Modeling and Simulation of Drying Cylinders in Paper Processes

Σχετικά έγγραφα
DuPont Suva 95 Refrigerant

STEAM TABLES. Mollier Diagram

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΣΧΕΔΙΑΣΜΟΥ & ΑΝΑΛΥΣΗΣ ΔΙΕΡΓΑΣΙΩΝ

DuPont Suva. DuPont. Thermodynamic Properties of. Refrigerant (R-410A) Technical Information. refrigerants T-410A ENG

Proses = 0 / 0 Proses = 0 / 36 16" 4576 / 2.3 Barat : 4833 / Utara : 5941 / 3.05 Proses = 63 / 37 Flow : 9936 / 3.2

LUNGOO R. Control Engineering for Development of a Mechanical Ventilator for ICU Use Spontaneous Breathing Lung Simulator LUNGOO

Design and Fabrication of Water Heater with Electromagnetic Induction Heating

DuPont Suva 95 Refrigerant

E#ects of Drying on Bacterial Activity and Iron Formation in Acid Sulfate Soils

Ύγρανση και Αφύγρανση. Ψυχρομετρία. 21-Nov-16

Design Method of Ball Mill by Discrete Element Method

Ελαφρές κυψελωτές πλάκες - ένα νέο προϊόν για την επιπλοποιία και ξυλουργική. ΒΑΣΙΛΕΙΟΥ ΒΑΣΙΛΕΙΟΣ και ΜΠΑΡΜΠΟΥΤΗΣ ΙΩΑΝΝΗΣ

Technical Information T-9100 SI. Suva. refrigerants. Thermodynamic Properties of. Suva Refrigerant [R-410A (50/50)]

VBA Microsoft Excel. J. Comput. Chem. Jpn., Vol. 5, No. 1, pp (2006)

M p f(p, q) = (p + q) O(1)

GF GF 3 1,2) KP PP KP Photo 1 GF PP GF PP 3) KP ULultra-light 2.KP 2.1KP KP Fig. 1 PET GF PP 4) 2.2KP KP GF 2 3 KP Olefin film Stampable sheet

2. Chemical Thermodynamics and Energetics - I

Resurvey of Possible Seismic Fissures in the Old-Edo River in Tokyo

A Method of Trajectory Tracking Control for Nonminimum Phase Continuous Time Systems

Study on Re-adhesion control by monitoring excessive angular momentum in electric railway traction

LP N to BD* C-C = BD C-C to BD* O-H = LP* C to LP* B =5.

Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O

Conductivity Logging for Thermal Spring Well

RECIPROCATING COMPRESSOR CALCULATION SHEET ISOTHERMAL COMPRESSION Gas properties, flowrate and conditions. Compressor Calculation Sheet

RECIPROCATING COMPRESSOR CALCULATION SHEET

Consolidated Drained

The Improvement of Cake Filtration Rate using CO 2

➂ 6 P 3 ➀ 94 q ❸ ❸ q ❼ q ❿ P ❿ ➅ ➅ 3 ➁ ➅ 3 ➅ ❾ ❶ P 4 ➀ q ❺ q ❸ ❸ ➄ ❾➃ ❼ 2 ❿ ❹ 5➒ 3 ➀ 96 q ➀ 3 2 ❾ 2 ❼ ❸ ➄3 q ❸ ➆ q s 3 ➀ 94 q ➂ P ❺ 10 5 ➊ ➋➃ ❸ ❾ 3➃ ❼

Multi-GPU numerical simulation of electromagnetic waves

Reaction of a Platinum Electrode for the Measurement of Redox Potential of Paddy Soil

Development of the Nursing Program for Rehabilitation of Woman Diagnosed with Breast Cancer


* ** *** *** Jun S HIMADA*, Kyoko O HSUMI**, Kazuhiko O HBA*** and Atsushi M ARUYAMA***

2 ~ 8 Hz Hz. Blondet 1 Trombetti 2-4 Symans 5. = - M p. M p. s 2 x p. s 2 x t x t. + C p. sx p. + K p. x p. C p. s 2. x tp x t.

ER-Tree (Extended R*-Tree)

Gro wth Properties of Typical Water Bloom Algae in Reclaimed Water

Optimizing Microwave-assisted Extraction Process for Paprika Red Pigments Using Response Surface Methodology

TRIAXIAL TEST, CORPS OF ENGINEERS FORMAT

,,, (, ) , ;,,, ; -

Journal of the Institute of Science and Engineering. Chuo University

High order interpolation function for surface contact problem

An experimental and theoretical study of the gas phase kinetics of atomic chlorine reactions with CH 3 NH 2, (CH 3 ) 2 NH, and (CH 3 ) 3 N

Development and Verification of Multi-Level Sub- Meshing Techniques of PEEC to Model High- Speed Power and Ground Plane-Pairs of PFBS

Study of In-vehicle Sound Field Creation by Simultaneous Equation Method

By R.L. Snyder (Revised March 24, 2005)

Modeling of the Charge-discharge Behavior of a 12-V Automotive Lead-acid Battery

Physique des réacteurs à eau lourde ou légère en cycle thorium : étude par simulation des performances de conversion et de sûreté

Vol. 31,No JOURNAL OF CHINA UNIVERSITY OF SCIENCE AND TECHNOLOGY Feb

; +302 ; +313; +320,.

Buried Markov Model Pairwise

2?nom. Bacc. 2 nom. acc. S <u. >nom. 7acc. acc >nom < <

ect of Modified Wheat Starches on the Textural Properties of Baked Products, such as Cookies

rs r r â t át r st tíst Ó P ã t r r r â

STUDY OF FINS SHAPES' EFFECT ON NATURAL THERMAL CONVECTION


ΑΥΤΟΜΑΤΟΠΟΙΗΣΗ ΜΟΝΑΔΑΣ ΘΡΑΥΣΤΗΡΑ ΜΕ ΧΡΗΣΗ P.L.C. AUTOMATION OF A CRUSHER MODULE USING P.L.C.


SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

Heat exchanger. Type WT. For the reheating of airflows in rectangular ducting PD WT 1. 03/2017 DE/en

Prepolarized Microphones-Free Field

Metal Oxide Varistors (MOV) Data Sheet

PETROSKILLS COPYRIGHT

Forêts aléatoires : aspects théoriques, sélection de variables et applications

MnZn. MnZn Ferrites with Low Loss and High Flux Density for Power Supply Transformer. Abstract:

Τ.Ε.Ι. ΠΕΙΡΑΙΑ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΙΑΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ

VSC STEADY2STATE MOD EL AND ITS NONL INEAR CONTROL OF VSC2HVDC SYSTEM VSC (1. , ; 2. , )

PETROSKILLS COPYRIGHT

2. Laser Specifications 2 1 Specifications IK4301R D IK4401R D IK4601R E IK4101R F. Linear Linear Linear Linear

Solving an Air Conditioning System Problem in an Embodiment Design Context Using Constraint Satisfaction Techniques

*,* + -+ on Bedrock Bath. Hideyuki O, Shoichi O, Takao O, Kumiko Y, Yoshinao K and Tsuneaki G

difluoroboranyls derived from amides carrying donor group Supporting Information

RECIPROCATING COMPRESSOR CALCULATION SHEET

Isotopic and Geochemical Study of Travertine and Hot Springs Occurring Along the Yumoto Fault at North Coast of the Oga Peninsula, Akita Prefecture

A Comparison Study between Batch and Continuous Process Simulation for the Separation of Carbon-13 Isotope by Cryogenic Distillation

Supplementary Information. Living Ring-Opening Polymerization of Lactones by N-Heterocyclic Olefin/Al(C 6 F 5 ) 3

Injection Molded Plastic Self-lubricating Bearings

Study on the Strengthen Method of Masonry Structure by Steel Truss for Collapse Prevention

APPENDIX A. Summary of the English Engineering (EE) System of Units

ΟΙ Υ ΡΟΓΕΩΛΟΓΙΚΕΣ ΣΥΝΘΗΚΕΣ ΣΤΗΝ ΛΕΚΑΝΗ ΠΟΤΑΜΙΑΣ ΚΑΙ Η ΑΛΛΗΛΟΕΠΙ ΡΑΣΗ ΤΟΥ Υ ΑΤΙΚΟΥ ΚΑΘΕΣΤΩΤΟΣ ΜΕ ΤΗ ΜΕΛΛΟΝΤΙΚΗ ΛΙΓΝΙΤΙΚΗ ΕΚΜΕΤΑΛΛΕΥΣΗ ΣΤΗΝ ΕΛΑΣΣΟΝΑ

.. ntsets ofa.. d ffeom.. orp ism.. na s.. m ooth.. man iod period I n open square. n t s e t s ofa \quad d ffeom \quad orp ism \quad na s \quad m o

wave energy Superposition of linear plane progressive waves Marine Hydrodynamics Lecture Oblique Plane Waves:

Modèles de représentation multi-résolution pour le rendu photo-réaliste de matériaux complexes

r t t r t t à ré ér t é r t st é é t r s s2stè s t rs ts t s

Influence of Flow Rate on Nitrate Removal in Flow Process

Class 03 Systems modelling

P É Ô Ô² 1,2,.. Ò± 1,.. ±μ 1,. ƒ. ±μ μ 1,.Š. ±μ μ 1, ˆ.. Ê Ò 1,.. Ê Ò 1 Œˆ ˆŸ. ² μ Ê ² μ Ì μ ÉÓ. É μ ±, Ì μé μ Ò É μ Ò ² μ Ö

± 20% ± 5% ± 10% RENCO ELECTRONICS, INC.

Data sheet Thick Film Chip Resistor 5% - RS Series 0201/0402/0603/0805/1206

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΓΕΩΤΕΧΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ. Πτυχιακή εργασία

HIV HIV HIV HIV AIDS 3 :.1 /-,**1 +332

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΕΠΑΝΑΣΧΕΔΙΑΣΜΟΣ ΓΡΑΜΜΗΣ ΣΥΝΑΡΜΟΛΟΓΗΣΗΣ ΜΕ ΧΡΗΣΗ ΕΡΓΑΛΕΙΩΝ ΛΙΤΗΣ ΠΑΡΑΓΩΓΗΣ REDESIGNING AN ASSEMBLY LINE WITH LEAN PRODUCTION TOOLS

Comparison of Evapotranspiration between Indigenous Vegetation and Invading Vegetation in a Bog

MARKET INTRODUCTION System integration

ΕΚΘΕΣΗ ΟΚΙΜΗΣ ΙΕΙΣ ΥΣΗΣ ΒΡΟΧΗΣ RAIN PENETRATION TEST

Derivation of Optical-Bloch Equations

Lowara SPECIFICATIONS

Καρδιακή Συχνότητα και Πρόσληψη Οξυγόνου Ατόμων Μέσης Ηλικίας κατά την Εκτέλεση Ελληνικών Παραδοσιακών Χορών

Electronic Supplementary Information (ESI)

Εξάτµιση Σταγονιδίων Μονο-συστατικού και Πολυσυστατικού

Το άτομο του Υδρογόνου

Transcript:

Korean Chem. Eng. Res., Vol. 45, No., February, 007, pp. 7-4 os o o m ml Ç içii k 39-79 ne 7 (006 o 7p r, 006 o 3p }ˆ) Modeling and Simulation of Drying Cylinders in Paper Processes Eun Ho Lee, Ki-Young Kwak and Yeong-Koo Yeo Department of Chemical Engineering, Hanyang University, 7 Haengdang-dong, Seongdong-gu, Seoul 33-79, Korea (Received 7 November 006; accepted 3 December 006) k l p rp rv rl s e p p p l rp p p p. p p er qp nr p l m s rl e v p k p tn. v p kp ƒ d p lr e o p l r m nr p l e ep ˆ ppp r. e p r o m pn l v mp s rp kr p e lp r p m. h Abstract The purpose of the present study is to identify the drying cylinder model in paper plants and to analyze characteristics of process responses for changes in input variables. The model developed in this work is based on actual plant operation data where the steam pressure applied to the cylinder behaves as the major variable. It is found that heat transfer coefficients from the condensate to the canvas could be represented as empirical relations based on heat conductivities and operation data. The effectiveness of the cylinder model is demonstrated by the measured moisture contents and web temperature. Stability of the drying process is analyzed based on the transfer functions derived from the cylinder model. Key words: Paper Process, Drying Cylinder, Heat Transfer Coefficient, Simulation, Stability. rv rl s rp r rp rp s o l e p rp p p l q p ep p l m. rv rp s rl e p, v l, v v p, lr tn p. s rl s e v p k p q tn p p. Depoy[] s rl l e, v, p rp l ep p e mp Mori [] p p lr pr v p m m p l v pp p Iron [3] m. Karlsson [4]p v p m l v p p s e rl p rp l m. Karlsson [5]p v edšp o rn To whom correspondence should be addressed. E-mail: ykyeo@hanyang.ac.kr l s r t e l r p m. s e p l e v k p, e pp lr r rp r p ep pn l ˆ p p rp. kn s rp l pl v p m l m p p tn pq p p m p p tn. v p m l m p p tn pq v, e, n m,, p p. v kl p e m v p m l q m p v k e m mp ˆ p. l l r p pn l t e l p p lr m. p p p l e v p l p p p. s e p n m tp d p p v p m l m p tn pqp p. rv rl v s ~e tn r ˆl p p p bone-dry(ash)p l sn v l l 7

8 pp Ë mëlm p, v p v p m. kn r ˆ ˆ ep o p l m p ˆ r }k l rp nrl n r k rp l kr p Ž p m. l p t r p r š s e p p m l p. lr rl p s r v m pn l sr mp lr,, p rp rn l rp p o l ˆ l.. o om in Š s e rp s single-tierm double-tier p. s rl pre-dry l single-tierm double-tier s after-dry p double-tier sq. s o p Fig. ~4m p l p. Fig. p lp e -o-ƒ d p s o p p p, Fig. e m e pl op p p n ˆ p. Fig. 3p op ƒ dm r v k e p p p, Fig. 4 lp e -ƒ d-o p o p ˆ p. Fig. ~4l p m p single-tier e, Fig. 3. Drying configuration C. Fig. 4. Drying configuration D. Fig.. Drying configuration A. open-run(web + canvas), vaccum roll, open-run, doubletier e, free-run(web) p l p. e v tp lp p, e, v, ƒ d ~ e n r. lr p rp ep ˆ l pl rn r p p. ) pl p m p m t p tkp tp. ) pp lr l r p p p tk pr p tk v lp r. 3) p p pr ov. 4) bone-dry pr. 5) e l v p k p pr. r~ s r p p p lv l p v k p rl. l pl v p e m r n e k e v leˆ rp p m. s e p l pn lr Table, Table Table 3l p m. lr ~ H = f(l, V )p a ˆ rr tlv p r [4, 5]. Table l t lvv kp H, H, H 6 p nr p Š p p rep o l pn m. H = 685 0 6 + ----- L 0 3 76 + 0.675 ( V 60).79 + 0.0486 L 0 3 ( V60 ) 3.39 Fig.. Drying configuration B(free-run). o45 o 007 k / (486 / ) ()

rv r s e p 9 Table Heat transfer coefficients of configuration A Description Thick [mm] Thermal conductivity [Kcal/m/h/ o C] Heat transfer coefficient [Kcal/m /sec/ o C] (web~air) Specific heat capacity [Kcal/kg/ o C] Density [kg/m 3 ] H 6 Canvas.5 0.045 0.36 0.8 0 3 H 5 = 0.0678 Web 0. 0.3.3 0 3 H 4 = 0.3380 Cylinder 5/ 37. 0.3 7.8 0 3 = 0.867 Cylinder 5/ 37. 0.3 7.8 0 3 H Condensate 3.0 0 3 H Table Heat transfer coefficients of configuration C Description Thick [mm] Thermal conductivity [Kcal/m/h/ o C] Heat transfer coefficient [Kcal/m /sec/ o C] Specific heat capacity [Kcal/kg/ o C] Density [kg/m 3 ] H 9 Cylinder 5/ 37. 0.3 7.8 0 3 = 0.867 Cylinder 5/ 37. 0.3 7.8 0 3 H Condensate 3.0 0 3 H Table 3 Heat transfer coefficients of configuration D Description Thick [mm] Thermal conductivity [Kcal/m/h/ o C] Heat transfer coefficient [Kcal/m /sec/ o C] Specific heat capacity [Kcal/kg/ o C] Density [kg/m 3 ] Web 0. 0.3 0.3 0 3 H 5 = 0.0678 Canvas.5 0.045 0.36 0.8 0 3 H 8 = 0.7 vacuum 5 37. 0.3 7.8 0 3 / H = ------- --- + ----- H = 0.000074 V 0.78 () (3) ) p = H Ts T T T L D C ( ( ) H (5) H 6 = ----- + ----- ----- + ----- H 5 H 4 3. o m s e l l vp r p p, e, v ƒ d l p l v. p l p l v v p (Fig. ~4 s). (4) ) e 3 = H T T T L ---- D C ( ( ) = T L ---- D C ( ( ) H 4 (6) (7) Korean Chem. Eng. Res., Vol. 45, No., February, 007

0 pp Ë mëlm 3) v 4 = --- m T 6 --- 0.3.366 0.+ 000 00 [( H 4 ( T 3 ) H 5 ( T 5 )) m ev H ev ] (8) H ev = h vap + h s h vap = 505.3747( T r ) 0.354 + 69.658 T r T T r ---- 4 = = ------- 373.95 T c ϕ h s R -- ϕ.0585 = 0.0085 T 6 ( ) 0.456 (9) (0) () () Ms( y+ y) = Ms y ( ) dms( y) -- g ------- m ev = = ------- Bw m Stefan e (4)p m ev ------- A β = g ------- t Bw β P tot P ----- total P va R v T ln - β P total P vpo R v α a p = ---- ρ a c a Le 3 m ev ------- A α = ---- ρ a c a Le 3 ---- P va T ( ) () () (3) (4) P tot P ---- tot P va R v T ln ----- P α C total P va P tot P ln - vpo P total P vpo (5) 0.354 H ev = 505.3747 ------- + 69.658 ------- 373.95 373.95 0.465 P va = 097 0 5.4 690 ----- T aw + 30 +0.04 R --- + 73.5.0585 T 6 ( ) (3) C = 7.03 0 4 kg water o C Ws (6) 4) ƒ d = 097 0 690 5.4 -- + 30 ϕ (7) 5 = H 5 T 5 T 5 T a L 3 D 3 C 3 ( ( ) H 6 (4) m ev r pi 3 360 - w C 486 log P tot P = va ----- 00 P tot (8) 5) e : m r v v r v k o(fig. 3) 3 = T L ---- D C 6) v : (Fig. 4) 7 ( ( ) H 9 = T 7 T 5 L D C ( ( )) (5) (6) v p p v kp p p v p m m p ˆ p. = P sat ( T) R, M s ( ) (7) l d (R) p p rep e p [5]. ϕ e 47.58 T 6 =.877.0585 + 0.0085 T 6 ( ) p p p sep llv. = 097 0 5.4 690 --- + 30 ϕ (8) (9) 6 = 00 m ev 000 m (9) p l o ep p s o A(Fig. ), B(Fig. ), C(Fig. 3), D(Fig. 4) s l s e p mp, p e l p m kk p o p qs m. lr H 5m p r v p m s l p r v kl m ˆ e p p lp pl. p e l tp v p m m p p p o Cl p rp s ol lp p p, e, H 9p r p lp p. p e m v p r e vrl p k r ˆl p e m p m ov rp ˆp p. ol lp v p m,, p, e p p pn l A, B, C, Dp qs p p lv s rp m. p p Fig. 5m p nk p. o ep eˆ p Laplace p l r pp ep ˆ ˆ p. p 30Í l d m p v, p 30Í p p nl ~ ϕ =p. Bone-dry r l pr v p r p p p p t m. v v p ep lp p. ( Ms( y+ y) Ms( y) )Bw L y = g L y t o45 o 007 k (0) Fig. 5. Input and output variables in drying process.

rv r s e p Table 4 The combination of drying configurations Description Pre-dryer After-dryer Pre-dryer After-dryer Pre-dryer After-dryer Cylinder A+C A+C A A A+C A+C Ratio Web A A A+B+D+B A+B A+B A+B 4. y q r p lr v p m l m p lr H 5 pre-dryer afterdryerp l p m p pn l sr l pn mp, er r m m l s p sr m. p pn pre-dryerm after-dryer p 5Í, 3Í p. p m e /n p m rp r ˆp n e p p v e p n m orl p m l eq r l rp m s }k l. p e m p p ln p 0. t m. e p r l (, p )p m p pr m. Table 4l p o p s l l Fig. 6l Fig. vl ˆ l. Fig. 6 Fig. 7p predryerm after-dryerl p s e l vrp p k vrl p op m ˆ p. p p e m v p r p v p m m p e v r v k p e v l v vrl e r vr v l l p p. Fig. 6p pre-dryer 3 w s e p m, Fig. 7p after-dryer 47 w s e p m e p. Fig. 8 Fig. 9 v p m, Fig. 0 Fig. p e m v p m el ˆ p. Fig. 8 Fig. 9 e m r vrl eq v p open-run free-run v p kp m pre-dryer p n v vp v p m v, e v r Fig. 6. Drying section of cylinder contacting with web (cylinder no.3). Fig. 7. Drying section of the cylinder contacting with web (cylinder no.47). p m ˆ p. Fig. 0 Fig. p e m v p r vrl eq l e p kp, v p open-run free-run v el p. l ratio e n l webp e r p pp p. Fig. 6 Fig. 7p e kp p tp Fig. 8 Fig. 9 v p e m r l p e l r vp p tp l ratio r mp, Fig. 0 Fig. p e p m v p p (Vaccum roll pr v) tp ratio ˆ l. pre-dryl after-dryl p v p m p p k p. p p lr p rnp v k n m l p v el m p p. ~rp pre-dryer v p freewater p v bond-water. After-dryer v p bond-water sizingl k l rp pre-dryer v after-dryer v p lr p pp k p. v dryer r l p lr r n r l s l sr tl l after-dryerl p lr r p. v k m p d m tlr p l after-dryer v p m p ˆ p. kl lp s e p ˆ ˆ p. pp ˆ el Am B ep eˆ ll v p. Korean Chem. Eng. Res., Vol. 45, No., February, 007

pp Ë mëlm Fig. 8. Drying section of the cylinder and vacuum contacting with web (cylinder and vacuum roll no.3). Fig.. The drying cylinder contacting with web (cylinder no.47). X = AX + BU Y= CX+ DU Y = GU (30) T X = Y = T T 3, U = U U T 5 U 3 T 6 Fig. 9. Drying section of cylinder contacting with web (cylinder no.47). T G G G 3 T T 3 T 5 T 6 = G G G 3 G 3 G 3 G 33 G 4 G 4 G 43 G 5 G 5 G 53 G 6 G 6 G 63 U U U 3 (3) Fig. 0. The drying cylinder contacting with web (cylinder no.3). o45 o 007 k r G ij l ˆ l. er rl D 0p, C p p ˆ l t p. p p l l m p t p v kk o l Fig. l p p Ul p l p p p k. kn ol lp s rp l kr l Ž l k. Fig. 3l k p m p pole p p p kr rpp k p. G p n p zero p p kp p v. Fig. 4 e rp p, e e n p l m er nr q l p. lp p er s rp q ˆ ppp k p. p vs ~e pr s l p (,, v k)p l (v p m )p p pp, er rp nrl r l r

rv r s e p 3 ˆl p e p m lp p. 5. Fig.. Step responses (steam: 00 o C, speed:,000 m/min, BW: 50 g/m ). rv r s e p p o l k s o p k e p m. e p v p, e q~l p lr re l p llv p pn mp v k p pr n p p s r k e p p m p r k. pvp s er v p m pn l v mp lr sr mp, l bone-dry pr r l v p r m. e p m v p m m l qn m. v kl p m m p p p er e p m m l v k e m mp Žk l k. s rp m er nr q l lp p er s rp q ˆ ppp k pl. kn s o l l p m kp o r l kr p p m. k Fig. 3. Stability of the drying process(ë: zero, Ë, x: pole). Fig. 4. Simulation of web temperature and moisture content in the dryer process(pre-dryer, after-dryer). A : Evaporation area [m ] Bw : Basis weight [kg/m ] c a : Heat capacity of air [kcal/kg o C] C : Heat capacity of condensate [kcal/kg o C] C : Heat capacity of cylinder [kcal/kg o C] C 3 : Heat capacity of canvas [kcal/kg o C] D : Density of condensate ] [kg/m3 D : Density of cylinder [kg/m 3 ] D 3 : Density of canvas [kg/m 3 ] g : Evaporation rate [kg/m ] H : Heat transfer coefficient between condensate interface and cylinder [kcal/m sec o C] H : Heat transfer coefficient between condensate and cylinder interface [kcal/m sec o C] : Heat transfer coefficient between cylinder and cylinder interface [kcal/m sec o C] H 4 : Heat transfer coefficient between cylinder and web interface [kcal/m sec o C] H 5 : Heat transfer coefficient between web and canvas interface [kcal/m sec o C] H 6 : Heat transfer coefficient between canvas and air [kcal/m sec o C] : Heat transfer coefficient between web and air [kcal/m sec o C] H 9 : Heat transfer coefficient between cylinder and air [kcal/m sec o C] L : Thickness of condensate [m] L : Thickness of cylinder [m] L 3 : Thickness of canvas [m] Le : Lewis number m : Basis weight [kg/m ] Korean Chem. Eng. Res., Vol. 45, No., February, 007

4 pp Ë mëlm m ev Ms r R v P va P tot : Evaporation rate [kg/m sec] : Moisture content [kg/kg] : Radius of cylinder [m] : Gas constant of water vapor [46.5 J/Kgwater/K] : Vapor pressure [bar] : Total pressure [bar] : Partial vapor pressure at the surface of web [bar] T : Temperature of condensate [ o C] T : Temperature of the st cylinder interface [ o C] T 3 : Temperature of the nd cylinder interface [ o C] : Temperature of pulp [ o C] T 5 : Temperature of web [ o C] T 6 : Temperature of web interface [ o C] T 7 : Temperature of vacuum cylinder [ o C] T aw : Temperature of wet bulb [ o C] Ts : Temperature of steam [ o C] V : Operation speed [m/min] w : Wih of web [m] m m α H ev : Heat transfer coefficient between web and air [kcal/m sec] : Heat of evaporation [kcal/kg] h s : Heat of absorption [kcal/kg] h vap : Latent heat [kcal/kg] ρ a : Density of air [kg/m 3 ] : n G ij (s) y. Depoy, J. A., Analog Computer Simulation of Paper Drying A Workable Model, Pulp & Paper M. Canada., 73(), 67-75(97).. Mori, Y., Shimizu, H., Takao, K., Ikari, T. and Nambu, T., Development of A New Automatic Grade Change System for Paper Machine, Proceedings from Control Systems 000, Victoria. B. C., Canada, 3(000). 3. Berrada, M., Tarasiewicz, S., Elkadiri, M. E. and Radziszewski, P. H., A State Model for the Drying Paper in the Paper Product Industry, IEEE Trans. Indust. Electronics., 44(3), 579-586(997). 4. Karlsson, M., Papermaking Science and Technology Book 9, Fapet Oy., 55(000). 5. Karlsson, M., Stenstrom, S. and Baggerud, E., Dynamic Simulation of the Steam Supply System for a Multi-cylinder Dryer, Nordic Pulp and Paper Res. J., 7(), 66-74(00). o45 o 007 k