mlk, k, l,..., n k l ρ = = q q B 0 3

The planar pendulum Alternative calculation of kinetic energy 0 O v O j k i θ c v = i v, v = v ( t), ω= kω, ω = θ O O O O The kinetic energy: Ek = Tt (, θθ, ) = v cm+ ω Iω c 33

The planar pendulum 0 O j k i θ c l l poc = i sin θ + j( cos θ) l l vc = vo + ω poc = ivo + kθ ( i sin θ + j( cos θ)) = l l i( vo + θ cos θ) + j θ sin θ 34

The planar pendulum 0 O j k i θ c l l l l vc = ( vo + θ cos θ) + θ sin θ = vo + voθ cos θ + θ cos θ + θ sin θ = 4 4 4 v l + voθ cos θ + θ 4 O vcm= ( vo + voθ cos θ + l θ ) m 4 35

The planar pendulum 0 j O k i θ c ω Iω= kθ Ikθ = θ k Ik= θ I c c c c, zz I c, zz I c, zz = ml 36

The planar pendulum 0 O j k i θ c l ml Tt (, θθ, ) = vcm+ ω Iω c = ( vo + voθ sin θ+ θ ) m+ θ = 4 vm O + ( vocos θ) mθ + l mθ, 3 v () O = vo t 37

The planar pendulum 0 O j k i θ c l Tt (, θθ, ) = vm O + ( vocos θ) mθ + mθ, 3 T T T 0 v () O = vo t m00 = vom, m0 = m 0 = ( vo cos θ ) m, m l = m 3 38

The planar double pendulum Calculation of the kinetic energy g 0 O j k i θ A φ B The transplacement: x xo + ( isinθ jcos θ) X, 0 X l, ( for ) = χq ( θφ, ; X) = xo + ( isinθ jcos θ) l+ ( isinφ jcos φ) X, 0 X l, ( for ) 39

40

Example 9.3 continued. χ q 0, 0 X l, ( for ) = φ ( icosφ+ jsin φ) X, 0 X l, ( for ) The volume element for of m = ρ Al. For and 0 dv X is ( ) = A dx where A is the constant cross-sectional area dv X we have ( ) = A dx and m= ρ0al. Then χq χq χq χq χq χq mθθ ( θφ, ) = ρ0dv( X ) = ρ0dv( X ) + ρ0dv( X ) = θ θ θ θ θ θ B B B 0 0 0 χ χ χ χ l l l l q q q q ρ0adx + ρ0adx = X ρ0adx + lρ0adx = + ml θ θ θ θ 3 0 0 0 0 ml χq χq χq χq χq χq mθφ ( θφ, ) = ρ0dv( X ) = ρ0dv( X ) + ρ0dv( X ) = θ φ θ φ θ θφ B B B 0 0 0 χq χq χq χq χq χq ρ0adx + ρ0adx = ρ0adx = cos( φ θ) lx ρ0adx = θ φ θ φ θ φ l l l l 0 0 0 0 mll cos( φ θ) 4

χq χq χq χq χq χq mφφ ( θφ, ) = ρ0dv( X ) = ρ0dv( X ) + ρ0dv( X ) = φ φ φ φ φ φ 0 B B B 0 0 0 χ χ χ χ ρ0dv( X ) = ρ0adx = X ρ0adx = φ φ φ φ l l q q q q ml B 0 0 3 Thus M ml mll + ml cos( φ θ) 3 = M ( θφ, ) = mll ml cos( φ θ) 3 and the kinetic energy of the double pendulum then reads T ml mll ml cos( ) + φ θ 3 θ = T( θφθφ,,, ) = ( θ φ) mll ml cos( ) φ φ θ 3 4

The planar double pendulum Alternative calculation of kinetic energy ω = kω, ω = θ, ω = kω, ω = φ 43

The planar double pendulum Ek = T( θθφφ,,, ) = vc m + ω Ic ω + vc m + ω Ic ω = vc m + kω Ic kω + vc m + kω Ic kω = vc m + k Ic kθ + v c m + k Ic k φ = I c, zz c, zz I vc m + Ic, zzθ + vc m + I c, zzφ = ml ml v v c m+ c m+ θ + φ 44

The planar double pendulum m m vcm ( ) cos( ) + vcm = + m lθ + l φ + mll φ θ 4 4 m m E (,,, ) ( ) k= T θθφφ = + m lθ + l φ + mll cos( φ θ) + 4 4 ml ml ( m ) m θ + φ = + m lθ + l φ + mll cos( φ θ) = 3 3 ml mll ml cos( ) + φ θ 3 θ ( θ φ) mll ml cos( ) φ φ θ 3 M 45

The kinetic energy T T= Ttqq (,, ) = ( M0 + Mq + qmq ) M = M(, tq) = m 0 0 00 ( ) T q= q q K q n n ( ) M = M(, tq) = m + m m + m m + m 0 0 0 0 0 n n0 n m m mn m m mn n n T M M( tq, ) = =, M = M mn mn mnn 46

Mass matrix elements where the matrix elements, m, kl, = 0,,..., n, are defined by kl χq χq m00 = m00 (, t q) = ρ 0dv( X ) t t B 0 χq χq m0k = m0k( t, q) = 0dv( X ) mk0, k,..., n k ρ = = t q B 0 χq χq mkl = mkl ( t, q) = 0dv( X ) mlk, k, l,..., n k l ρ = = q q B 0 47

Mass matrix elements T T = T (, t q, q ) = q Mq T ( ) ( ) 0 n n+ 0 q = q q q, q = t M m00 m0 m0n M0 M m0 m mn = Mtq (, ) = = M T M mn0 mn mnn 48

The kinetic energy 49

The kinetic energy Proposition 9.8 The transport inertial force may be written Q m m n ta i0 00 k = k i= t q 50

The kinetic energy 5

Lagrange s equations d T T ta ga i e ( ) + Qk + Qk Qk Qk = 0, k =,..., n k k dt q q T T tqq mqq qmq n k l T = (,, ) = kl = kl, = 5

Lagrange s equations Mq = Q + Q + Q cif T it et 53

The complementary inertia force in a scleronomic coordinate system cif T M M t T M M M M 0 Q = q ( ( ) ) q + q ( + skew( )) + ( ) = q q t q t q q M = 0, M = 0 T 0 n M M t ( ( )) q q q q M cif = 0 n n n Q = 0 n 54

Summary 55