Supporting Information for. Update of spectroscopic data for 4-hydroxyldictyolactone and dictyol E isolated from a Halimeda stuposa - Dictyota

Σχετικά έγγραφα
Supporting Information for. A New Diketopiperazine, Cyclo-(4-S-Hydroxy-R-Proline-R-Isoleucine), from an Australian Specimen of the Sponge

SUPPORTING INFORMATION

Comparison of carbon-sulfur and carbon-amine bond in therapeutic drug: -S-aromatic heterocyclic podophyllum derivatives display antitumor activity

Electronic Supplementary Information

A new ent-kaurane diterpene from Euphorbia stracheyi Boiss

Supporting Information

Supporting Information

New Cytotoxic Constituents from the Red Sea Soft Coral Nephthea sp.

Phenylpropanoids, Sesquiterpenoids and Flavonoids from Pimpinella tragium Vill. subsp. lithophila (Schischkin) Tutin

Eremophila spp. by Combined use of Dual High-Resolution PTP1B and α- Glucosidase Inhibition Profiling and HPLC-HRMS-SPE-NMR

Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2006

Supporting Information. Research Center for Marine Drugs, Department of Pharmacy, State Key Laboratory

Synthesis, structural studies and stability of the model, cysteine containing DNA-protein cross-links

Supporting Information

Supporting Information

Supporting Information. Route to benzo- and pyrido-fused 1,2,4-triazinyl radicals via N'-(het)aryl- N'-[2-nitro(het)aryl]hydrazides

Supporting information. Influence of Aerosol Acidity on the Chemical Composition of Secondary Organic Aerosol from β caryophyllene

Supporting information

Room Temperature Highly Diastereoselective Zn-Mediated. Allylation of Chiral N-tert-Butanesulfinyl Imines: Remarkable Reaction Condition Controlled

Electronic Supplementary Information

Supplementary Information

Lewis Acid Catalyzed Propargylation of Arenes with O-Propargyl Trichloroacetimidate: Synthesis of 1,3-Diarylpropynes

Nickel and Platinum PCP Pincer Complexes Incorporating an Acyclic Diaminoalkyl Central Moiety Connecting Imidazole or Pyrazole Rings

National d Histoire Naturelle, 57 rue Cuvier (C.P. 54), Paris, France. Contents:

The Sponge-Derived Fijianolide Polyketide Class: Further Evaluation of Their Structural and Cytotoxicity Properties

Supporting Information. for. A novel application of 2-silylated 1,3-dithiolanes for the. synthesis of aryl/hetaryl-substituted ethenes and

Supporting Information. Partial thioamide scan on the lipopeptaibiotic trichogin GA IV. Effects on

SUPPORTING INFORMATION

Carbohydrates in the gas phase: conformational preference of D-ribose and 2-deoxy-D-ribose

Supporting Information

The effect of curcumin on the stability of Aβ. dimers

Supporting Information

Structure-Metabolism-Relationships in the microsomal clearance of. piperazin-1-ylpyridazines

Supporting Information. Palladium Complexes with Bulky Diphosphine. Synthesis of (Bio-) Adipic Acid from Pentenoic. Acid Mixtures.

Supporting Information One-Pot Approach to Chiral Chromenes via Enantioselective Organocatalytic Domino Oxa-Michael-Aldol Reaction

Antioxidant Activities of Chemical Constituents Isolated from Echinops orientalis Trauv.

Zebra reaction or the recipe for heterodimeric zinc complexes synthesis

C H Activation of Cp* Ligand Coordinated to Ruthenium. Center: Synthesis and Reactivity of a Thiolate-Bridged

Supporting Information

Chemical Constituents and Antioxidant Activity of Teucrium barbeyanum Aschers.

SUPPORTING INFORMATION

SUPPORTING INFORMATION

Patrycja Miszczyk, Dorota Wieczorek, Joanna Gałęzowska, Błażej Dziuk, Joanna Wietrzyk and Ewa Chmielewska. 1. Spectroscopic Data.

Supplementary Information

A facile and general route to 3-((trifluoromethyl)thio)benzofurans and 3-((trifluoromethyl)thio)benzothiophenes

Supporting Information. Experimental section

Divergent synthesis of various iminocyclitols from D-ribose

Table of Contents 1 Supplementary Data MCD

difluoroboranyls derived from amides carrying donor group Supporting Information

Electronic Supplementary Information

Supporting Information for Substituent Effects on the Properties of Borafluorenes

Metal-free Oxidative Coupling of Amines with Sodium Sulfinates: A Mild Access to Sulfonamides

SUPPLEMENTARY DATA. Waste-to-useful: Biowaste-derived heterogeneous catalyst for a green and sustainable Henry reaction

Direct Transformation of Ethylarenes into Primary Aromatic Amides with N-Bromosuccinimide and I 2 -aq NH 3

Supplementary Information. Living Ring-Opening Polymerization of Lactones by N-Heterocyclic Olefin/Al(C 6 F 5 ) 3

Natural Products Research Institute, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea

Near-Silence of Isothiocyanate-Carbon in 13 C-NMR Spectra. A Case Study of Allyl Isothiocyanate

Supporting Information. A catalyst-free multicomponent domino sequence for the. diastereoselective synthesis of (E)-3-[2-arylcarbonyl-3-

Elucidation of fine-scale genetic structure of sandfish (Holothuria scabra) populations in Papua New Guinea and northern Australia

Supporting Information. for. Single-molecule magnet behavior in 2,2 -bipyrimidinebridged

chlorostibine Iou-Sheng Ke and François P. Gabbai Department of Chemistry, Texas A&M University, College Station, TX

Enantioselective Organocatalytic Michael Addition of Isorhodanines. to α, β-unsaturated Aldehydes

Mandelamide-Zinc Catalyzed Alkyne Addition to Heteroaromatic Aldehydes

Selective mono reduction of bisphosphine

Design and Fabrication of Water Heater with Electromagnetic Induction Heating

Electronic Supplementary Information:

Molecular evolutionary dynamics of respiratory syncytial virus group A in

Electronic Supporting Information. 3-Aminothiophenecarboxylic acid (3-Atc)-induced folding in peptides

Rudi Hendra 1, Paul A. Keller 1* Telephone: Fax:

Aluminium triflate as a Lewis acid catalyst for the ring opening of epoxides in alcohols

Sulfonated graphene as highly efficient and reusable acid carbocatalyst for the synthesis of ester plasticizers

Supporting Information

SUPPLEMENTARY MATERIAL. In Situ Spectroelectrochemical Investigations of Ru II Complexes with Bispyrazolyl Methane Triarylamine Ligands

Table S1. Summary of data collections and structure refinements for crystals 1Rb-1h, 1Rb-2h, and 1Rb-4h.

Supporting Information

Cyclic Cystine-Bridged Peptides from the Marine. Sponge Clathria basilana Induce Apoptosis in. Tumor Cells and Depolarize the Bacterial

Supporting Information. for. Angew. Chem. Int. Ed. Z Wiley-VCH 2003

Supporting Information for Iron-catalyzed decarboxylative alkenylation of cycloalkanes with arylvinylic carboxylic acids via a radical process

Supplementary Materials

Supporting Information for: electron ligands: Complex formation, oxidation and

Supplementary Information

Discovery of multi-target receptor tyrosine kinase inhibitors as novel anti-angiogenesis agents

Supporting information

Supporting Information. Synthesis and biological evaluation of nojirimycin- and

Synthesis of Non-Symmetrically Sulphonated Phosphine Sulphonate Based Pd(II) Catalyst Salts for Olefin Polymerisation Reactions

Supplementary Material for Synthesis of Compact Multidentate Ligands to Prepare Stable Hydrophilic Quantum Dot Fluorophores

Lyotropic Liquid Crystals in Amino acid derived Protic Ionic Liquids: Physicochemical Properties and Behaviour as Amphiphile Self-Assembly Media

Electronic Supplementary Information

Supporting Information

Solvent effects on structures and vibrations of zwitterionic dipeptides: L-diglycine and L-dialanine

Pyrrolo[2,3-d:5,4-d']bisthiazoles: Alternate Synthetic Routes and a Comparative Study to Analogous Fused-ring Bithiophenes

Channels and Monomolecular Nanotubes

Supporting Information

To whom correspondence should be addressed: Dr. Beat Schwaller, Unit of Anatomy,

E-H (E = B, Si, C) Bond Activation by Tuning Structural and Electronic Properties of Phosphenium Cations

Engineering Tunable Single and Dual Optical. Emission from Ru(II)-Polypyridyl Complexes. Through Excited State Design

Free Radical Initiated Coupling Reaction of Alcohols and. Alkynes: not C-O but C-C Bond Formation. Context. General information 2. Typical procedure 2

Supporting Information

Supporting Information

Extended dissolution studies of cellulose in imidazolium based ionic liquids

Transcript:

1 Supporting Information for Update of spectroscopic data for 4-hydroxyldictyolactone and dictyol E isolated from a Halimeda stuposa - Dictyota sp. Assemblage Simon P. B. Ovenden, Jonathan L. Nielson, Catherine H. Liptrot, Richard H. Willis, Dianne M. Tapiolas, Anthony D. Wright and Cherie A. Motti, * Australian Institute of Marine Science, PMB no. 3, Townsville MC, Townsville, 4810, Australia Current address: Defence Science & Technology Organisation, 506 Lorimer St. Fishermans Bend, Victoria, 3207, Australia Current address: ACD Labs UK, Building A, Trinity Court, Wokingham Road, Bracknell, Berkshire, RG42 1PL, England Current address: James Cook University, Townsville, QLD 4811, Australia. Current address: University of Hawaii at Hilo, College of Pharmacy, 34 Rainbow Drive, Hilo, Hawaii 96720, USA. * To whom correspondence should be addressed: Tel.: +61 7 4753 4143. Fax.: +61 7 4772 5852. Email: c.motti@aims.gov.au. Defence Science & Technology Organisation, ACD Labs UK, James Cook University, Australian Institute of Marine Science, University of Hawaii at Hilo.

2 Table of Contents. Page No Figure S1. 1 H NMR spectrum (300 MHz) of 4-hydroxydictyolactone (1) in CDCl 3... 3 Figure S2. 13 C NMR spectrum (75 MHz) of 4-hydroxydictyolactone (1) in CDCl 3... 4 Figure S3. COSY spectrum (300 MHz) of 4-hydroxydictyolactone (1) in CDCl 3... 5 Figure S4. HSQC spectrum (300 MHz) of 4-hydroxydictyolactone (1) in CDCl 3.... 6 Figure S5. HMBC spectrum (300 MHz) of 4-hydroxydictyolactone (1) in CDCl 3... 7 Figure S6. 1 H NMR spectrum (300 MHz) of dictyol E (2) in CDCl 3... 8 Figure S7. COSY spectrum (300 MHz) of dictyol E (2) in CDCl 3... 9 Figure S8. HSQC spectrum (300 MHz) of dictyol E (2) in CDCl 3... 10 Figure S9. HMBC spectrum (300 MHz) of dictyol E (2) in CDCl 3... 11 Table S1. 1 H and 13 C NMR data (300 MHz and 75 MHz, CDCl 3 ) for the trans- and cis-conformers of 4-hydroxydictyolactone (1). 12 Table S2. Comparison of calculated dihedral angles from the 16 possible stereoisomers of the H-3 C-20 trans-conformers and the corresponding cis-conformers of 1 with observed 1 H- 1 H couplings from the 1 H NMR. * indicates those stereoisomers/conformers that match the 1 H NMR data.....13

0.5 1.5 2.5 3.5 4.5 5.5 6.0 6.5 7.0 5 6 7 8 1.18 1.20 1.57 1.59 1.66 1.71 1.90 1.90 1.93 4 2.20 2.21 2.30 2.31 2.93 2.97 2.99 3.15 3.16 3.16 3.19 3.19 3.20 3.21 3.39 3.39 3.41 3.42 3.86 7 9 4.10 4.13 4.29 4.30 4.31 4.43 4.44 4.46 4.47 0 3 5 5.29 5.30 5.33 5.34 5.61 6.88 6.92 6.92 6.93 6.94 6.95 6.95 7.26 S1. 1 H NMR of 1 3

173.37 139.35 136.23 136.07 135.38 131.86 129.28 128.21 125.30 123.92 77.42 77.20 77.00 76.58 72.73 68.72 51 49.06 37.87 35.75 32.27 29.43 25.89 25.63 19.98 18.14 17.69 4 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10

S3. COSY NMR of 1 5 1.5 2.5 3.5 4.5 5.5 6.0 6.5 7.0 7.5 7.0 6.5 6.0 5.5 4.5 f2 (ppm) 3.5 2.5 1.5

S4. HSQC NMR of 1 6 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 7.0 6.5 6.0 5.5 4.5 3.5 f2 (ppm) 2.5 1.5 0.5

S5. HMBC NMR of 1 7 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 8.0 7.5 7.0 6.5 6.0 5.5 4.5 f2 (ppm) 3.5 2.5 1.5 0.5

5.34 5.17 5.16 5.14 4.78 4.76 4.21 2.70 2.67 2.62 2.61 2.59 2.51 2.37 2.22 2.12 2 1.82 1.69 1.67 1.62 S6. 1 H NMR of 2 8 1.24 E+08 4.5E+08 E+08 3.5E+08 E+08 2.5E+08 E+08 1.5E+08 E+08 E+07 0.0E+00 -E+07 7.5 7.0 6.5 6.0 5.5 4.5 3.5 2.5 1.5 0.5

S7. COSY NMR of 2 9 1.5 2.5 3.5 4.5 5.5 5.6 5.4 5.2 4.8 4.6 4.4 4.2 3.8 3.6 3.4 3.2 f2 (ppm) 2.8 2.6 2.4 2.2 1.8 1.6 1.4 1.2

S8. HSQC NMR of 2 10 10 20 30 40 50 60 70 80 90 100 110 120 130 5.4 5.2 4.8 4.6 4.4 4.2 3.8 3.6 3.4 3.2 f2 (ppm) 2.8 2.6 2.4 2.2 1.8 1.6 1.4 1.2

S9. HMBC NMR of 2 11 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 5.5 4.5 3.5 f2 (ppm) 2.5 1.5

12 Table S1. 1 H and 13 C NMR data (300 MHz and 75 MHz, CDCl 3 ) for the trans- and cis-conformers of 4-hydroxydictyolactone (1). Trans-conformer (major compound) Cis-conformer (minor compound) No. 13 C H C H COSY ghmbc δ (m) δ (m, J Hz) δ (m) δ (m, J Hz) 1 135.4 (s) 2 35.8 (d) 3.40 (1H, dd, 7.8, 1.2) H 2-18 C-1, C-3, C-4, C-9, C-10, C-19 35.5 (d) 3.86 (m) 3 5 (d) 4 (1H, br s) C-1, C-2, C-4, C-5, C-10, C-11, C-17, C-18 50.9 1.71 (br s) 4 72.7 (d) 4.30 (1H, dd, 4.2, 2.2) H a -5, H b -5 C-2, C-6 68.1 (d) 4.22 (m) 5 49.1 (t) 2.33 (1H, dd, 1, 2.2) 2.18 (1H, dd, 1, 4.2) H-4, H b -5 H-4, H a -5 C-3, C-4, C-6, C-7, C-20 C-3, C-4, C-6, C-7, C-20 ND 2.81 (m) 2.32 (m) 6 136.1 (s) 7 125.3 (d) 5.32 (1H, ddq, 11.4, 4.2, 0.7) H a -8, H b -8, H 3-20 C-5, C-20 125.4 (d) 5.61 (m) 8 29.4 (t) 3.20 (1H, dddd, 17.5, 11.4, 2.2, 2.2) 2.98 (1H, ddd, 17.5, 7.4, 4.2) H-7, H b -8, H-9 H-7, H a -8, H-9 C-1, C-6, C-7, C-9 C-1, C-6, C-7, C-9 ND 3.21 (m) 2.66 (m) 9 139.5 (d) 6.94 (1H, dt, 7.4, 2.2) H a -8, H b -8 C-2, C-7, C-8, C-19 139.8 (d) 6.88 (dt, 8.0, 3.3) 10 32.3 (d) 1.71 (1H, m) H 3-17 C-2, C-3, C-4, C-11, C-12, C-17 32.6 (d) 1.72 (m) 11 37.9 (t) 1.19 (2H, m) H 2-12 ND 12 25.9 (t) 1.93 (2H, m) H 2-11, H-13 C-14 ND 13 123.9 (d) 2 (1H, t hept, 7.2, 1.4) H 2-12, H 3-15, H 3-16 C-15, C-16 124.3 (d) 7 (1H, t hept, 7.2, 1.4) 14 131.9 (s) 15 17.7 (q) 1.57 (3H, s) H-13 C-13, C-14, C-16 25.7 (q) 1.59 (3H, s) 16 25.6 (q) 1.66 (3H, s) H-13 C-13, C-14, C-15 17.4 (q) 1.74 (3H, s) 17 18.1 (q) 7 (3H, d, 6.7) H-10 C-3, C-10, C-11 18.1 (q) 6 (d, 6.7) 18 68.7 (t) 4.45 (1H, dd, 9.7, 1.2) 4.10 (1H, dd, 9.7, 7.8) H-2, H b -18 H-2, H a -18 C-1, C-2, C-3, C-19 C-3 68.9 (t) 4.41 (dd, 9.6, 1.6) 4.14 (dd, 9.6, 7.3) 19 173.3 (s) ND 20 20.0 (q) 1.90 (3H, br d, 0.7) H-7 C-5, C-6, C-7 25.7 (q) 1.59 (br s) ND = Not detected

13 Table S2. Comparison of calculated dihedral angles from the 16 possible stereoisomers of the H-3 C-20 trans-conformers and the corresponding cis-conformers of 1 with observed 1 H- 1 H couplings from the 1 H NMR. * indicates those stereoisomers/conformers that match the 1 H NMR data. C-2, C-3, C-4, C-10 configuration 1 H- 1 H correlation Calculated dihedral angle Φ Calculated J (Hz) Relevant observed 1 H- 1 H couplings SSSS trans H2-C2-C3-H3-94 0.91 No observed coupling: H-2 couples to H 2-18 only H3-C3-C4-H4 154 8.94 NA H3-C3-C10-H10 60 2.72 No observed coupling: H-3 (br s), H-10 couples to H 3-17 only. SSSS cis H2-C2-C3-H3 138 6.71 NA H3-C3-C4-H4-47 4.94 NA H3-C3-C10-H10 166 10.61 NA SSSR trans H2-C2-C3-H3-99 1.18 No observed coupling: H-2 couples to H 2-18 only H3-C3-C4-H4 158 9.30 NA H3-C3-C10-H10-90 0.80 No observed coupling: H-3 (br s), H-10 couples to H 3-17 only. SSSR cis H2-C2-C3-H3 139 6.89 NA H3-C3-C4-H4-48 4.81 NA H3-C3-C10-H10-176 11.14 NA *SSRR trans H2-C2-C3-H3-102 1.40 No observed coupling: H-2 couples to H 2-18 only H3-C3-C4-H4-87 0.80 No observed coupling: H-3 (br s) H3-C3-C10-H10-85 0.80 No observed coupling: H-3 (br s), H-10 couples to H 3-17 only. SSRR cis H2-C2-C3-H3 134 6.01 NA H3-C3-C4-H4 80 1.31 No observed coupling: H-3 (br s) H3-C3-C10-H10-175 11.11 NA SRRR trans H2-C2-C3-H3-59 2.85 No observed coupling: H-2 couples to H 2-18 only H3-C3-C4-H4-127 5.25 NA H3-C3-C10-H10 70 1.60 No observed coupling: H-3 (br s), H-10 couples to H 3-17 only. SRRR cis H2-C2-C3-H3 104 1.58 No observed coupling: H-2 couples to H 2-18 only H3-C3-C4-H4 62 2 NA H3-C3-C10-H10-126 4.61 NA *SSRS trans H2-C2-C3-H3-94 0.91 No observed coupling: H-2 couples to H 2-18 only H3-C3-C4-H4-89 0.87 No observed coupling: H-3 (br s)

H3-C3-C10-H10 70 1.60 No observed coupling: H-3 (br s), H-10 couples to H 3-17 only. SSRS cis H2-C2-C3-H3 137 6.54 NA H3-C3-C4-H4 74 1.76 No observed coupling: H-3 (br s) H3-C3-C10-H10-174 18 NA SRRS trans H2-C2-C3-H3-68 1.79 No observed coupling: H-2 couples to H 2-18 only H3-C3-C4-H4-125 4.94 NA H3-C3-C10-H10-79 0.97 No observed coupling: H-3 (br s), H-10 couples to H 3-17 only. SRRS cis H2-C2-C3-H3 68 1.79 No observed coupling: H-2 couples to H 2-18 only H3-C3-C4-H4 155 7.64 NA H3-C3-C10-H10 88 0.78 No observed coupling: H-3 (br s), H-10 couples to H 3-17 only. SRSR-trans H2-C2-C3-H3 114 2.74 No observed coupling: H-2 couples to H 2-18 only H3-C3-C4-H4-48 4.44 NA H3-C3-C10-H10 68 1.79 No observed coupling: H-3 (br s), H-10 couples to H 3-17 only. SRSR-cis H2-C2-C3-H3 71 1.51 H3-C3-C4-H4 34 NA H3-C3-C10-H10-82 0.86 No observed coupling: H-3 (br s), H-10 couples to H 3-17 only. SRSS trans H2-C2-C3-H3-47 4.59 NA H3-C3-C4-H4 110 2.75 No observed coupling: H-3 (br s) H3-C3-C10-H10-60 2.72 No observed coupling: H-3 (br s), H-10 couples to H 3-17 only. SRSS cis H2-C2-C3-H3 70 1.60 No observed coupling: H-2 couples to H 2-18 only H3-C3-C4-H4 35 4.70 NA H3-C3-C10-H10 67 1.89 No observed coupling: H-3 (br s), H-10 couples to H 3-17 only. RSRS trans H2-C2-C3-H3 14 8.84 NA H3-C3-C4-H4 94 0.89 No observed coupling: H-3 (br s) H3-C3-C10-H10 75 1.20 No observed coupling: H-3 (br s), H-10 couples to H 3-17 only. RSRS cis H2-C2-C3-H3-109 2.10 No observed coupling: H-2 couples to H 2-18 only H3-C3-C4-H4 68 2.34 No observed coupling: H-3 (br s) H3-C3-C10-H10-157 9.67 NA *RRSR trans H2-C2-C3-H3 102 1.40 No observed coupling: H-2 couples to H 2-18 only H3-C3-C4-H4 87 0.80 No observed coupling: H-3 (br s) H3-C3-C10-H10 84 0.81 No observed coupling: H-3 (br s), H-10 couples to H 3-17 only. RRSR cis H2-C2-C3-H3-139 6.89 NA H3-C3-C4-H4-71 3 No observed coupling: H-3 (br s) 14

H3-C3-C10-H10-178 11.18 NA RSSR trans H2-C2-C3-H3 58 2.98 No observed coupling: H-2 couples to H 2-18 only H3-C3-C4-H4 121 4.32 NA H3-C3-C10-H10-60 2.72 No observed coupling: H-3 (br s), H-10 couples to H 3-17 only. RSSR cis H2-C2-C3-H3-108 1.99 No observed coupling: H-2 couples to H 2-18 only H3-C3-C4-H4-51 4.42 NA H3-C3-C10-H10-173 14 NA RSRR trans H2-C2-C3-H3 48 4.44 NA H3-C3-C4-H4-106 2.26 No observed coupling: H-3 (br s) H3-C3-C10-H10 54 3.54 NA RSRR cis H2-C2-C3-H3-104 1.58 No observed coupling: H-2 couples to H 2-18 only H3-C3-C4-H4 63 2.90 No observed coupling: H-3 (br s) H3-C3-C10-H10-142 7.40 NA RRRR trans H2-C2-C3-H3 99 1.18 No observed coupling: H-2 couples to H 2-18 only H3-C3-C4-H4-154 8.94 NA H3-C3-C10-H10 82 0.86 No observed coupling: H-3 (br s), H-10 couples to H 3-17 only. RRRR cis H2-C2-C3-H3-146 8.07 NA H3-C3-C4-H4 58 3.51 NA H3-C3-C10-H10-134 6.01 NA RRRS trans H2-C2-C3-H3 97 5 No observed coupling: H-2 couples to H 2-18 only H3-C3-C4-H4-158 9.30 NA H3-C3-C10-H10-54 3.54 NA RRRS cis H2-C2-C3-H3-155 9.41 NA H3-C3-C4-H4 71 3 No observed coupling: H-3 (br s) H3-C3-C10-H10 80 0.93 No observed coupling: H-3 (br s), H-10 couples to H 3-17 only. *RRSS trans H2-C2-C3-H3 102 1.40 No observed coupling: H-2 couples to H 2-18 only H3-C3-C4-H4 86 0.77 No observed coupling: H-3 (br s) H3-C3-C10-H10 86 0.79 No observed coupling: H-3 (br s), H-10 couples to H 3-17 only. RRSS cis H2-C2-C3-H3-135 6.18 NA H3-C3-C4-H4-74 1.76 No observed coupling: H-3 (br s) H3-C3-C10-H10-178 11.18 NA RSSS trans H2-C2-C3-H3 49 4.28 NA H3-C3-C4-H4 121 4.32 NA 15

H3-C3-C10-H10 173 14 NA RSSS cis H2-C2-C3-H3-111 2.35 No observed coupling: H-2 couples to H 2-18 only H3-C3-C4-H4-51 4.42 NA H3-C3-C10-H10-161 10.13 NA 16