The kinetic energy ( ) T. 1 2 n n ( ) n n0. m11 m12 m1n. m21 m22 m2n n n T
|
|
- Σήθος Γαλάνης
- 7 χρόνια πριν
- Προβολές:
Transcript
1 The ietic eergy 1 T T= Ttqq (,, ) = ( M + Mq 1 + qmq ) M = M(, tq) = m ( ) T q= q q q 1 1 ( ) M = M(, tq) = m + m m + m m + m m11 m1 m1 m1 m m T M M( tq, ) = =, M = M m1 m m 1
2 Mass matrix elemets where the matrix elemets, m, l, = 1,,...,, are defied by l χq χq m = m (, t q) = ρ dv( X ) t t B χq χq m = m( t, q) = dv( X ) m, 1,..., ρ = = t q B χq χq ml = ml ( t, q) = dv( X ) ml,, l 1,..., l ρ = = q q B
3 Mass matrix elemets 1 T T = T (, t q, q ) = q Mq T ( ) ( ) q = q q q, q = t M 1 m m1 m M M1 m1 m11 m1 = Mtq (, ) = = 1 M T 1 M m m1 m 3
4 The ietic eergy 4
5 The ietic eergy Propositio 9.8 The trasport iertial force may be writte Q m 1 m ta i = i= 1 t q 5
6 The ietic eergy 6
7 Lagrage s equatios d T T ta ga i e ( ) + Q + Q Q Q =, = 1,..., dt q q 1 1 T T tqq mqq qmq l T = (,, ) = l = l, = 1 7
8 Lagrage s equatios Mq = Q + Q + Q cif T it et 8
9 The complemetary iertia force i a scleroomic coordiate system cif T M 1 M t T M M1 1 M1 M Q = q ( ( ) ) q+ q ( + sew( )) + ( ) = q q t q t q q M =, M = T 1 1 M 1 M t ( ( )) q q q q M cif = Q = 1 9
10 Summary 1
11 Regular coordiates Propositio 9.1 The system of geeralized coordiates is regular if ad oly if the mass matrix M is positive defiite. 11
12 1
13 Example 9.4 Uderlyig, i our discussio, is the assumptio that we may use differet sets of geeralized coordiates for the cofiguratio space of the multibody. The choice of coordiates must be decided by the egieer. For istace, for a sigle particle P we may use Cartesia coordiates ( x, y, z ) or spherical coordiates (, r θϕ, ) x = r siθcosϕ y = r siθsiϕ z = r cosθ Let ( ex ey ez) deote the RON-basis correspodig to the Cartesia coordiate system with origi O. The trasplacemet of the particle may be writte x= ( x,y,z; P) = x + e x + e y + e z, ( x, y, z) Ω= χq O x y z 3 The χ q x = e x χ q y = e y χ q z = e z ad thus the Cartesia coordiate system is regular. 13
14 I spherical coordiates the trasplacemet is: χ( r, θϕ, ; P) = x + e rsiθcosϕ+ e rsiθsiϕ+ e rcos θ, ( r, θϕ, ) Ω q O x y z χq = exsiθcosϕ+ ey siθsiϕ+ ezcosθ r χq = exrcosθcosϕ+ eyrcosθsi ϕ+ ez ( rsi θ) θ χq = ex( rsiθsi ϕ) + eyrsiθcosϕ ϕ χq χq χq = r si θ, ( r, θϕ, ) Ω r θ ϕ This spherical coordiate system is thus a regular coordiate system. 14
15 Example 9.5 The coordiate system adopted for the double pedulum i Example 9. is regular sice, for fixed ( θφ, ) Ω, χq w θ χ + w = φ 1 q 1 1 ( icosθ + jsi θ) Xw =, X l1, ( for ) 1 icosθ + jsi θ) l1w + i(cosφ+ jsi φ) Xw =, X l, ( for ) 1 w = w = 15
16 Coordiate chages 16
17 Coordiate chage 1 ( ) T..., q = q q q 1 (... ) q = q q q T x= χq( tqt, ( ); X) = χq ( tq, ( t); X) X B Coordiate chage: q q q= qtq ˆ(, ) q = qˆ ( t, q), qˆ = qˆ 1 ˆq 17
18 Coordiate chages Virtual velocity fields w = w (, tqwx, ; ) = q χq q = 1 w w = wq (, tq, w; X) = q χq j w j j= 1 ( ) T w= w w w 1 ( ) T w = w w w 1 Compoet chage: w = ˆ q q j j= 1 w j w ˆq = q w Jacobia: qˆ q qˆ = j q 18
19 Coordiate chages Propositio 9.13 If the q - coordiate system is regular the the q - coordiate system is regular if ad oly if qˆ det( ) q 19
20 Coordiate chages qˆ qˆ j qt ( ) = qtq ˆ(, ( t)) q = + q, 1,..., j = t q j= 1 q qˆ = + t qˆ q q χ q χq χ e q qˆ Q j = Pda( X ) + ρdv( X ) = da( X ) + j j j q b q P q q B B B = 1 χq qˆ χq χq qˆ e qˆ bρdv( X ) = ( Pda( X ) + bρdv( X )) = Q q q q q q q B j j j = 1 = 1 = 1 B B
21 Covariat ad cotravariat vectors Covariat vector: * ˆq Q = Q q a i e a i e qˆ Q Q Q = ( Q Q Q ) q Cotravariat vector: w ˆq = q w q ˆq = q q qˆ ( = 1) t Lagrage s equatios are o covariat form: a i e Q Q Q = 1
22 Ivariace of Lagrage s equatios Theorem 9. Lagrage s equatios are ivariat uder a regular coordiate trasformatio, i.e. a i e a i e Q Q Q = Q Q Q = Lagrage s equatios are ivariat uder regular chages of the cofiguratio coordiates!
23 Summary 3
24 9.5.1 The rigid part Assume that the motio of the rigid part is give χq (, tqx ; ) = xa(, tq) + R (, tq)( X X A), X B x = x + ω ( x x ) A A x A = = x A, q ω = ω; q = A is a reductio poit. x A, x = q def A def R T ω; = ax( R ), =, 1,..., q 4
25 The rigid part x A = = x A, q ω = ω = ; q Corollary 9.3 x x A A, = x A ; : = q ω ω; =, = 1,,..., q 5
26 The rigid part: The mass matrix A = m l = ; A ; l x ω I ω Iertia tesor: I = (( x x ) 1 ( x x ) ( x x )) ρdv( x) A A A A B t 6
27 The rigid part: The mass matrix m = x x m + ω I ω l c; c; l ; c ; l 7
28 The double pedulum x A ; x = q A ω ω = q ; m = ( x x + x ω p + x ω p ) m + ω I ω, l, = 1,,..., l A; A; l A; ; l Ac A; l ; Ac ; A ; l 8
29 The double pedulum x = O ω 1 = θ ω = φ m = ( x x + x ω p + x ω p ) m + ω I ω = ω I ω l O; O; l O; ; l Oc O; l ; Oc ; O ; l ; O ; l m = x,,, ; x ; m + ω; Iω; l= θφ l c c l c l 9
30 3
31 31
32 Summarizig, 1 1 ml 11 1 l mθθ = mθθ + mθθ = + ml 1, mθφ = mθφ + mθφ = m1 l cos( φ θ), 3 m ml 3 = φφ ad M ml 11 mll 1 + ml 1 cos( φ θ) 3 = M ( θφ, ) = mll 1 ml cos( φ θ) 3 3
33 The rigid part: The iteral force Q i E = S q B q dv( X ) Propositio 9.16 For a rigid part the geeralized iteral force is zero, i.e. Q =, = 1,...,, i 33
34 The rigid part: The exteral force 34
35 Poit force e t(, tqx ; ) = f(, tq) δ ( X X) B ec Geeralized force from cotact χq(, tqx ; ) χq(, tqx ; ) ec Q = (, ) ec f tqδ ( X X) ( ) (, ) dax tq ec q = f B q B 35
36 Example 9.6 Assume that the plaar double pedulum is subjected to a follower poit force ad a couple. The correspodig geeralized force is Q = x ; f + ω; M, = θφ, e, e, e, B B 36
37 Example
38 Example 9.6, cot. 38
39 9.5. The elastic part, elastic eergy Elastic potetial: ue ue = ue( X, E), X B, S = E Elastic eergy: ueq, = ueq, (, tqx ; ) = ue( X, Eq(, tqx ; )) Ueq, = Ueq, (, tq) = ueq, (, tqxdvx ; ) ( ) B q Liear elastic sprig: 1 Ue( q) = q 39
40 The elastic part, iteral geeralized force S = E u E u Q E dv( X ) E = = dv( X ) = dv( X ) =, i q ue q eq, S q Eq q q B B B U ueq, dv( X ) = q q B eq, Q U = q, i eq, 4
41 The elastic part 41
42 The liear isotropic elastic part Corollary 9.5 For a liear elastic part, i 1 Q = q ( X ) qdv( X ) q E E B where = ( X ) is the elasticity tesor for body. Corollary 9.6 For a liear isotropic elastic part Q 1 = ( λ (tr ) + µ ) dv( X ) q E E, i B 4
43 The elastic bar Referece ceter-lie : { X X X s, s l } C = B = +e O 1 q Preset ceter-lie : Ct = x Bt x= χq(, tqx ; ) = xo + e1() t s, s l l 43
44 The elastic eergy 1 ( q+ l ) Ue = Ue( q) = ( q l) 4l Sprig costat : A E 1 A = ν ( λ + µ ) l = 1 + ν 1 ν l 44
45 The elastic geeralized force i U e 1 q Qq = = (( ) 1q ) q l i 1 ( q l)( q+ l) Qq = q l l i q; l Q q ( l) q The elastic geeralized force, small elogatios : i Q q ( l) q 45
46 9.6. Body forces: Gravitatio g = e ( g) z c p Oc B t z c O g χ p U Q dv X dv X dv X q q q q, g q q gq, = gρ ( ) = gρ ( ) = ( pqρ ( ) g) = B B B Ugq, = Ugq, (, tq) = poc(, tq) gm = zc(, tqgm ) 46
47 Exteral forces: Body forces : Q U = Ugq, = Ugq, (, tq) = poc(, tq) gm = zc(, tqgm ) q, g gq, The potetial eergy for the multibody i the gravitatioal field: g = e ( g) z c p Oc B t z c N N U gq, = U gq, = z c(, t q) gm = zc(, t q) gm = 1 = 1 O g Q g U = q gq, 47
48 Double pedulum with torsio sprigs Torsio sprigs 1 1 U ( θ, φ) = U + U = κθ + κ ( φ θ) 1 eq, eq, eq, 1 48
49 Example 9.7 Let the plaar double pedulum i Example 9. be equipped with elastic torsioal sprigs at the joits at O ad A. The elastic potetial eergy of these iteral forces is the give by 1 1 U ( θ, φ) = U + U = κθ + κ ( φ θ) 1 eq, eq, eq, 1 where κ 1 ad κ are the sprig stiffess costats. The correspodig geeralized force is the give by U i eq, Q θ = = κ1θ + κ( φ θ) = ( κ1+ κ) θ + κφ θ U i eq, Q φ = = κ( φ θ) = κθ κφ φ ad ( ) i i i κ1+ κ κ Q = ( Qθ Qφ) = ( θ φ) κ κ 49
50 Example 9.9 The plaar double pedulum i Example 9. is subjected to the force of gravity with potetial eergy U ( θφ, ) = U + U = y ( θφ, ) gm + y ( θφ, ) gm 1 gq, gq, gq, c 1 c 1 where, see Figure 9.13, Thus y c 1 l1 l ( θφ, ) = cosθ, yc ( θφ, ) = l cos cos 1 θ φ l1 l Ugq, ( θφ, ) = ( m1cos θ+ m( l1cosθ + cos φ)) g j O i θ c 1 A φ c B 5
51 j O i θ c 1 A φ c Figure 9.13 The potetial eergy of the double pedulum i the gravitatioal field. The geeralized force correspodig to the gravitatioal potetial reads B U g gq, 1 Qθ = = ( m1+ m) lg 1 siθ, θ Q U l g gq, φ = = φ mgsiφ ad 1 l θ φ θ φ ( ) ( 1 ) 1 si si g g g Q = Q Q = m + m lg mg 51
52 9.6 Exteral forces: Cotact forces β = B = B UB β B B B ec ic = U Exterior cotact surface: ec B Iterior cotact surface: ic B ec B t Q Q ec q e = t ecb χ q da( X ) χq = t da( X ), t = P q ic i i ic B B t ic B t β B t Q = Q + Q c ec ic 5
53 Lagrage s equatios d T T ( ) Q Q = qm = Q + Q + Q dt q q i e T cif i e Q i U = q e, Q e = Q c + Q b, Q = q b U g d T T U c g ( ) e U + Q + = dt q q q q Potetial eergy: U = U + U e g d T T U c ( ) + Q = dt q q q 53
54 Lagrage s equatios The Lagragia: L= T U d L L U ( ) Q = qm = Q + Q dt q q q c T cif c Cotact forces: c ic ec Q = Q + Q U qm = Q + Q + Q q T cif ic ec 54
55 Exercise 4:14 The pedulum system, movig i a vertical plae, cosists of a small ball with mass m fixed, with a iextesible mass-less strig of legth l, to a carriage which may move, without frictio, alog a horizotal lie as show i the figure below. The carriage, with mass m c, is coected to a fixed poit O with a liear elastic sprig, with sprig costat, ad subjected to a exteral force F= Ft () alog its lie of motio. Use Lagrage s equatios to formulate the equatios of motio for the system, ( x=, correspods to ustressed sprig). 55
56 Exercise 4:14 Solutio e l x R O 1 A m c B N 1 N F e 1 ϕ l 3 C g m Cofiguratio coordiates: x,ϕ 56
57 Exercise 4:14 Solutio e l x R O 1 A m c B N 1 N F e 1 ϕ l 3 C g m X 1 xo + pop = xo + e1 ( l + x a), P, X l l Placemet: x= χq ( x, ϕ; P) = xo + pob + pbp = xo + e1 ( l + x) + pbp, P xo + pop = xo + e1 ( l + x + lsi ϕ) + e ( lcos ϕ), P 3 57
58 Exercise 4:14 Solutio Partial derivatives of the trasplacemet: χ t q ( x, ϕ; P) =, P χq X 1 ( x, ϕ; P) = e, P, X l x l 1 χ ( x, ϕ; P) = e1, P x q 3 1, P, X l χq ( x, ϕ; P) =, P ϕ e1lcosϕ+ elsi ϕ, P 3 58
59 Exercise 4:14 Solutio The material velocity: χq χq χq x = x( x, ϕ, x, ϕ; P) = + x + ϕ = t x ϕ X 1 + e 1 x +, P, X l l + e 1 x +, P = 3 + e 1x + e1l ϕcosϕ + e ϕlsi ϕ, P e e e X x, P, X l 1 1 l x, P ( x + l ϕcos ϕ) + e ϕlsi ϕ, P
60 Exercise 4:14 Solutio Kietic eergy: T = T( x, ϕ, x, ϕ) = vcmc + vbm= x mc + (( x + l ϕcos ϕ) + ( ϕlsi ϕ) ) m= 1 1 x m + mc ml cosϕ x ( x ( m + mc ) + ml x ϕcos ϕ+ ml ϕ ) = ϕ ml cosϕ ml ϕ T Mass matrix: M m + mc ml cosϕ = ml cosϕ ml M =, M = 1 1 6
61 Exercise 4:14 Solutio Calculatio of massmatrix elemets: q q m = χ χ ρ dv( X ) = dv( X ) = dm = m + m x x e e ρ xx 1 1 c B dm B dm 3 m χ χ = dv( X ) = ( 1l cos + l si ) ( 1l cos + l si ) dm = ml e e e e ϕϕ ρ ϕ ϕ ϕ ϕ ϕ ϕ B q q dm 3 χq χq mx = dv( X ) = 1 ( 1l cos + l si ) dm = ml cos x e e e ϕ ρ ϕ ϕ ϕ ϕ B dm 3 61
62 Exercise 4:14 Solutio Partial derivatives of ietic eergy: T = x T = ml x ϕsiϕ ϕ T = x ( m + mc ) + ml ϕcosϕ x T = ml x cosϕ + ml ϕ ϕ Lagrage s equatios: d T T i e ( ) Q x Q x = dt x x d T T i e ( ) Q ϕ Q ϕ = dt ϕ ϕ 6
63 Exercise 4:14 Solutio Geeralized iteral forces: Elastic potetial eergy: U e 1 = x Q i x U x e = = x U ϕ i e Qϕ = = Geeralized exteral forces: Gravitatioal potetial eergy: U = mgl cosϕ g U eg, g Qx = = x Q = = mgl siϕ ϕ U eg, g ϕ 63
64 Exercise 4:14 Solutio The exteral force F = e : 1 F e l x χ ef, q p OC Qx = F = F = e1 e1f = F x x R O 1 A m c B N 1 N F e 1 χ ef, q p OC Qϕ = F = F = e1 F = ϕ ϕ ϕ l 3 C g m The exteral force R: χq X χq X = ( x, ϕ; P) = = Q = = x e x R χq ( x, ϕ; ), ϕ er, 1 x l χ er, q P = X l Qϕ = R= ϕ 64
65 Exercise 4:14 Solutio The exteral force N 1 : e l x χ x q N1 = e1 N1 = R O 1 A m c B N 1 N ϕ F l e 1 χq N = = ϕ 1 N1 3 C g m Sum of iteral ad exteral forces: x x x i e Q + Q = mgl si i e Q + Q = + F ϕ ϕ ϕ 65
66 Exercise 4:14 Solutio The equatios of motio: d dt ( x( m + m ) + ml ϕcos ϕ) + x F = c d ( ml x cos ϕ+ ml ϕ) ml x ϕsiϕ+ mgl siϕ = dt x( m + mc ) + ml ϕcosϕ ml ϕ siϕ+ x F = ml x cosϕ+ ml ϕ+ mgl siϕ = m + m ml cosϕ = + + ml cosϕ ml cif i e c ( x ϕ) ( ml ϕ siϕ ) ( x ) ( F mgl siϕ) q Q Q Q M 66
67 Exercise 4:14 Solutio Kietic eergy of the sprig: l l 3 1 X X 1 X 1 x ρ X Ts = Ts( x, ϕ, x, ϕ) = 1 1 dx ( ) dx e x e xρ = = = l l x ρ l l 3 l 1 x l 1 m = 3 3 ρ x Kietic eergy of the rod: 1 1 Tr = Tr( x, ϕ, x, ϕ) = vcmr + ωr Iω c r = 1 l l 1 1 (( x + ϕcos ϕ) + ( ϕsi ϕ) ) mr + ϕ ml r 1 67
68 Lagrage s equatios U qm = Q + Q + Q q T cif ic ec ic Q? β t Bt xc g β β S β, t β Bt S β, t β t 68
69 Exteral forces: Cotact forces β =, B = B UB β, B B B ec ic = U, Exterior cotact surface: ec B Iterior cotact surface: ic B ec B t Q Q ec q e = t ecb χ q da( X ) χq = t da( X ), t = P q ic i i ic B B t ic B t β B t Q = Q + Q c ec ic 69
70 9.7 The iteractio betwee parts Parts:, β Cotact surface: S = B B B β β ic t t t t Two parts are i geometric cotact at poit C o the iteral boudary surface if: x = x = χ ( tqt, ( ); X ) = x = χ ( tqt, ( ); X ), X S, X S β β C C q C C q C C t, C t, β β β Relative velocity: χ χ β β x x x β, q q C : = C C = ( ) q = q q Impeetrability costrait: β x, β C Kiematical cotact: β x =, β C B t xc g β St β β B t Separatig cotact: β x <, β C 7
71 Costrait: Impeetrability A q-coordiate system is said to be compatible with the impeetrability costrait if: (, tqx ; ) β χ (, ; ), q tqx χ β β β C q C β C = ( ) q, ( tq, ) Τ Ω, q = q q x 71
72 β Lemma 9.1 If ad are i geometrical cotact at C, durig the time iterval Τ, ad if the q - coordiate system is compatible with impeetrability coditio, the for (, tq) Τ Ω, β β β χ (, ; ) (, ; ) q tqx χ C q tqxc β (, tqx, C ) ( ) t t β χ (, ; ) (, ; ) q tqx χq tqx C C β ( tqx,, C ) ( ) =, = 1,..., q q β β where xc = χq (, tqx ; C ) = χq (, tqx ; C ), XC St,, XC S t,. Costrait: Impeetrability β β 7
73 Costrait: Kiematically coected Two parts are said to be iematically Coected at the cotact poit C if they Are i geometrical cotact ad if:, β C = x A q-coordiate system is said to be compatible with the iematically coected costrait if: χ (, tqx ; ) χ β q (, tqx ; C ) β ( ) q =, ( tq, ) Τ Ω, q q q = q C 73
74 Costrait: Kiematically coected χ (, ; ) (, ; ) q tqx χ β C q tqxc β ( ) q =, ( tq, ) Τ Ω, q q q = χ (, ; ) (, ; ) q tqx χ β q tqx C C β =, ( tq, ) Τ Ω, = 1,,..., q q β Lemma 9. If ad are iematically coected at C, at time t Τ, ad if the q - coordiate system is compatible with the iematically coected costrait, the for (, tq) Τ Ω, χ (, ; ) (, ; ) q tqx χ β C q tqxc β =, = 1,,..., q q 74
75 Geeralized cotact forces Assume that geeralized force, ad Q β, from β β are i geometrical cotact over the surface t β o, is give by χ β q β Q = t da( x), β, = 1,..., β q S t S, at time t. The ad the correspodig geeralized force, Q β, from o β by β χ β q β Q = t da( x), β, = 1,..., β q S t where the cotact force t β is the tractio vector from β vector from o. β o ad β t is the tractio 75
76 The mechaical iteractio t β β t = t β Bt xc g β β S β, t β Bt S β, t β t The geeralized force fromiteral cotacts betwee parts of the multibody is: 1 1 Q Q ( Q Q ) I, N N N ic β β β β = = + = β, = 1 β, = 1 β, = 1 Q =, = 1,..., N We itroduce the mechaical iteractio: I = Q + Q β β β 76
77 The equatios of motio for the multibody 1 qm Q Q I Q Q N T cif i β ec b = β, = 1 1 N I β = N β, = 1 β, = 1 < β I β 77
78 The mechaical iteractio β χq χ β β β β q β I = Q + Q = t da( x) + da( x) = β q t β q S β t S t β χq χq β ( ) t da( x), q q S t t β = t β β χq χ β β q β I = I = ( ) t da( x), = 1,..., β q q S t 78
79 The cotact force t = T β β t = N + τ β β β β β β τ = Normal compoet: β β N = N ( x,) t C ormal force compoet Tagetial composat: τ β = τ β ( x,) t C frictio force Uilateral cotact: β β N ( x, t), x S, t Τ C C t I mechaical cotact: N β < β x, β C Out of mechaical cotact: β β β N = τ ( x,) t = t = C 79
80 The mechaical iteractio If the q-coordiate system is compatible with the impeetrability costrait the : β χq χq β ( ) = q q ad cosequetly: β β χq χq χq χ β β q β β I = ( ) t da( x) = ( ) ( N + ) da( x) = β q q τ β q q S t S t S β t β χq χq β ( ) τ da( x) q q 8
81 The mechaical iteractio Corollary 9.7 If the q - coordiate system is compatible with the impeetrability costrait at β all cotact poits o S t, the β χq χ β q β I = ( ) τ da( x), = 1,..., β q q S t β β No frictio: τ ( x,) t = I = C 81
82 Equlibrated iteractio I geeral: I β The mechaical iteractio is said to be equilibrated, with respect to the system of cofiguratio 1 coordiates q = ( q, q,..., q ) Ω if β I =, = 1,...,, β, = 1,..., N N 1 β β, I = β, = 1 I this case the equatios of motio for the multibody read qm = Q + Q+ Q + Q T cif i ec b q = qtq ˆ(, ) β β ˆq β β I = I I = I =, = 1,..., q The iteractio is a covariat tesor! 8
83 Equlibrated iteractio Kiematically coected:, β C = x β β Corollary 9.8 If ad are iematically coected at all cotact poits o S t, at time t Τ, ad if the q - coordiate system is compatible with these costraits the the β mechaical iteractio betwee ad is equilibrated. β β χ, q χq χq χ β β q β x C = = I = ( ) da( x) =, = 1,..., q q τ β q q S t 83
84 We itroduce the iteractio I β def β β χq χq χq χ β β q β I = ( ) t da( x) = ( ) da( x) + β t t τ β t t S t S β t β χq χq β β ( ) N da( x) t t S t Scleroomic coordiate system: I β = Coordiate system compatible with impeetrability coditio: β χq χq β β ( ), N t t I β β χq χq β ( ) τ da( x) β t t S t 84
85 The equatios of motio for the multibody 1 qm Q Q I Q Q N T cif i β ec b = β, = 1 β χq χ β β q β I = I = ( ) t da( x), = 1,..., β q q S t If the q-coordiate system is compatible with impeetrability coditio: β χq χ β q β I = ( ) τ da( x), = 1,..., β q q S t 85
86 The Power 86
87 The Power Propositio 9.1 β β β et = et = = β = P P I q I q I = I I β β β 1 ( + 1) where ( ) Corollary 9.9 If the mechaical iteractio betwee β β P = I. et ad β is equilibrated the 87
88 Thermodyamics Material discotiuity surface Temperature: θ, θ β Eergy balace:,, x β t β + h β β =, x β t S Etropy iequality: β h h β ( ), x S β t θ θ β θ = > S θ β, x β t, β β, β β β x t = h, x t S x S, β β β t, x t 88
89 Thermodyamics β β β, Pet = P + P = x β t β β da( x) = I q β = S t Thermodyamic coditio : x t x S, β β β, t β P ( tqq,, ), ( tq, ) Τ Ω, q et Ideal iteractio: β P ( tqq,, ) =, ( tq, ) Τ Ω, q et Dissipative iteractio: β P ( tqq,, ) <, ( tq, ) Τ Ω, q et 89
90 Ideal iteractio Propositio 9. If the mechaical iteractio betwee the ad β β I = I ( tq, ), ( tq, ) Τ Ω, = 1,,..., β I ( tq, ) =, ( tq, ) Τ Ω, = 1,,..., β is ideal ad if Thus the mechaical iteractio betwee ad β is equilibrated. 9
91 Relative velocity & β, β x C, x x β, β β, β, C = xc, + C, Bt xc g β β, β, xc, =, β C, x S β, t & β, xc, P x& β, C 91
92 Coulomb dry frictio β β β β t = + τ β, β β, β, xc = Nx C, + xc, x t = ( x + x )( N + τ ) = x N + x τ, β β,, β β β, β, β C C, C, C, C, & β, β x C, Bt xc g β S β, t & β, xc, P x& β, C 9
93 Coulomb dry frictio If the parts are i mechaical cotact ad the cotact is characterized by Coulomb β dry frictio the the tagetial composat of the cotact tractio τ satisfies x τ, β β β C, = µ s N x β,, β β β C, C, = µ N β, x C, x τ at stic at slip By taig, β C, = x x t x τ, β,,, C β = x β C, N β + β C, β = x β C, N β, x β t β N x, β C, x x x = β β, β, β, C C, C, S, β β, β β xc, = Pet = xc, N da( x) = S β t 93
94 Coulomb dry frictio x τ, β C, = β µ s N β x β,, β β β C, C, = µ N β, x C, x τ x β, C, x t = x N + x τ = N ( x + µ x ), x S, β β, β β, β β β, β, β β C C, C, C, C, t N x + x β β, β, C, µ C, x x µ β β, β, C C, x =, µ > P = N µ x da( x) <, β β β, β C, et C, S β t 94
95 Coulomb dry frictio 95
96 9.7.1 The iteractio betwee rigid parts x = x = χ ( tqx, ; ) = x = χ ( tqx, ; ), X S, X S β β C C q C C q C C t, C t, β β β The velocity of the two material poits is the give by: x = x + ω ( x x ), sys C O C O x = x + ω ( x x ) β β, sys β C O C O β β The relative velocity of the two material poits is the give by: x = x + ω ( x x ) β,, sys β,, sys β, C O C O ω : = ω ω β, β Impeetrability coditio : β St cotact surface at time t x x + ω ( x x ) β, β, sys β, β, sys β, β C O C O 96
97 Defiitio: e = e( t), e e = 1 x = ex, x,, β, sys β β O O O Prismatic joit β, ω = β e x = x + ω ( x x ) = ex, C S β,, sys β,, sys β, β β C O C O O t Impeetrability coditio : x + ω ( x x ) β, β, sys β, β O C O x = ex, x β, β, sys β β β O C C β e = β The cotact surface ormal has to be perpedicular to the directio β of relative traslatio e, St is a prismatic surface. I cylidrical coordiates (, r θ, z) with e = e z the cotact surface is defied by r = r( θ ). 97
98 Revolute joit Defiitio: ( O, e), e = e( t), e e = 1 β,, sys β O = x,, ω β = e ω β, ω β x = ω e ( x x ), x S, β, sys β β C C O C t e Impeetrability coditio : ω e ( x x ), ω, x S β β β β C O C t β e ( x x ) =, x S β C O C t It may be show that i this case S ( O, e) i.e. r= rz ( ). See exercise 5:1! β t is a surface of revolutio with axis 98
99 Simple joits β e β e β e β a) Cylidrical b) Prismatic c) Screw β β e = β e d) Revolute joit e) Spherical f) Plaar 99
100 Simple joits c = ( c c c ), c = e Rotatio axis: ( O, e) x : = x x β,, sys, sys β, sys O O O Defiitio of compoets: β c O c1 c = e 3 1
101 Simple joits β e β e β e β a) Cylidrical b) Prismatic c) Screw β β e = β e 11 d) Revolute joit e) Spherical f) Plaar
102 No-simple joits β Poit cotact Lie cotact β Aother type of cotacts or joits, ot based o a cotact surface, are poit or lie cotacts. This secod category of joits is called o-simple. Examples of poit cotacts ca be foud i ball bearigs ad helical gears o oparallel shafts. Lie cotact is characteristic of cams, roller bearigs ad most gears. The rigid wheel o a rigid surface is also a example of a lie cotact. 1
103 Uiversal (Hoo) joit e γ O e 1 β Permits a trasmissio of rotatioal motio betwee itersectig but o-parallel axes. This is accomplished by usig two revolute joits i successio betwee orthogoal axes. The uiversal joit ivolves a itermediary cruciform rigid part γ. 13
104 The equatios of motio 1 qm Q Q I Q Q N T cif i β ec b = β, = 1 The iteractio: β χq χ β β q β I = I = ( ) t da( x), = 1,..., β q q S t 14
105 Rigid parts i cotact Joit O β β M O f β β O O β f β M O f β = f β M β O = M β O 15
106 Rigid part iteractio β, sys β β Q = x O ; f + ω; MO, = 1,...,, sys x x O ; = q, sys O ω ω = q ;, sys, sys O = xo ; q = x ω = ω = ; q β,, sys, sys β, sys, sys β, sys β,, sys O = O O = ( O ; O ; ) q = O ; q = = x x x x x x x β,, sys O ; β, β β, = = ( ; ; ) q = ; = = ω ω ω ω ω ω ω β, ; q 16
107 Rigid part iteractio The mechaical iteractio: I = Q + Q β β β 17
108 Costrait o a relative velocity compoet Uit vector: c = c () t Costrait: β,, sys β,, sys O O ; = c x = c x q = β O c β = g (, tqq ) =, β g (, tq) = c() t x (, tq), β, sys O ; 18
109 Costrait o a relative agular velocity compoet Uit vector: c = c () t Costrait: β,, β ; = c ω = c ω q = O β = h (, tqq ) =, h tq t tq β, β (, ) = c() ω; (, ) 19
110 Costrait o the relative velocity x = x = x β,, sys, sys β, sys O O O c() t = ( c () t c () t c ()) t 1 3 β i = g ( tqq, ) =, i= 13,,, g (, tq) = c () t x (, tq) β, β i i O; O 11
111 Costrait o the relative velocity x = Τ Ω C = Τ Ω β,, sys O ( tqq,, ), t, q, q ( tq, ), t, q Kiematical costrait Geometrical costrait (, tq) β C = χ (, tqx ; ) χ (, tqx ; ) a, t Τ, q Ω q O q O O 111
112 Rollig ad pivotig ω = ω + ω, β β β β p r ω β β r = β Pivotig compoet: ω, Rollig composat: ω = c ω, + c ω, p β β β r 1 r1 r Π β ω B t c C c = 3 β β B t x = x + ω ( x x ) β, β, sys β, β, sys β β C O r C O 11
113 Rollig ad pivotig without slippig,,sys β C = x,, sys i C i = c x β = g β q β, β, =, i= 13,, g (, tq ) = c x i i C; sys β 3 3 = g β i q =, i= 1, = g q = C (, tq) = Holoomic costrait No-holoomic costrait Ci (, tq) = 113
114 Holoomic costraits Holoomic costrait: C (, tq) =, C (, tq) q 1 C ( tq, ) =, q Ω, C (, tq) l q, for some 1 l l 1 l 1 l+ 1 q = f( tq,, q,..., q, q,..., q) 114
115 Holoomic ad iematical costraits Holoomic costrait: C (, tq) = Kiematical costrait: d C (, tq) C ( tqt, ( )) = gq =, g = g( tq, ) =, = 1,,..., dt q = Kiematical costrait: β = g (, tqq ) = / Holoomic costrait: 115
116 Holoomic ad o-holoomic costraits Kiematical costrait: β = g (, tqq ) = If there exists γ = γ(, tq), G=G(, tq) such that G(, tq) g ( tq, ) = γ ( tq, ), = 1,,..., q The, sice γ, G gq = q = G= G = C = G c= def γ γ = = q The fuctio γ = γ(, tq) is called a itegratig factor to the iematical costrait. If it is ot possible to fid fuctios γ ad G, the the iematical coditio is said to be oholoomic. 116
117 ω = & ϕ O g j x C i 117
118 118
119 Kiematical costraits c = c( t), c c = 1 c x β = g β, (, tqq ) = c ω β = h β (, tqq ) =,, sys O = = Propositio 9.7 The q - coordiate system is compatible with the iematical costraits β β above if ad oly if g (, tq) =, h (, tq) =, (, tq) Τ Ω, = 1,,...,. 119
120 The iteractio betwee rigid parts β, β sys β, β β I = x O ; f + ω; MO, = 1,..., β M O f β β O O f β β M O 1
121 Kiematical costraits f β = cf β + f β, MO = cm O + MO, β β β f =, M = I =, = 1,,...,, The iteractio is the equilibrated! β β β O, 11
122 Iteractio ad et power c = ( c c c ), c = c ( ) 1 3 i i t g (, tq) = c () t x (, tq), h(, tq) = c () t ω (, tq), i= 13,,, = 1,..., β,, sys β, i i O; i i ; O Propositio 9.9 The iteractio may be writte 3 I β = ( g β f β + h β M β ), = 1,,..., i i i i i= 1 where f β i = c β i f ad M β i = c β i M O, i= 13,, are compoets of the costrait forces ad momets relative to the basis c. 1
123 Net power β Pet = I q = β 3 3 β β β β β β β β β Pet = ( ( gi fi + hi Mi )) q = (( gi q ) fi + ( hi q ) Mi ) = i= 1 i= 1 = = I β 3 P β = (( g β q ) f β + ( h β q ) M β ) et i i i i i= 1 = = 13
124 Ideal revolute joit Revolute axis: ( O, c 3 ) β Costraits: x =, c ω =, c ω = β,, sys β, β, O 1 g q =, i= 13,,, h q =, i= 1, i = = i c 3 Ideal joit: β P = ( h q ) M = et 3 3 = 3, 3 = h3 q M3 = I = gi fi + h1 M1 + h M = i= 1 c ω β β A priori uow reactio compoets: f1, f, f3, M1, M 14
125 Ideal revolute joit: The plaar pedulum, a homogeeous sleder rod Cosider a pedulum cosistig of, apart from groud with legth L. Assume that these parts are coected at a fixed poit O by a ideal revolute with axis ( O, ). 1 j O O i θ 1 c:( xy, ) 15
126 Ideal revolute joit: plaar pedulum Groud: x, O = ω = Pedulum: x = x + ω p O c co, ω = ω 1 1 Geeralized coordiates: xyθ,,, p = ( isi θ + j( cos θ)) Oc L 1 x c = ix+ jy, ω 1 = θ 1 L L x O = ix+ jy + θ pco = i( x θcos θ) + j( y θsi θ) = L ix+ jy ( icosθ + jsi θθ ) 16
127 Ideal revolute joit: plaar pedulum 1, 1 L L xo = xo xo = i( x θcos θ) + j( y θsi θ) Kiematical costraits: L x θ cosθ = 1, x O = L y θ siθ = 17
128 Ideal revolute joit: plaar pedulum 1, 1 L L xo = xo xo = i( x θcos θ) + j( y θsi θ) 1, 1, 1, L xox ; = i, xoy ; = j, xo ; θ = ( icosθ + jsi θ) 1, ω = θ = θ ω =, ω =, ω = 1, 1, 1, ; x ; y ; θ Iteractio: I = x f + ω M = i f = 1 1, 1 1, 1 1 x Ox ; ; x O x f I = x f + ω M = j f = 1 1, 1 1, 1 1 y Oy ; ; y O y f 1 1, 1 1, 1 L 1 1 I = x θ O; θ f + ω; θ MO = ( icosθ + jsi θ) f + MO = L L f cosθ f siθ + M x y Oz, 18
129 Ideal revolute joit: plaar pedulum O f y O f x j i θ 1 c:( xy, ) 1 Ix = fx 1 ideal M Oz, = I y = f y 1 L Iθ = ( fxcosθ + fysi θ) 19
130 Ideal revolute joit: plaar pedulum Geeralized coordiates: θ = O x 1,, θθ, x 1, O ; θ = 1, ω = θ θ ω 1, ; θ = I = x f + ω M = M = M = 1 1, 1 1, 1 1 θ O; θ ; θ O O z 13
131 Ideal screw joit Screw axis: ( O, c 3 ) Costraits: β, β,, sys ω β, β, β, x O = c3 L, ω = c3ω, ω, π g q =, i= 1,, h q =, i= 1, i = = i screw lead: L β, ω g3q = L, h3 q = ω π = = β, β = L ( g3 h3) q = π c 3 131
132 Ideal screw joit Ideal joit: ω P = g q f + h q M = Lf + M = β, β, β et ( 3 ) 3 ( 3 ) 3 3 ω 3 = = π ω β, L f3 M3 π + = ( L β I = g f + g f + g h ) f h M h M π A priori uow reactio compoets: f1, f, f3, M1, M 13
133 Revolute joit with frictio β No relative motio: β,, sys β, β, x O =, c1 ω =, c ω =, 3 β c ω = M3 M3c, = M3c, ( f1, f, f3, M1, M) c 3 P β et = 3 β I = ( g f+ hm), = 1,..., i i i i i= 1 A priori uow reactio compoets: f1, f, f3, M1, M, M3 133
134 Revolute joit with frictio Relative motio: β,, sys β, β, x O =, c1 ω =, c ω = M3 > M3c, M = M, ( ω ; f, f, f, M, M ), ω = c ω β, β, β, 3 3r β, β et ( 3 ) 3 ω3 3 = P = h q M = M < if ω > = > < β, β, 3 3r, ( ω3 ; 1,, 3, 1, ) β, if ω3 M f f f M M 3 β = i , r i= 1 I g f h M h M h M A priori uow reactio compoets: f1, f, f3, M1, M 134
135 Exteral forces Q = x ; f + ω; M, = 1,..., e, sys e e O O, sys x x O ; = q, sys O, sys, sys O = xo ; q = x ω ω ω = q ; = ω = ; q M e O f e 135
136 Exteral forces M e, OO f e, Electric motor O ψ ω = e ψ&,sys O = x ω = eψ x, sys O = ω = Revolute joit ω = ; ψ e β I,, = x O; f + ω; MO = ω; MO = e MO = sys ψ ψ ψ ψ = M 136
137 The Lagragia ad the Power theorem qm = Q + Q+ Q + Q + Q T cif i ic ec b Q ic N = 1 β=, 1 I β, i ec b co o Q + Q + Q = Q + Q Coservative geeralized force: Q co V = q Potetial: V= Vtq (, ) ( V = V + V ) e b No-coservative geeralized force: o Q The Lagragia: L= Ltqq (,, ): = Ttqq (,, ) Vtq (, ) The Mechaical eergy: E= pq T L, p = q = 1 137
138 The Lagragia ad the Power theorem Sum of et powers: P ic et N = β, 1 < = β P β et, P (, tqq, ), ic et P = I q β et = β Power expeded by iteral cotact forces: Q ic N = β, 1 < β = I β def ic ic ic = = = 1 P Q q Q q Propositio 9.31 P = P + I where ic ic ic et I N ic = I β β, = 1 < β Corollary 9.11 For a multibody with equilibrated iteractios we have cosequetly ic P =. P = I ad ic ic et 138
139 The Power theorem Propositio 9.3 E P P I L t o ic ic = + et 139
140 The Power theorem Corollary 9.1 For a multibody with equilibrated iteractios E L t o = P Corollary 9.13 o ic L E P I t with the equality sig preset i equatio if the iteral iteractios are ideal. 14
141 Coordiate chage Regular coordiate chage: q q q= qtq ˆ(, ) qˆ E = E + p, t P = P + Q ˆ, t o o o q ic ic ic qˆ P = P + Q t qˆ qˆ L(, tq, q ) Ltqtq (, ˆ = (, ), + q ) t q L E P P E P P t o ic o ic = + = + L t The Power theorem is ivariat uder a regular coordiate chage! 141
142 Rigid part iteractio β, β, sys β, β β I = x O ; f + ω; MO, = 1,...,, x x x ω = ω ω β,, sys, sys, sys O ; = O ; β O ;, β β ; ; ; x x = q, sys, sys O O ;, ω ω = q ;, sys, sys O = xo ; q, = x ω = ω = ; q, e, sys, e, e Q = x O ; f + ω; MO, = 1,..., 14
143 Equatios of motio ad the ideal revolute joit qm = Q + Q+ Q + Q + Q N ic 1 Q = I β β, = 1 T cif i ic ec b β c 3 Revolute joit costraits: giq =, i= 13,, h,, i q = i= 1 = = Revolute joit iteractio: 3 β = i i i= 1 I g f h M h M A priori uow reactios : f1, f, f3, M1, M 143
144 Equatios of motio ad the ideal spherical joit qm = Q + Q+ Q + Q + Q N ic 1 Q = I β β, = 1 T cif i ic ec b Revolute joit costraits: = g q =, i= 13,, i Revolute joit iteractio: I 3 β = gi fi i= 1 A priori uow reactios : f1, f, f3 144
145 Exercise 5:5 Solutio Cofiguratio coordiates: β, 1 RON-basis fixed to bet bar : f = ( f1 f f3) RON-basis fixed to the wheel : e = ( e e e )
146 Exercise 5:5 Solutio e = f ( si θ) + f cosθ Agular velocity of bet bar : ω = e, 3 ω 1 = e 1 ; 3, = ; β ω 1 Agular velocity of the wheel : ω = ω + e ( β) = e + f ( β) = f ( β si θ) + f cos θ, 1 3 ω; = f ( si θ) + f cos θ = e, ω = f ; β
147 Exercise 5:5 Solutio 1 Kietic eergy of bet bar : Kietic eergy of the wheel : T = ω I ω = e I e = e I e = I C 3 C 3 3 C 3 T = 1 v v m+ 1 ω I ω O O C = I 147
148 Exercise 5:5 Solutio A e = f ( si θ) + f cosθ Cotact poit betwee ad : A, v = v + ω p A O OA vo = v B + ω pco = ω pbo = ω ( pba + pao ) = e3 ( f1rcosθ + f3rsi θ + f3r) = = ( f ( si θ) + f cos θ ) ( f Rcos θ+ f ( Rsi θ+ r)) = f ( R+ rsi θ )
149 Exercise 5:5 Solutio A v = v + ω p = f ( R+ rsi θ ) + ( f ( β si θ) + f cos θ) f ( r) = f ( R r β) A O OA R Rollig without slippig: va = f( R r β) = R r β = β = r R β = + cost. r 149
150 Exercise 5:5 Solutio A Kietic eergy of the wheel : T = 1 v v m+ 1 ω I ω = O O C 1 1 ( R+ rsi θ) m+ ( f1( β si θ) + f3cos θ) IC( f1( β si θ) + f 3cos θ) = 1 1 ( R+ rsi θ) m+ (( β + si θ) f1 IC f1+ cos θ f3 IC f3) = m( ( R+ rsi θ) + r cos θ ) = mr = mr 4 15
151 Exercise 5:5 Solutio A 1 Kietic eergy of the multibody : T = T( ) = T + T = I m( ( R rsi ) r cos ) + + θ + θ = I + m( ( R+ rsi ) + r cos ) 4 θ θ 4 T 3 1 = I + m( ( R+ rsi θ) + r cos θ), 4 T = 151
152 Exercise 5:5 Solutio A V b g Potetial eergy i the gravitatioal field: Vg = Vg( ) = cost. Q = = 3 The iteractio betwee ad : I = x f + ω M = ω M = ω M = e M = 3 3,, sys 3 3, B; ; B ; B ; B 3 B M Lagrage s equatios: d T T 3 1 = I m( ( R rsi ) r cos ) M dt + + θ + θ = 4 ω 15
Degrees of freedom and coordinates
Degrees of freedom and coordinates Multibody containing N rigid parts: α, α =,..., N Configuration coordinates: ς = ς, ς,..., ς, ς 6N 6N (6N DOF, Gross) 3 4 5 6 ς = x, ς = y, ς = z, ς = ψ, ς = θ, ς = φ,...,
Solve the difference equation
Solve the differece equatio Solutio: y + 3 3y + + y 0 give tat y 0 4, y 0 ad y 8. Let Z{y()} F() Taig Z-trasform o both sides i (), we get y + 3 3y + + y 0 () Z y + 3 3y + + y Z 0 Z y + 3 3Z y + + Z y
Introduction of Numerical Analysis #03 TAGAMI, Daisuke (IMI, Kyushu University)
Itroductio of Numerical Aalysis #03 TAGAMI, Daisuke (IMI, Kyushu Uiversity) web page of the lecture: http://www2.imi.kyushu-u.ac.jp/~tagami/lec/ Strategy of Numerical Simulatios Pheomea Error modelize
CHAPTER 103 EVEN AND ODD FUNCTIONS AND HALF-RANGE FOURIER SERIES
CHAPTER 3 EVEN AND ODD FUNCTIONS AND HALF-RANGE FOURIER SERIES EXERCISE 364 Page 76. Determie the Fourier series for the fuctio defied by: f(x), x, x, x which is periodic outside of this rage of period.
Presentation of complex number in Cartesian and polar coordinate system
1 a + bi, aεr, bεr i = 1 z = a + bi a = Re(z), b = Im(z) give z = a + bi & w = c + di, a + bi = c + di a = c & b = d The complex cojugate of z = a + bi is z = a bi The sum of complex cojugates is real:
L.K.Gupta (Mathematic Classes) www.pioeermathematics.com MOBILE: 985577, 4677 + {JEE Mai 04} Sept 0 Name: Batch (Day) Phoe No. IT IS NOT ENOUGH TO HAVE A GOOD MIND, THE MAIN THING IS TO USE IT WELL Marks:
Inertial Navigation Mechanization and Error Equations
Iertial Navigatio Mechaizatio ad Error Equatios 1 Navigatio i Earth-cetered coordiates Coordiate systems: i iertial coordiate system; ECI. e earth fixed coordiate system; ECEF. avigatio coordiate system;
Last Lecture. Biostatistics Statistical Inference Lecture 19 Likelihood Ratio Test. Example of Hypothesis Testing.
Last Lecture Biostatistics 602 - Statistical Iferece Lecture 19 Likelihood Ratio Test Hyu Mi Kag March 26th, 2013 Describe the followig cocepts i your ow words Hypothesis Null Hypothesis Alterative Hypothesis
FREE VIBRATION OF A SINGLE-DEGREE-OF-FREEDOM SYSTEM Revision B
FREE VIBRATION OF A SINGLE-DEGREE-OF-FREEDOM SYSTEM Revisio B By Tom Irvie Email: tomirvie@aol.com February, 005 Derivatio of the Equatio of Motio Cosier a sigle-egree-of-freeom system. m x k c where m
SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES. Reading: QM course packet Ch 5 up to 5.6
SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES Readig: QM course packet Ch 5 up to 5. 1 ϕ (x) = E = π m( a) =1,,3,4,5 for xa (x) = πx si L L * = πx L si L.5 ϕ' -.5 z 1 (x) = L si
Homework 8 Model Solution Section
MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx
α β
6. Eerg, Mometum coefficiets for differet velocit distributios Rehbock obtaied ) For Liear Velocit Distributio α + ε Vmax { } Vmax ε β +, i which ε v V o Give: α + ε > ε ( α ) Liear velocit distributio
EN40: Dynamics and Vibrations
EN40: Dyamics a Vibratios School of Egieerig Brow Uiversity Solutios to Differetial Equatios of Motio for Vibratig Systems Here, we summarize the solutios to the most importat ifferetial equatios of motio
1. For each of the following power series, find the interval of convergence and the radius of convergence:
Math 6 Practice Problems Solutios Power Series ad Taylor Series 1. For each of the followig power series, fid the iterval of covergece ad the radius of covergece: (a ( 1 x Notice that = ( 1 +1 ( x +1.
Bessel function for complex variable
Besse fuctio for compex variabe Kauhito Miuyama May 4, 7 Besse fuctio The Besse fuctio Z ν () is the fuctio wich satisfies + ) ( + ν Z ν () =. () Three kids of the soutios of this equatio are give by {
Spherical Coordinates
Spherical Coordinates MATH 311, Calculus III J. Robert Buchanan Department of Mathematics Fall 2011 Spherical Coordinates Another means of locating points in three-dimensional space is known as the spherical
Ψηφιακή Επεξεργασία Εικόνας
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ψηφιακή Επεξεργασία Εικόνας Φιλτράρισμα στο πεδίο των συχνοτήτων Διδάσκων : Αναπληρωτής Καθηγητής Νίκου Χριστόφορος Άδειες Χρήσης Το παρόν εκπαιδευτικό
Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit
Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal
Μια εισαγωγή στα Μαθηματικά για Οικονομολόγους
Μια εισαγωγή στα Μαθηματικά για Οικονομολόγους Μαθηματικά Ικανές και αναγκαίες συνθήκες Έστω δυο προτάσεις Α και Β «Α είναι αναγκαία συνθήκη για την Β» «Α είναι ικανή συνθήκη για την Β» Α is ecessary for
Spherical shell model
Nilsso Model Spherical Shell Model Deformed Shell Model Aisotropic Harmoic Oscillator Nilsso Model o Nilsso Hamiltoia o Choice of Basis o Matrix Elemets ad Diagoaliatio o Examples. Nilsso diagrams Spherical
Second Order Partial Differential Equations
Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y
Homework for 1/27 Due 2/5
Name: ID: Homework for /7 Due /5. [ 8-3] I Example D of Sectio 8.4, the pdf of the populatio distributio is + αx x f(x α) =, α, otherwise ad the method of momets estimate was foud to be ˆα = 3X (where
Reminders: linear functions
Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U
Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3
Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all
b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!
MTH U341 urface Integrals, tokes theorem, the divergence theorem To be turned in Wed., Dec. 1. 1. Let be the sphere of radius a, x 2 + y 2 + z 2 a 2. a. Use spherical coordinates (with ρ a) to parametrize.
IIT JEE (2013) (Trigonomtery 1) Solutions
L.K. Gupta (Mathematic Classes) www.pioeermathematics.com MOBILE: 985577, 677 (+) PAPER B IIT JEE (0) (Trigoomtery ) Solutios TOWARDS IIT JEE IS NOT A JOURNEY, IT S A BATTLE, ONLY THE TOUGHEST WILL SURVIVE
Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)
Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts
Biorthogonal Wavelets and Filter Banks via PFFS. Multiresolution Analysis (MRA) subspaces V j, and wavelet subspaces W j. f X n f, τ n φ τ n φ.
Chapter 3. Biorthogoal Wavelets ad Filter Baks via PFFS 3.0 PFFS applied to shift-ivariat subspaces Defiitio: X is a shift-ivariat subspace if h X h( ) τ h X. Ex: Multiresolutio Aalysis (MRA) subspaces
Matrices and Determinants
Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z
Statistical Inference I Locally most powerful tests
Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided
Consider a single-degree-of-freedom system in a free-fall due to gravity. &&x
SIMPLE DROP SHOCK Revisio D By Tom Irvie Email: tomirvie@aol.com November 10, 004 DERIVATION Cosier a sigle-egree-of-freeom system i a free-fall ue to gravity. &&x g m k Where m is the mass, k is the sprig
Outline. Detection Theory. Background. Background (Cont.)
Outlie etectio heory Chapter7. etermiistic Sigals with Ukow Parameters afiseh S. Mazloum ov. 3th Backgroud Importace of sigal iformatio Ukow amplitude Ukow arrival time Siusoidal detectio Classical liear
Chapter 6: Systems of Linear Differential. be continuous functions on the interval
Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations
ST5224: Advanced Statistical Theory II
ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known
Other Test Constructions: Likelihood Ratio & Bayes Tests
Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :
Homework 3 Solutions
Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For
1. Matrix Algebra and Linear Economic Models
Matrix Algebra ad Liear Ecoomic Models Refereces Ch 3 (Turkigto); Ch 4 5 (Klei) [] Motivatio Oe market equilibrium Model Assume perfectly competitive market: Both buyers ad sellers are price-takers Demad:
Fractional Colorings and Zykov Products of graphs
Fractional Colorings and Zykov Products of graphs Who? Nichole Schimanski When? July 27, 2011 Graphs A graph, G, consists of a vertex set, V (G), and an edge set, E(G). V (G) is any finite set E(G) is
EE 570: Location and Navigation
EE 570: Locatio ad Navigatio INS Iitializatio Aly El-Osery Electrical Egieerig Departmet, New Mexico Tech Socorro, New Mexico, USA April 25, 2013 Aly El-Osery (NMT) EE 570: Locatio ad Navigatio April 25,
Errata (Includes critical corrections only for the 1 st & 2 nd reprint)
Wedesday, May 5, 3 Erraa (Icludes criical correcios oly for he s & d repri) Advaced Egieerig Mahemaics, 7e Peer V O eil ISB: 978474 Page # Descripio 38 ie 4: chage "w v a v " "w v a v " 46 ie : chage "y
1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint
1. a) 5 points) Find the unit tangent and unit normal vectors T and N to the curve at the point P, π, rt) cost, t, sint ). b) 5 points) Find curvature of the curve at the point P. Solution: a) r t) sint,,
The Heisenberg Uncertainty Principle
Chemistry 460 Sprig 015 Dr. Jea M. Stadard March, 015 The Heiseberg Ucertaity Priciple A policema pulls Werer Heiseberg over o the Autobah for speedig. Policema: Sir, do you kow how fast you were goig?
6.1. Dirac Equation. Hamiltonian. Dirac Eq.
6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2
n r f ( n-r ) () x g () r () x (1.1) = Σ g() x = Σ n f < -n+ r> g () r -n + r dx r dx n + ( -n,m) dx -n n+1 1 -n -1 + ( -n,n+1)
8 Higher Derivative of the Product of Two Fuctios 8. Leibiz Rule about the Higher Order Differetiatio Theorem 8.. (Leibiz) Whe fuctios f ad g f g are times differetiable, the followig epressio holds. r
Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1
Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test
ECE Notes 21 Bessel Function Examples. Fall 2017 David R. Jackson. Notes are from D. R. Wilton, Dept. of ECE
ECE 6382 Fall 2017 David R. Jackso Notes 21 Bessel Fuctio Examples Notes are from D. R. Wilto, Dept. of ECE Note: j is used i this set of otes istead of i. 1 Impedace of Wire A roud wire made of coductig
Uniform Convergence of Fourier Series Michael Taylor
Uniform Convergence of Fourier Series Michael Taylor Given f L 1 T 1 ), we consider the partial sums of the Fourier series of f: N 1) S N fθ) = ˆfk)e ikθ. k= N A calculation gives the Dirichlet formula
EE512: Error Control Coding
EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3
4. ELECTROCHEMISTRY - II
4. ELETROHEMISTRY - II Molar coductace, Equivalet coductace, cell cetat ad Kohlraush Law :. Give : l 0.98 cm a.3 cm cell cost. cell cost. a l cell cost. a l 0.98.3 0.7538 cm As : ell costat for the cell
MATH 38061/MATH48061/MATH68061: MULTIVARIATE STATISTICS Solutions to Problems on Matrix Algebra
MATH 38061/MATH48061/MATH68061: MULTIVARIATE STATISTICS Solutios to Poblems o Matix Algeba 1 Let A be a squae diagoal matix takig the fom a 11 0 0 0 a 22 0 A 0 0 a pp The ad So, log det A t log A t log
Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------
Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin
Example Sheet 3 Solutions
Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note
DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.
DESIGN OF MACHINERY SOLUTION MANUAL -7-1! PROBLEM -7 Statement: Design a double-dwell cam to move a follower from to 25 6, dwell for 12, fall 25 and dwell for the remader The total cycle must take 4 sec
Outline. M/M/1 Queue (infinite buffer) M/M/1/N (finite buffer) Networks of M/M/1 Queues M/G/1 Priority Queue
Queueig Aalysis Outlie M/M/ Queue (ifiite buffer M/M//N (fiite buffer M/M// (Erlag s B forula M/M/ (Erlag s C forula Networks of M/M/ Queues M/G/ Priority Queue M/M/ M: Markovia/Meoryless Arrival process
Parametrized Surfaces
Parametrized Surfaces Recall from our unit on vector-valued functions at the beginning of the semester that an R 3 -valued function c(t) in one parameter is a mapping of the form c : I R 3 where I is some
Lecture 17: Minimum Variance Unbiased (MVUB) Estimators
ECE 830 Fall 2011 Statistical Sigal Processig istructor: R. Nowak, scribe: Iseok Heo Lecture 17: Miimum Variace Ubiased (MVUB Estimators Ultimately, we would like to be able to argue that a give estimator
ECE Spring Prof. David R. Jackson ECE Dept. Notes 2
ECE 634 Spring 6 Prof. David R. Jackson ECE Dept. Notes Fields in a Source-Free Region Example: Radiation from an aperture y PEC E t x Aperture Assume the following choice of vector potentials: A F = =
Proof of Lemmas Lemma 1 Consider ξ nt = r
Supplemetary Material to "GMM Estimatio of Spatial Pael Data Models with Commo Factors ad Geeral Space-Time Filter" (Not for publicatio) Wei Wag & Lug-fei Lee April 207 Proof of Lemmas Lemma Cosider =
Congruence Classes of Invertible Matrices of Order 3 over F 2
International Journal of Algebra, Vol. 8, 24, no. 5, 239-246 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.2988/ija.24.422 Congruence Classes of Invertible Matrices of Order 3 over F 2 Ligong An and
4.6 Autoregressive Moving Average Model ARMA(1,1)
84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this
Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.
Chemistry 362 Dr Jean M Standard Problem Set 9 Solutions The ˆ L 2 operator is defined as Verify that the angular wavefunction Y θ,φ) Also verify that the eigenvalue is given by 2! 2 & L ˆ 2! 2 2 θ 2 +
Trigonometric Formula Sheet
Trigonometric Formula Sheet Definition of the Trig Functions Right Triangle Definition Assume that: 0 < θ < or 0 < θ < 90 Unit Circle Definition Assume θ can be any angle. y x, y hypotenuse opposite θ
A study on generalized absolute summability factors for a triangular matrix
Proceedigs of the Estoia Acadey of Scieces, 20, 60, 2, 5 20 doi: 0.376/proc.20.2.06 Available olie at www.eap.ee/proceedigs A study o geeralized absolute suability factors for a triagular atrix Ere Savaş
derivation of the Laplacian from rectangular to spherical coordinates
derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used
( )( ) ( )( ) 2. Chapter 3 Exercise Solutions EX3.1. Transistor biased in the saturation region
Chapter 3 Exercise Solutios EX3. TN, 3, S 4.5 S 4.5 > S ( sat TN 3 Trasistor biased i the saturatio regio TN 0.8 3 0. / K K K ma (a, S 4.5 Saturatio regio: 0. 0. ma (b 3, S Nosaturatio regio: ( 0. ( 3
Chapter 6: Systems of Linear Differential. be continuous functions on the interval
Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations
Solutions: Homework 3
Solutios: Homework 3 Suppose that the radom variables Y,, Y satisfy Y i = βx i + ε i : i,, where x,, x R are fixed values ad ε,, ε Normal0, σ ) with σ R + kow Fid ˆβ = MLEβ) IND Solutio: Observe that Y
B.A. (PROGRAMME) 1 YEAR
Graduate Course B.A. (PROGRAMME) YEAR ALGEBRA AND CALCULUS (PART-A : ALGEBRA) CONTENTS Lesso Lesso Lesso Lesso Lesso Lesso : Complex Numbers : De Moivre s Theorem : Applicatios of De Moivre s Theorem 4
2 Composition. Invertible Mappings
Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,
The Simply Typed Lambda Calculus
Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and
Math221: HW# 1 solutions
Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin
Partial Differential Equations in Biology The boundary element method. March 26, 2013
The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet
Finite Field Problems: Solutions
Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The
DIPLOMA PROGRAMME MATHEMATICS SL INFORMATION BOOKLET
b DIPLOMA PROGRAMME MATHEMATICS SL INFORMATION BOOKLET For use by teachers ad studets, durig the course ad i the examiatios First examiatios 006 Iteratioal Baccalaureate Orgaizatio Bueos Aires Cardiff
Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in
Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in : tail in X, head in A nowhere-zero Γ-flow is a Γ-circulation such that
Example 1: THE ELECTRIC DIPOLE
Example 1: THE ELECTRIC DIPOLE 1 The Electic Dipole: z + P + θ d _ Φ = Q 4πε + Q = Q 4πε 4πε 1 + 1 2 The Electic Dipole: d + _ z + Law of Cosines: θ A B α C A 2 = B 2 + C 2 2ABcosα P ± = 2 ( + d ) 2 2
CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS
CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =
DERIVATION OF MILES EQUATION Revision D
By Tom Irvie Email: tomirvie@aol.com July, DERIVATION OF MILES EQUATION Revisio D Itroductio The obective is to derive Miles equatio. This equatio gives the overall respose of a sigle-degree-of-freedom
Παραμετρικές εξισώσεις καμπύλων. ΗΥ111 Απειροστικός Λογισμός ΙΙ
ΗΥ-111 Απειροστικός Λογισμός ΙΙ Παραμετρικές εξισώσεις καμπύλων Παραδείγματα ct (): U t ( x ( t), x ( t)) 1 ct (): U t ( x ( t), x ( t), x ( t)) 3 1 3 Θέσης χρόνου ταχύτητας χρόνου Χαρακτηριστικού-χρόνου
1 String with massive end-points
1 String with massive end-points Πρόβλημα 5.11:Θεωρείστε μια χορδή μήκους, τάσης T, με δύο σημειακά σωματίδια στα άκρα της, το ένα μάζας m, και το άλλο μάζας m. α) Μελετώντας την κίνηση των άκρων βρείτε
CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD
CHAPTER FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD EXERCISE 36 Page 66. Determine the Fourier series for the periodic function: f(x), when x +, when x which is periodic outside this rge of period.
Sixth Term Examination Papers MATHEMATICS LIST OF FORMULAE AND STATISTICAL TABLES
Sixth Term Examiatio Papers MATHEMATICS LIST OF FORMULAE AND STATISTICAL TABLES Pure Mathematics Mesuratio Surface area of sphere = 4πr Area of curved surface of coe = πr slat height Trigoometry a = b
Degenerate Perturbation Theory
R.G. Griffi BioNMR School page 1 Degeerate Perturbatio Theory 1.1 Geeral Whe cosiderig the CROSS EFFECT it is ecessary to deal with degeerate eergy levels ad therefore degeerate perturbatio theory. The
physicsandmathstutor.com
physicsadmathstuto.com physicsadmathstuto.com Jauay 009 blak 3. The ectagula hypebola, H, has paametic equatios x = 5t, y = 5 t, t 0. (a) Wite the catesia equatio of H i the fom xy = c. Poits A ad B o
Every set of first-order formulas is equivalent to an independent set
Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent
HIGH-ACCURACY AB-INITIO ROVIBRATIONAL SPECTROSCOPY
IG-UY -INITIO OVITIONL SPETOSOPY Gábor zakó a Edit Mátyus b ttila G. sászár b astiaa J. raas a ad Joel M. owa a a Eory Uiversity tlata US b Eötvös Uiversity udapest ugary D 7 7 5 8 Eergy / c - SET May
SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM
SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr T t N n) Pr max X 1,..., X N ) t N n) Pr max
B.A. (PROGRAMME) 1 YEAR
Graduate Course B.A. (PROGRAMME) YEAR ALGEBRA AND CALCULUS (PART-A : ALGEBRA) CONTENTS Lesso Lesso Lesso Lesso Lesso Lesso : Complex Numbers : De Moivre s Theorem : Applicatios of De Moivre s Theorem 4
Section 7.6 Double and Half Angle Formulas
09 Section 7. Double and Half Angle Fmulas To derive the double-angles fmulas, we will use the sum of two angles fmulas that we developed in the last section. We will let α θ and β θ: cos(θ) cos(θ + θ)
Solutions to Exercise Sheet 5
Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X
Μαθηματικά Πληροφορικής Συνδυαστικά Θεωρήματα σε Πεπερασμένα Σύνολα
Μαθηματικά Πληροφορικής Συνδυαστικά Θεωρήματα σε Πεπερασμένα Σύνολα Μια διμελής σχέση πάνω σε ένα σύνολο X καλείται μερική διάταξη αν η είναι ανακλαστική, αντισυμμετρική και μεταβατική, δηλαδή: a X, a
3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β
3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle
Written Examination. Antennas and Propagation (AA ) April 26, 2017.
Written Examination Antennas and Propagation (AA. 6-7) April 6, 7. Problem ( points) Let us consider a wire antenna as in Fig. characterized by a z-oriented linear filamentary current I(z) = I cos(kz)ẑ
Tridiagonal matrices. Gérard MEURANT. October, 2008
Tridiagonal matrices Gérard MEURANT October, 2008 1 Similarity 2 Cholesy factorizations 3 Eigenvalues 4 Inverse Similarity Let α 1 ω 1 β 1 α 2 ω 2 T =......... β 2 α 1 ω 1 β 1 α and β i ω i, i = 1,...,
CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS
CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS EXERCISE 01 Page 545 1. Use matrices to solve: 3x + 4y x + 5y + 7 3x + 4y x + 5y 7 Hence, 3 4 x 0 5 y 7 The inverse of 3 4 5 is: 1 5 4 1 5 4 15 8 3
w o = R 1 p. (1) R = p =. = 1
Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 205 ιδάσκων : Α. Μουχτάρης Τριτη Σειρά Ασκήσεων Λύσεις Ασκηση 3. 5.2 (a) From the Wiener-Hopf equation we have:
Nonlinear Motion. x M x. x x. cos. 2sin. tan. x x. Sextupoles cause nonlinear dynamics, which can be chaotic and unstable. CHESS & LEPP CHESS & LEPP
Georg.otaetter@Corell.eu USPAS Avace Accelerator Phic - ue 6 CESS & EPP CESS & EPP 56 Setupole caue oliear aic which ca be chaotic a utable. l M co i i co l i i co co i i co l l l l ta ta α l ta co i i
The Neutrix Product of the Distributions r. x λ
ULLETIN u. Maaysia Math. Soc. Secod Seies 22 999 - of the MALAYSIAN MATHEMATICAL SOCIETY The Neuti Poduct of the Distibutios ad RIAN FISHER AND 2 FATMA AL-SIREHY Depatet of Matheatics ad Copute Sciece
Divergence for log concave functions
Divergence or log concave unctions Umut Caglar The Euler International Mathematical Institute June 22nd, 2013 Joint work with C. Schütt and E. Werner Outline 1 Introduction 2 Main Theorem 3 -divergence
On Generating Relations of Some Triple. Hypergeometric Functions
It. Joural of Math. Aalysis, Vol. 5,, o., 5 - O Geeratig Relatios of Some Triple Hypergeometric Fuctios Fadhle B. F. Mohse ad Gamal A. Qashash Departmet of Mathematics, Faculty of Educatio Zigibar Ade