Microelectronic Circuit Design Fourth Edition - Part II Solutions to Exercises

Σχετικά έγγραφα
Microelectronic Circuit Design Third Edition - Part I Solutions to Exercises

Potential Dividers. 46 minutes. 46 marks. Page 1 of 11

Microelectronic Circuit Design Fifth Edition - Part I Solutions to Exercises

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

EE101: Resonance in RLC circuits

( )( ) ( ) ( )( ) ( )( ) β = Chapter 5 Exercise Problems EX α So 49 β 199 EX EX EX5.4 EX5.5. (a)

2 Composition. Invertible Mappings

IXBH42N170 IXBT42N170

UNIVERSITY OF CALIFORNIA. EECS 150 Fall ) You are implementing an 4:1 Multiplexer that has the following specifications:

ΗΜΥ 307 ΨΗΦΙΑΚΑ ΟΛΟΚΛΗΡΩΜΕΝΑ ΚΥΚΛΩΜΑΤΑ Εαρινό Εξάμηνο 2018

ΗΜΥ 307 ΨΗΦΙΑΚΑ ΟΛΟΚΛΗΡΩΜΕΝΑ ΚΥΚΛΩΜΑΤΑ Εαρινό Εξάμηνο 2017

Capacitors - Capacitance, Charge and Potential Difference

the total number of electrons passing through the lamp.

Electronic Analysis of CMOS Logic Gates

Strain gauge and rosettes

Lecture Stage Frequency Response (1/10/02) Page 210-1

Math221: HW# 1 solutions

[1] P Q. Fig. 3.1

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

Matrices and Determinants

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

MAX4147ESD PART 14 SO TOP VIEW. Maxim Integrated Products 1 MAX4147 EVALUATION KIT AVAILABLE ; Rev 1; 11/96 V CC V EE OUT+ IN+ R t SENSE IN-

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

Srednicki Chapter 55

Operating Temperature Range ( C) ±1% (F) ± ~ 1M E-24 NRC /20 (0.05) W 25V 50V ±5% (J) Resistance Tolerance (Code)

EE512: Error Control Coding

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

Chapter 5. Exercise Solutions. Microelectronics: Circuit Analysis and Design, 4 th edition Chapter 5 EX5.1 = 1 I. = βi EX EX5.3 = = I V EX5.

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

GenX3 TM 300V IGBT IXGA42N30C3 IXGH42N30C3 IXGP42N30C3 V CES = 300V I C110. = 42A V CE(sat) 1.85V t fi typ. = 65ns

Second Order Partial Differential Equations

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

NPN Silicon RF Transistor BFQ 74

IXBK64N250 IXBX64N250

Surface Mount Multilayer Chip Capacitors for Commodity Solutions

Section 8.3 Trigonometric Equations

Μικροηλεκτρονική - VLSI

Smaller. 6.3 to 100 After 1 minute's application of rated voltage at 20 C, leakage current is. not more than 0.03CV or 4 (µa), whichever is greater.

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

Aluminum Electrolytic Capacitors

Aluminum Electrolytic Capacitors (Large Can Type)

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

First Sensor Quad APD Data Sheet Part Description QA TO Order #

1) Formulation of the Problem as a Linear Programming Model

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

Applications. 100GΩ or 1000MΩ μf whichever is less. Rated Voltage Rated Voltage Rated Voltage

Μικροηλεκτρονική - VLSI

Lifting Entry (continued)

+85 C Snap-Mount Aluminum Electrolytic Capacitors. High Voltage Lead free Leads Rugged Design. -40 C to +85 C

FEATURES APPLICATION PRODUCT T IDENTIFICATION PRODUCT T DIMENSION MAG.LAYERS

Homework 3 Solutions

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Second Order RLC Filters

ΚΥΠΡΙΑΚΟΣ ΣΥΝΔΕΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY 21 ος ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ Δεύτερος Γύρος - 30 Μαρτίου 2011

Surface Mount Aluminum Electrolytic Capacitors

1. Ηλεκτρικό μαύρο κουτί: Αισθητήρας μετατόπισης με βάση τη χωρητικότητα

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Μικροηλεκτρονική - VLSI

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

(1) Describe the process by which mercury atoms become excited in a fluorescent tube (3)

Πανεπιστήμιο Πατρών Τμήμα Φυσικής Εργαστήριο Ηλεκτρονικής. Ψηφιακά Ηλεκτρονικά. Οικογένειες Ολοκληρωμένων Κυκλωμάτων Ψηφιακής Λογικής

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

MINIATURE ALUMINUM ELECTROLYTIC CAPACITORS. Characteristics. Leakage Current(MAX) I=Leakage Current(µA) C=Nominal Capacitance(µF) V=Rated Voltage(V)

Μικροηλεκτρονική - VLSI

Homework 8 Model Solution Section

Μικροηλεκτρονική - VLSI

Example Sheet 3 Solutions

DIGITAL DESIGN WITH AN INTRODUCTION TO THE VERILOG HDL Fifth Edition

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006

Long 3000 hour life at 105 C with high ripple current capability 2 and 3 pin versions available Can vent construction

High Performance Voltage Controlled Amplifiers Typical and Guaranteed Specifications 50 Ω System

ST5224: Advanced Statistical Theory II

LTC RO R 2 RE 3 DE 1 RO 2 3 DE 4 DI 2000 FEET OF TWISTED-PAIR WIRE 7 RECEIVER INPUT DI. 4.7nF RO

Thin Film Chip Resistors

w o = R 1 p. (1) R = p =. = 1

( y) Partial Differential Equations

Approximation of distance between locations on earth given by latitude and longitude

( )( ) ( )( ) 2. Chapter 3 Exercise Solutions EX3.1. Transistor biased in the saturation region

SCOPE OF ACCREDITATION TO ISO 17025:2005

Inverse trigonometric functions & General Solution of Trigonometric Equations

Derivation of Optical-Bloch Equations

Section 7.6 Double and Half Angle Formulas

Exercises in Electromagnetic Field

AT Surface Mount Package SOT-363 (SC-70) I I Y. Pin Connections B 1 C 1 E 1 E 2 C 2 B , 7:56 PM

Lifting Entry 2. Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion MARYLAND U N I V E R S I T Y O F

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 24/3/2007

Rating to Unit ma ma mw W C C. Unit Forward voltage Zener voltage. Condition

Concrete Mathematics Exercises from 30 September 2016

Quartz Crystal Test Report

Instruction Execution Times

MnZn. MnZn Ferrites with Low Loss and High Flux Density for Power Supply Transformer. Abstract:

Electrical Specifications at T AMB =25 C DC VOLTS (V) MAXIMUM POWER (dbm) DYNAMIC RANGE IP3 (dbm) (db) Output (1 db Comp.) at 2 f U. Typ.

Αλγόριθμοι και πολυπλοκότητα NP-Completeness (2)

Section 9.2 Polar Equations and Graphs

Συστήματα Διαχείρισης Βάσεων Δεδομένων

4.6 Autoregressive Moving Average Model ARMA(1,1)

ALUMINUM ELECTROLYTIC CAPACITORS LKG

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 8η: Producer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών

SMD Transient Voltage Suppressors

Thick Film Chip Resistors

Transcript:

Page 9 Microelectronic Circuit Design Fourth Edition - Part II olutions to Exercises CHAPTER 6 NM 0.8V 0.4V 0.4 V NM H 3.6V.0V.6 V Page 94 V 0% V + 0. ΔV [ ].4 V [ ].4 V.6V + 0. 0.6 (.6) 0.6V 0.9 0.6 (.6) Checking : V 0% V H 0.9 ΔV V 90% V H 0. ΔV [ ] 0.8 V [ ] 0.8 V 0.6V 0. 0.6 (.6).6V + 0.9 0.6 (.6) Checking : V 90% V + 0.9 ΔV V 50% V H + V 0.6.6.6 V t r t 4 t 3 3 ns t f t t 5 ns Page 95 At P mw : PDP mw ns At P 3 mw : PDP 3mW ns At P 0 mw : PDP 0mW ns pj 3 pj 40 pj Page 97 Z ( A + B) ( B + C) AB + AC + BB + BC AB + BB + AC + BB + BC Z AB + B + AC + B + BC B( A +) + AC + B( C +) B + AC + B Z B + B + AC B + AC 08//0

Page 300 I DD P 0.4mW V DD.5V 60 µa R V V DD.5V 0.V I DD 60µA A W.6x0 4 A 0 4 V.5 0.6 0. 0. V W 4.44 4.4 kω Page 30 I DD V V DD 3.3V 0.V R 0kΩ 3.4µA 3.4x0 6 A 6x0 5 A W 3.3 0.75 0. V 0. V W.09 Page 303 R 0.5V on R on + 8.8kΩ.5V R on.84 kω W 0 4.5 0.60 0.5 W (.84kΩ).98 6.6kΩ R on.03 6x0 5 3.3 0.75 0. 6.6 kω V 3.3V 0.0 V 6.6kΩ +0kΩ V K n R A Page 305 K n R 6x0 5 Ω V V V.03 NM H 3.3 0.75+.0x0 5 6.30 V 3.3.63 ( 6.30) 6.30.45 V NM 0.75+ 6.30 3.3 3 6.30 0.38 V 08//0

Page 309 Using MATAB : fzero(@(vh) ((vh -.9-0.5* sqrt(0.6))^ - 0.5(vh + 0.6)), ) ans.5535 fzero(@(vh) ((vh -.9-0.5* sqrt(0.6))^ - 0.5(vh + 0.6)), 4) ans 3.70 [ ] V 3.6 V H V H 5 0.75 + 0.5 V H + 0.6 0.6 fzero(@(vh) (5-0.75-0.5* (sqrt(vh + 0.6) - sqrt(0.6)) - vh), ) ans 3.6 ( a) 80x0 6 A 00x0 6 A V W 0.646 V V TN 0.6 + 0.5.5 + 0.6 0.6.55 0.60 0.5 0.5 V W 80x0 6 A 00x0 6 A W (.5 0.5 0.646) V W V (b) 80x0 6 A 00x0 6 A W.55 0.60 0. V 0. V W 0.63 V V TN 0.6 + 0.5.+ 0.6 0.6 80x0 6 A 00x0 6 A W V (.5 0. 0.63) V W Page 3 The high logic level is unchanged : V H. 60x0 6 A 50x0 6 A W. 0.75 0. V 0. V W V TN 0.75 + 0.5.+ 0.6 0.6 60x0 6 A 50x0 6 0.78 V A V W ( 3.3 0. 0.78) V W 0.55 6.0 8.89 0.5 9.6 0.40.44.8.96 3 08//0

Page 34 Using MATAB : fzero(@(vh) ((vh -.9-0.5* sqrt(0.6))^ - 0.5(vh + 0.6)), ) ans.5535 γ 0 V TN 0.6V V H.5-0.6.9 V I DD 0 for v O V H 0 00x0 6.9 0.6 V V 00x0 6 (.5 V 0.6) 0 6V 6.8V + 3.6 0 V 0.35V I DD 00x0 6.9 0.6 0.35 0.35 78 µa Checking : I DD 00x0 6 (.5 0.35 0.6) 77 µa Page 39.44V V TN.5+ 0.5 0. + 0.6 0.6 W 60.6x0 6 00x0 6 3.3 0.6 0. 0. W 60.6x0 6 00x0 6 W ( 0.44) W 0.585.7.7 Page 30 I D 00x0 6..5 0.6 0. 0. 79.9 µa which checks. Page 3 The PMO transistor is still saturated so I D 44 µa, and V H.5 V. 5 44x0 6 00x0 6.5 0.6 V V V 0.58 V Page 36 Place a third transistor with W. in parallel with transistors A and B. The W/ ratio of the load transistor remains unchanged : W.8 4 08//0

Page 37 Place a third transistor in series with transistors A and B. The new W/ ratios of transistors A, B and C are W ABC The W/ ratio of the load transistor remains unchanged : W Page 333 M is saturated for all three voltages. I DD 40x0 6. The voltages can be estimated using the on - resistance method. 3mV 64.4mV For the 000 case, R ona 80.µA For the 000 case, R one 64.4mV 80.µA For the 00 case, R onc 804 Ω. 03mV 3mV 80.µA 3. 6.66..8 [.5 ( 0.6) ] 80. µa 844 Ω R onb 64.4mV 80.µA 804 Ω 3mV 64.4mV 886 Ω R ond 80.µA 844 Ω The voltage across a given conducting device is I D R on. mall variations in R on are ignored. ABCDE Y (mv) (mv) 3 (mv) I DD (ua) ABCDE Y (mv) (mv) 3 (mv) I DD (ua) 00000.5 V 0 0 0 0000.5 V.5 V 0 0 0000.5 V 0 0 0 000.5 V.5 V 0 0 0000.5 V 0 0 0 000.5 V.5 V.5 V 0 000.5 V 0 0 0 00 00 30 64 80. 0000.5 V 0.5 V 0 000.5 V.5 V.5 V 0 000 30 0 64 80. 00 30 30 64 80. 000.5 V.5 V.5 V 0 00.5 V.5 V.5 V 0 00 30 64 64 80. 0 00 83 64 80. 0000.5 V 0 0 0 000 30 64 0 80. 000.5 V 0 0 0 00 30 64 0 80. 000.5 V 0 0 0 00 30 64 64 80. 00.5 V 0 0 0 0 0 43 80. 000.5 V 0.5 V 0 00 30 64 64 80. 00 30 0 64 80. 0 66 3 3 80. 00 00 64 30 80. 0 0 64 87 80. 0 4 43 80. 65 3 3 80. 5 08//0

Page 334.5V 80µA P av Page 335 P D 0 - F.5V 0.00 mw x0 4 W 00 µw or 0.00 mw x0 4 W 0.0 W or 0 mw 3x0 6 Hz P D 0 - F(.5V ) 3.x0 9 Hz Page 336 The inverter in Fig. 6.38(a) was designed for a power dissipation of 0. mw. To reduce the power by a factor of two, we must reduce the W/ ratios by a factor of. W W 4.7.36.68 3.36 4mW To increase the power by a factor of, we must increase the W/ ratios by a factor of 0. 0.mW W 0.8 36. W 0. 44.4 To reduce the power by a factor of three, we must reduce the W/ ratios by a factor of 3. W.8 0.603 W 3.33. W 6.66. 3.66 3 3 A BCD 6 08//0

Page 339 t r.rc. 8.8x0 3 Ω ( x0 3 F).7 ns ( x0 3 F) 3.97 ns τ PH 0.69RC 0.69 8.8x0 3 Ω v O ( t) V F ( V F V I )exp t v O ( τ PH ) V H 0.5 V + V H.5.5.35 V RC.35 0. ( 0..5)exp τ PH τ PH RC ln0.5 0.69RC RC v O ( t ) V H 0. V H + V.5+ 0.3.7 V.7 0. ( 0..5)exp t t RC ln 0.9 RC v O ( t ) V + 0. V H + V 0. + 0.3 0.43 V 0.43 0. ( 0..5)exp t t RC ln 0. RC t f t t RC ln 0.+ RC ln0.9 RC ln 9.RC Page 343 3.7.37x0 3 Ω t f (.5x0 3 F).9 ns τ PH.(.37x0 3 Ω) (.5x0 3 F) 0.7 ns (.5x0 3 F) 5.8 ns τ PH 0.69( 8.8x0 3 Ω) (.5x0 3 F) 4.97 ns t r. 8.8x0 3 Ω τ P Page 346 0.7 ns + 4.97 ns T Nτ P0 40.84 ns 80 ns f T 0 9 s.5 MHz 80ns 7 08//0

Page 347 For our Psuedo NMO inverter with V 0. V, C " τ PH.R on C. ox W " W µ n C ox ( V V G TN ). µ n V G V TN ( 50x0 9 m) ( 00cm m) τ PH. 0.606 ps 500cm V s V 3.3 0.85 τ PH.R on C. 0.4µ p V G V TN τ P Page 349 0.606 ps +.63ps 00cm m ( 5cm V s) 3. 0.85. 50x0 9 m.6 ps The PMO transistor is saturated for v O V. P av I DD 40x0 6.5V (.7mA).4 mw P D 5x0 F.5V 0.V We must increase the power by a factor of 0 pf 5pF V.63ps 3.7 ns 8, ns [.5 ( 0.6) ].7 ma 3. mw x0 9 s so the W/ ratios must also be increased by a factor of 8. W 8 3.7 90 W 8 47.4 379 P D 0x0 F.5V 0.V 06 mw 0 9 s 8 08//0

CHAPTER 7 Page 370 ( a) K p 40x0 6 0 800 µa V K 0 n 00x0 6 000 µa ma.00 V V.09 V.3 V ( b) V TN 0.6 + 0.5.5 + 0.6 0.6 ( c) V TP 0.6 0.75.5 + 0.7 0.7 Page 37 a For v I V, V GN V TN 0.6 0.4V and V GP V TP.5+ 0.6 0.9V M N is saturated for v O 0.4 V. M P is in the triode region for v O.6 V..6 V v O.5 V ( b) M P is saturated for v O.6 V. 0.4 V v O.6 V ( c) M N is in the triode region for v O 0.4 V. M P is saturated for v O.6 V. 0 v O 0.4 V W P K n W K p N.5 0 5 Page 373 Both transistors are saturated since V G V D. K n ( V V GN TN ) K p ( V V GP TP ) K n K p V TN V TP V GN V GP v I V DD v I v I V DD 0K p ( V GN V TN ) K p ( V V GP TP ) 0( V GN V TN ) V GP + V TP 4 v I 0.6 v I.73 V 0 v I 0.6 K p ( V V GN TN ) 0K p ( V GP V TP ) ( V GN V TN ) 0( V GP + V TP ) v I 0.6 0( 4 v I 0.6) v I.37 V 9 08//0

Page 375 W K n K R W K p N P K n K p.5 ( V K V + V DD R TN TP ) + 3K R K R (.5 0.6 0.6) (.5 ) + 3(.5) V IH K V V + V R DD TN TP K R V IH.5 (.5.5( 0.6) 0.6).V.5 ( V O K + R )V IH V DD K R V TN V TP (.5+ )..5.5 0.6 K R.5 V I K V R ( V + V DD TN TP ) K R K R + 3 (.5 ).5+ 3.5.5 0.6 0.6 V I ( V K V + V DD R TN TP ) K R (.5.5( 0.6) 0.6) 0.90V.5 + 0.6 0.74V ( V OH K + R )V I + V DD K R V TN V TP (.5+ )0.90 +.5.5( 0.6) + 0.6.38V NM H V OH V IH.38..6 V NM V I V O 0.90 0.74 0.78 V Page 376 0 F ymmetrical Inverter : τ P.R onn C. 0 4.5 0.6 Ω 3.6 ns Page 377 ymmetrical Inverter : R onn τ P.C 0 9 s. 5x0 F W N ' R onn K n ( V G V TN ) 67 0 4.5 0.6 67Ω 3.5 W P.5 W N 78.8 0 08//0

Page 379 The inverters need to be increased in size by a factor of 80ps 50ps.. W. 3.77 4. W. 9.43 0.6 N W N 3.77 3.3 0.75 3.43 3.3 0.5 Page 380.4C τ PH.4R onn C K n V G V TN.4C τ PH.4R onp C K p V G V TN.4C τ PH.4R onn C K n V G V TN.4C τ PH.4R onp C K p V G V TN P W.4C K n (.5 0.6).6 C K n.4c K p (.5 0.6).6 C K p.4c K n ( 3.3 0.75) 0.94 C K n P 9.43 3.3 0.75 8.59 3.3 0.5.4C K p ( 3.3 0.75) 0.94 C K p Page 38 The inverter in Fig. 7. is a symmetrical design, so the maximum current occurs for v O v I V DD. Both transistors are saturated : i 0-4 DN.5 0.6 Checking : i DP 4x0-5 5 (.5 0.6) 4.3 µa Page 38 ( a) PDP CV DD 5 ( b) PDP CV DD 0 3 F 3.3V 5 5 0 3 F(.5V ) 0.3 pj 30 fj 5 ( c) PDP CV DD 0 3 F.8V 5 5 0. pj 0 fj 0.065 pj 65 fj 4.3 µa 08//0

Page 388 Remove the NMO and PMO transistors connected to input E, and ground the source of the NMO transistor connected to input D. The are now 4 NMO transistors in series, and W 4 8 W 5 N P Page 39 There are two NMO transistors in series in the AB and CD NMO paths, and three PMO transistors in the ACE and BDE PMO paths. Therefore : W 4 W W 3 5 5 N ABCD N E Page 396 (a) The logic network for F AB + C is P C B A P CV DD f ( 50x0 F) ( 5V ) ( 0 7 Hz).5 mw 08//0

Page 400 50 pf β 3.6 τ P 3.6τ o + 3.6τ o 63.τ o 50 ff z e ln z ln z z e ln z ln z e 50 pf 7 β.683 50 ff,.68,.683 7.0,.683 3 9.3,.683 4 5.8,.683 5 39,.683 6 373 A o 46 A o A o 594 A o A 6 + 3.6 +0 + 3.6 +00 + 36 A 7 +.68 + 7.0 +9.3 + 5.8 +39 + 373 Page 40 From the figure, 0/ devices give a maximum R on of 4 kω. The W/ ratios must be 4 times larger in order to reduce the maximum R on to kω. W 4 0 40 3 08//0

Page 49 CHAPTER 8 ( a) N 8 0 7 0 048 segments ( b) N 30 9 0 048 segments Page 4 a N 8 0 8 68,435,456 ( b) I DD 0.05W 3.3V 5. ma Current/cell 5.mA 8 cells 56.4 pa Reverse the direction of the substrate arrows, and connect the substrates of the PMO transistors to V DD. Page 46 M A : At t 0 +, V G V TN 4 V and V D.5V, so transistor M A is operating in the triode region. i 60x0 6 5.5.5 43 µa M A : At t 0 +, V G V D, so transistor M A is operating in the saturation region. V TN + 0.6(.5 + 0.6 0.6).59V i 60x0 6 5.5.59 4.8 µa Page 48 M A : At t 0 +, V G V D, so transistor M A is operating in the saturation region. i 60x0 6 5 480 µa M A : At t 0 +, V G V D, so transistor M A is operating in the saturation region. i 60x0 6 ( 5 ) 480 µa 4 08//0

Page 43 a At t 0 +, V G V TN 3-0.7.3 V and V D.9 V, so transistor M A is operating in the triode region. i 60x0 6 3 0 0.7.9.9 54 µa 50x0 ( b) 5 F From Table 6.0 : t f 3.7R on C 3.7 60x0 6 3 0.7 V C V B V TN V C 3 0.7 + 0.5 V C + 0.6 0.6 n CV q 5x0 5 F.89V.60x0 9 C Page 43 ( a) ΔV V V C B C B + C C.9 0.95 49C C C C +.34 ns [ ] V.89 V V C C.95 x 0 5 electrons V 9.0 mv ΔV V C V B C B C C + 3 0.7.3 V 0 0.95 V 9.0 mv 49C C + C C C ( b) τ R C 5 ff on 5kΩ 0.3 ns or τ R C C on C C 5kΩ( 5 ff) 0.5 ns + C B 49 + Page 434 At t 0 +, V G V TN 3-0 - 0.7.3 V and V D.5 V, so transistor M A is operating in the triode region. i D 60x0 6 3 0.7.5.5 79 µa 5 08//0

Page 436 In setting the drain currents equal, we see that the change in W/ cancels out, and the voltages remain the same. i D 5 60x0-6.33 0.7 59.5 µa P D ( 59.5µA) ( 3V ) 0.357 mw As a check, the current should scale with W/ : i D 5 ( 3.5µA ) 58.8 µa Equating drain currents: 5x0-6.5 V O 0.6.4V O + 0.9V O.746 0 V O.V i D 5x0-6.5. 0.6 Checking : 60x0-6. 0.6 Page 488 R on 60x0-6 V O 0.6 5.6 µa P D ( 5.6µA) (.5V ) 78.0 µw 5.6 µa 3.8 kω τ 3.8kΩ( 5 ff) 0.595 ns 60x0 6 ( 3.3 ) Page 440 For all possible input combinations there will be two inverters and 3 output lines in the low state..0 mw P D 5 0.mW Page 44 W.8.63. 6 08//0

Page 444 For a 0 - V input, all transistors will be on and the input nodes will all discharge to 0 V. For the 3- V input, the nodes will all charge to 3 V as long as V TN V. γ.58 V TN 0.7 + 0.5 3 + 0.6 0.6 0.7 + γ 3 + 0.6 0.6.6 V. Thus the nodes will all be a 3 V. The output will drop below V DD /. For the PMO device, V G V TP The PMO transistor will be saturated. For the NMO device, V G V TP Assume linear region operation. 40x0-6 5.+ 0.7 00x0-6 V O.4V O + 0.6 0 V O 68.6 mv.9 0.7 V O V O 3.9 0.7 0.4V..9 0.7.V. 7 08//0

Page 46 i C exp 0.V.98 x 0 3 i C 0.05V CHAPTER 9 i C exp 0.3V.63 x 0 5 i C 0.05V i C exp 0.4V 8.89 x 0 6 i C 0.05V Page 464 The current must be reduced by 5 while the voltages remain the same. I EE 300µA 5 Page 465 I B I E β F + I B3 R C 4.4µA kω 60 µa R C 5( kω) 0 kω I B3 9.9µA 4.4 µa I B 4 07µA 5.0 µa 8.84 mv << 0.7 V I B 4 R C 5.0µA( kω) 0. mv << 0.7 V Page 467 V H 0 0.7 0.7 V V 0 0.mA kω 0.7V +.0V V REF 0.7V. V 0.9 V ΔV -0.7V - (.V ) 0.4 V Page 469 NM H NM 0.4V 0.4 0.05V + ln 0.05 0.07 V 8 08//0

Page 47 P 3.3V 0.3mA + 0.mA.65 mw P 3.3V 0.357mA + 0.mA.84 mw NM H NM 0.6V 0.6 0.05V + ln 0.05 0.0 V From the graph, the VTC slope is - for V I.08 V, V OH 0.7 V and V IH 0.9 V, V O.8 V. NM H 0.7 0.9 0.0 V. NM.08 (.8) 0.0 V The voltages remain the same. Thus the currents must be reduced by a factor of 3, and the resistor values must be increase by a factor of 3. - - - R EE Page 47.7V ( 5.V ) 7.5 kω I E 0.0mA For all inputs low : I EE ΔV V H V REF For an inputs high : I EE 0.7 ( 5.).7.4V ( 5.V ) 0. ma R C 0.4V.90 kω 8 kω 0.mA V kω 99µA 0.7 ( ) 0.3 V ΔV 0.6 V R C 0.6V.00 kω 99µA 0.7 0.7 ( 5.).7 Based upon analysis above, R C 0.6V.85 kω 35µA Page 473 For all inputs low : I EE ΔV V H V REF Page 474 R E V V E EE 0.3mA 0.7 ( 5.).7 V kω 35µA R 0.6V C.85 kω 35µA V kω 99µA 0.7 ( ) 0.3 V ΔV 0.6 V R C 0.6V.00 kω 99µA 0 0.7 ( 5.V ) 0.3 V 5.0 kω ma 9 08//0

Page 475 ( a) For I E 0, v O 5. V. b For I E 0, v O - 5.V Page 476 The transistor's power dissipation is P V CB I C + V BE I E 5V.55mA 50 + 0.7V.55mA 5 The total power dissipation in the circuit is P V CC I C + V EE I E 5V.55mA 50 + 5V.55mA 5 4.3 mw 5.3 mw 3.7 5 For v O 3.7V, I E 3.7 60 µa. 300 5000 0.7 ( 5) At the Q - point, I E 0.7 3.7 ma 300 5000 The transistor's power dissipation is P V CB I C + V BE I E 5V 3.7mA 50 + 0.7V 3.7mA 5 - - - ( a) 4V 5.V ( b) I E 5.V 3kΩ.73 ma I E 0kΩ 0kΩ + R E R E 3.00 kω 4 ( 5. ) 3000 Page 478 Increase the value of each resistor by a factor of 0. 7.8 mw 0kΩ 0kΩ +5kΩ.08 V 4 0000 0 I 4 5. E 3000 Page 48 R C ΔV 0.6V I EE 0.5mA. kω τ P 0.69(.kΩ) ( pf).66 ns P 5.V ( 0.5+ 0.+ 0.)mA 3.64 mw PDP 6.0 pj 4 + 3.47 ma 0000 0 08//0

Page 483 R C R C 0 V 0.4V I EE 0.5mA 800 Ω P I V EE EE 0.5mA.8V PDP.4mW 50 ps 70 fj I EF I EE 50 µa P I V EE EE 0.5mA(.8V ) 0.70 mw.40 mw V H 0 V 0. V V Bias 0. V V BH 0.7 V B 0.9 V V BiasB 0.8 V V AH.4 V A.6 V V BiasA.5 V V EE V AH 0.7V 0.7V.4 0.7 0.7.8 V V EE.8 V V H 0 V, V 0.4 V, : The C - level bias is V BiasC V + V H Using the level shifter in Fig. 9.7, V BH 0.7 V B. V V BiasB 0.9 V V AH.4 V A.8 V V BiasA.6 V V EE V emittera 0.7V 0.7.8 V V EE.8 V 0. V Page 488 For v O V H, I C 0, and P 0. P V DD I DD 5V.43mA Increase R by a factor of 0 : R 0 kω Page 490 0. Γ exp 48. I B 0 A + 0.058 0 α R 0. 0. + 6 Page 49 I B 0A 0 + 0kΩ. 0 0. 54.6 0 0. 48. 48. 6 54.6. ma.59 A 3.34 A β FOR 0 A 3.34 A 3.00 08//0

Γ exp 0.5 403 I B 0 A + 0.05 0 0 0. 403 403 0.769 A V T.38x0 3 73 +50 0.05 + 36.5 mv V.60x0 9 CEMIN 36.5mV ln mv 0.05 Γ exp 0. 54.6 α R 0.5 0.05 + 0.5 5 40 + I B 0mA 0.5( 54.6) 40 5.08 ma β FOR 0mA.08mA 9.4 54.6 08//0

Page 494 ns 6.4ns ln ma I BR.5mA 40.7 I BR.69 i CMAX V CC V CE β F 5 0 500.5mA Q X Q F i F τ F.5mA 0.5ns 0.65 pc Q X >> Q F ma I BR 0.064mA I BR I BR 5.49 ma.5ma 6.4ns ma 6.0 pc 40.7 Page 495 5 0.95 For v I V 0.5 V : i I 4000.0 ma V V + V BE CEAT Using the value of V CEAT in Fig. 9.3, V BE 0.5+ 0.04 0.9 V A better estimate is V CEAT 5mV ln + 0. mv V BE 0.5+ 0.00 0.6 V Page 496 For v I V H 5 V : i IH 5.5 4000.75 ma V 0.8 V BE 0.875mA + (.4mA) 3 Using Eq. (5.9), V BEAT 0.05V ln 0 5 A 40 + 0.79 V 3 Page 499 5V - N (kω)β R I B.5V I B 5.5 4000 0.875mA 3.5V β R 5(kΩ) 0.875mA 0(kΩ) 0.875mA Page 500 5.5 I B + 0.4 β 3.5V R 0. 4000.63 ma.43ma + N (.0mA) 8.3(.63mA) N 7 3 08//0

Page 50 v I V and v O 0 : I B 4 5 V B 4 600 5 600 I 4 0.7 0.7 3 I 5.4 ma 5 ( 3+ 0.7 + 0.7) I B 4 0.375 ma I 4I B 4 5.4 ma 600 V CE 5 30ΩI C V O 5V 30Ω 5.4mA 5 ( 0 + 0.7 + 0.7).5 ma I 4I B 4 9.3 ma 600 3.7 0.70 V Oops! - the transistor is not in the forward - active region. Assume saturation with V CEAT 0.5V. 600 5 0.8 + 0.7 + 3.0 I I B + I C 30 5 0.5+ 0.7 + 3 + 9.6 ma Page 53 a BiCMO NAND gate : Replace the CMO NOR - gate with a two - input CMO NAND - gate, and connect its output to the bases of Q 3 and Q 4. ( b) BiNMO NAND gate : Replace the input CMO NOR - gate with a two - input CMO NAND - gate, and connect M 6 and M 7 in series instead of parallel. 4 08//0