REDOX (2) pe as a master variable. C. P. Huang University of Delaware CIEG 632

Σχετικά έγγραφα
ΚΕΦΑΛΑΙΟ 3( ΑΝΤΙΔΡΑΣΕΙΣ ΟΞΕΙΔΩΣΗΣ - ΑΝΑΓΩΓΗΣ!

ΚΕΦΑΛΑΙΟ 3 ΑΝΤΙΔΡΑΣΕΙΣ ΟΞΕΙΔΩΣΗΣ - ΑΝΑΓΩΓΗΣ

Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O

2. Chemical Thermodynamics and Energetics - I

1. Οξειδοαναγωγικές αντιδράσεις στα φυσικά υδατικά συστήματα

4. ELECTROCHEMISTRY - II

VBA Microsoft Excel. J. Comput. Chem. Jpn., Vol. 5, No. 1, pp (2006)

2. Βασικές αρχές-α. Χημικές ισορροπίες Αντιδράσεις οξέων βάσεων Οξειδοαναγωγικές διεργασίες

ΚΕΦΑΛΑΙΟ 3 ΑΝΤΙ ΡΑΣΕΙΣ ΟΞΕΙ ΩΣΗΣ - ΑΝΑΓΩΓΗΣ

Enthalpy data for the reacting species are given in the table below. The activation energy decreases when the temperature is increased.

E#ects of Drying on Bacterial Activity and Iron Formation in Acid Sulfate Soils

3. Υπολογίστε το μήκος κύματος de Broglie (σε μέτρα) ενός αντικειμένου μάζας 1,00kg που κινείται με ταχύτητα1 km/h.

Conductivity Logging for Thermal Spring Well

6. ΤΕΛΙΚΗ ΙΑΘΕΣΗ ΤΑΦΗ Γενικά

CONCENTRATIVE PROPERTIES OF AQUEOUS SOLUTIONS: DENSITY, REFRACTIVE INDEX, FREEZING POINT DEPRESSION, AND VISCOSITY

The Simply Typed Lambda Calculus

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Ηµεροµηνία: Τετάρτη 18 Απριλίου 2012 ΕΚΦΩΝΗΣΕΙΣ

ΕΞΕΤΑΣΕΙΣ ΣΤΗ ΓΕΝΙΚΗ ΧΗΜΕΙΑ

TMA4115 Matematikk 3

Physical and Chemical Properties of the Nest-site Beach of the Horseshoe Crab Rehabilitated by Sand Placement

Section 8.3 Trigonometric Equations

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

1 η Σειρά προβλημάτων στο μάθημα Εισαγωγική Χημεία

1. Arrhenius. Ion equilibrium. ก - (Acid- Base) 2. Bronsted-Lowry *** ก - (conjugate acid-base pairs) HCl (aq) H + (aq) + Cl - (aq)

Matrices and Determinants

Isotopic and Geochemical Study of Travertine and Hot Springs Occurring Along the Yumoto Fault at North Coast of the Oga Peninsula, Akita Prefecture

ΟΞΕΙΔΟΑΝΑΓΩΓΙΚEΣ ΓΕΩΧΗΜΙΚΕΣ ΔΙΕΡΓΑΣΙΕΣ. Αριάδνη Αργυράκη

stability and aromaticity in the benzonitrile H 2 O complex with Na+ or Cl

ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ. Γενικής Παιδείας Χημεία Α Λυκείου ΥΠΗΡΕΣΙΕΣ ΠΑΙΔΕΙΑΣ ΥΨΗΛΟΥ ΕΠΙΠΕΔΟΥ. Επιμέλεια: ΒΑΣΙΛΗΣ ΛΟΓΟΘΕΤΗΣ

9-amino-(9-deoxy)cinchona alkaloids-derived novel chiral phase-transfer catalysts

Inverse trigonometric functions & General Solution of Trigonometric Equations

CH 3 CH 2 COOCH 2 CH 2 CH 3 + H 2 O

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

2 Answer all the questions.

ΘΕΡΜΟΚΗΠΙΑΚΕΣ ΚΑΛΛΙΕΡΓΕΙΕΣ ΕΚΤΟΣ ΕΔΑΦΟΥΣ ΘΡΕΠΤΙΚΑ ΔΙΑΛΥΜΑΤΑ

Υ ΑΤΙΚΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΤΟΜΕΑΣ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΜΗΧΑΝΙΚΗΣ ΚΑΙ ΕΠΙΣΤΗΜΗΣ Κ. Π. ΧΑΛΒΑ ΑΚΗΣ ΜΥΤΙΛΗΝΗ Καθηγητής Περ.

Supplementary Table 1. Construct List with key Biophysical Properties of the expression

Enthalpy and Entropy

2 Composition. Invertible Mappings

Exercises to Statistics of Material Fatigue No. 5

Areas and Lengths in Polar Coordinates

Copper-catalyzed formal O-H insertion reaction of α-diazo-1,3-dicarb- onyl compounds to carboxylic acids with the assistance of isocyanide

Reaction of a Platinum Electrode for the Measurement of Redox Potential of Paddy Soil

ΙΖΗΜΑΤΟΛΟΓΙΑ. Ενότητα 12:Μη-κλαστική ιζηματογένεση Δρ. Αβραμίδης Παύλος Σχολή Θετικών Επιστημών Τμήμα Γεωλογίας

Συστήματα Διαχείρισης Βάσεων Δεδομένων

Introduction. Strong Electrolyte Weak Electrolyte Dissociation depends on concentration, model as reaction

An experimental and theoretical study of the gas phase kinetics of atomic chlorine reactions with CH 3 NH 2, (CH 3 ) 2 NH, and (CH 3 ) 3 N

Potential Dividers. 46 minutes. 46 marks. Page 1 of 11

Introduction. Strong Electrolyte Weak Electrolyte Dissociation depends on concentration, model as reaction Speciation

Θερμοχημεία Κεφάλαιο 2 ο

Second Order RLC Filters

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

Άσκηση. Ισχυρό οξύ: Η 2 SeO 4 Ασθενές οξύ: (CH 3 ) 2 CHCOOH Ισχυρή βάση: KOH Ασθενής βάση: (CH 3 ) 2 CHNH 2

CHEM5. General Certificate of Education Advanced Level Examination June Unit 5 Energetics, Redox and Inorganic Chemistry

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

ΠΡΟΣΟΜΟΙΩΣΕΙΣ ΧΗΜΙΚΩΝ ΔΙΕΡΓΑΣΙΩΝ ΜΕ ΧΡΗΣΗ ΤΟΥ ASPEN HYSYS: ΕΦΑΡΜΟΓΗ ΣΤΗΝ ΕΛΛΗΝΙΚΗ ΑΕΡΟΠΟΡΙΚΗ ΒΙΟΜΗΧΑΝΙΑ

Supporting information. An unusual bifunctional Tb-MOF for highly sensing of Ba 2+ ions and remarkable selectivities of CO 2 /N 2 and CO 2 /CH 4

Quantitative chemical analyses of rocks with X-ray fluorescence analyzer: major and trace elements in ultrabasic rocks

Areas and Lengths in Polar Coordinates

Instruction Execution Times

Óõíåéñìüò ΕΚΦΩΝΗΣΕΙΣ. 2NH + 3Cl N + 6HCl. 3 (g) 2 (g) 2 (g) (g) 2A + B Γ + 3. (g) (g) (g) (g) ποια από τις παρακάτω εκφράσεις είναι λανθασµένη;

Supporting information. Influence of Aerosol Acidity on the Chemical Composition of Secondary Organic Aerosol from β caryophyllene

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

MnZn. MnZn Ferrites with Low Loss and High Flux Density for Power Supply Transformer. Abstract:

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

, are amongst the easiest enthalpy changes to determine directly.... [2]

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Περιβαλλοντική Βιοτεχνολογία- Environmental Biotechnology

Supporting Information

Differential equations

Electrolyzed-Reduced Water as Artificial Hot Spring Water

Site-Selective Suzuki-Miyaura Cross-Coupling Reactions of 2,3,4,5-Tetrabromofuran

Ισχυροί και ασθενείς ηλεκτρολύτες μέτρα ισχύος οξέων και βάσεων νόμοι Ostwald

Supporting Information

Lewis Acid Catalyzed Propargylation of Arenes with O-Propargyl Trichloroacetimidate: Synthesis of 1,3-Diarylpropynes

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

Ψηφιακή Οικονομία. Διάλεξη 11η: Markets and Strategic Interaction in Networks Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών

#%" )*& ##+," $ -,!./" %#/%0! %,!

Υ ΡΟΓΕΩΛΟΓΙΚΕΣ ΣΥΝΘΗΚΕΣ ΚΑΙ ΠΡΟΒΛΗΜΑΤΑ ΥΠΟΒΑΘΜΙΣΗΣ ΤΗΣ ΠΟΙΟΤΗΤΑΣ ΤΩΝ ΥΠΟΓΕΙΩΝ ΝΕΡΩΝ ΣΤΗΝ ΠΕΡΙΟΧΗ ΜΕΣΣΗΝΗΣ, Ν.ΜΕΣΣΗΝΙΑΣ

8Q5SAC) 8Q5SAC UV2Vis 8500 ( ) ; PHS23C ) ;721 ( ) :1 4. ;8Q5SAC : molπl ;Britton2Robinson Q5SAC BSA Britton2Robinson,

Πολυτεχνείο Κρήτης Σχολή Μηχανικών Περιβάλλοντος. Σηµειώσεις

Chemistry 112 Name Homework Exam III Form A Section June 21,

( ) 2 and compare to M.

Approximation of distance between locations on earth given by latitude and longitude

ΕΦΑΡΜΟΓΗ ΕΥΤΕΡΟΒΑΘΜΙΑ ΕΠΕΞΕΡΓΑΣΜΕΝΩΝ ΥΓΡΩΝ ΑΠΟΒΛΗΤΩΝ ΣΕ ΦΥΣΙΚΑ ΣΥΣΤΗΜΑΤΑ ΚΛΙΝΗΣ ΚΑΛΑΜΙΩΝ

ΑΝΑΚΤΗΣΗ ΦΩΣΦΟΡΙΚΩΝ ΜΕ ΠΡΟΣΡΟΦΗΣΗ ΣΕ ΥΔΡΟΞΥ-ΟΞΕΙΔΙΑ ΣΙΔΗΡΟΥ ΑΠO ΤΗΝ ΕΚΡΟΗ ΒΙΟΛΟΓΙΚΗΣ ΕΠΕΞΕΡΓΑΣΙΑΣ ΛΥΜΑΤΩΝ. Κυριακή Καλαϊτζίδου MSc Χημικός Μηχανικός

SERIES DATASHEET INDUCTORS RF INDUCTORS (MRFI SERIES)

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

Syntheses and Properties of New Photocurable Silicones

DuPont Suva. DuPont. Thermodynamic Properties of. Refrigerant (R-410A) Technical Information. refrigerants T-410A ENG

Φασματοσκοπία υπεριώδους-ορατού (UV-Vis)

Figure 1 T / K Explain, in terms of molecules, why the first part of the graph in Figure 1 is a line that slopes up from the origin.

ST5224: Advanced Statistical Theory II

Laplace Expansion. Peter McCullagh. WHOA-PSI, St Louis August, Department of Statistics University of Chicago

EE101: Resonance in RLC circuits

CHEM5 (JUN15CHEM501) General Certificate of Education Advanced Level Examination June Energetics, Redox and Inorganic Chemistry

Direct Transformation of Ethylarenes into Primary Aromatic Amides with N-Bromosuccinimide and I 2 -aq NH 3

Electronic Supplementary Information

Transcript:

REDOX (2) pe as a master variable C. P. Huang University of Delaware CIEG 632 1

8.0 pe as a Master Variable E O,R = E o O,R 2. 303RT log n R O E O, R = E o O, R + 2. 303RT n O log R E R, O = E o R, O 2. 303RT n O log R E R, O = E o R, O 2. 303RT + n log R O 2

pe as a Master Variable G = G o + 2.303RT n log R O 3

4 pe as a Master Variable = = + = = = = = + O R log n 1 pe pe O R log n 1 n logk pe pe O R log n 1 n logk log(e) O R log n 1 n logk nlog(e) O R log logk (O)(e) (R) K Red;K ne Ox o n o O R o o E n G n K pe e pe,.. log ) log( 9 16 364 1 = = = = = O R n pe pe o log 1 + = R O n pe pe o log 1

pe as a Master Variable G o = 2.303RTlogK = 1.364logK = 23.064nE o o G logk = 1.364 o o G E = 23.604n = = o ne 0.05915 logk 16.9n = = 16.9nE o 0.05915logK n G in Kcal/mol E in volt 5

+ + + = + 6

ph versus pe 7

Example 8.2. Calculate the pε values for the following equilibrium systems (25 o C, I =0) 8

Example What is the pε of an acid rain containing 10-5 M of Fe 3+ and 10-3 M of Fe 2+? Fe 3+ + e = Fe 2+ ; E o = 0.76 v pε o = (1/n)log K = 16.91E o O,R =16.9x0.76 = 12.85 pε = pe o log([fe +2 ]/[Fe 3+ ] =1 2.85 log(10-3 /10-5 ) = 12.85-2 = 10.85 9

Example What is the pε of a natural water in equilibrium with atmospheric air at P O2 = 0.21 atm and ph = 7.5? ½ O 2 (g) + 2H+ + 2e = H 2 O(l); log K = 41.55 (e) =10-13.45 pε = 13.45 10

Example Water in equilibrium with γ-mno 2 and Mn 2+ (10-5 M) at ph = 8. γ-mno 2 +4H + +2e = Mn 2+ +H 2 O; K =10 43.01 K =[Mn 2+ ]/([H + ] 2 [e] 2 ) 43.01 = log([mn 2+ ]/[MnO 2 ]) +4pH + 2pε pε =(43.01/2) (1/2)(log 10-5 ) -16 = 8.0 11

Example Sediment containing FeOOH(s) and FeCO 3 (s) FeOOH(s) +HCO - 3 (10-3 M) + 2H + + e = FeCO 3 (s) + 2H + ; pε o (w) =-0.8 E H = pε/16.9 = pε o /16.9 = (- 0.8/16.9) = - 0.047 v (b) Deep layer of lake; DO =0.03 mg/l; ph=7 K H (O 2 ) = 10-3 M/atm (1/4) O 2 + H + + e = (1/2)H 2 O; pe o (w) =13.75 pε =13.75 +(1/4)log (1/P O2 ) = 13.75 + (1/4) log(10-3 ) =13.75+(-0.75)=12.0 E H = pε/16.9 = 12.0/16.9 = 0.77 v P O2 = (3x10-5 /32) = 10-6 atm [O 2 )aq)] = 0.03 mg/l = 0.3x10-4 g/l = 3x10-5 (g/l)/32 (g/mol) = 10-6 M P(O 2 ) = [O 2 )aq)] /K H (O 2 ) =10-3 atm 12

Example 8.3. calculate the equilibrium composition of the following solutions (25oC, I=0) both in equilibrium with the atmosphere (P(O 2 )= 0.21 atm): =20.78+0.5*LOG(0.21*10^(-4))= 18.44 =20.78+0.5*LOG(0.21*10^(-14))=13.44 13

Log({Fe 3+ }/{Fe 2+ ]) = 18.44-13= 5.4 14

{ Fe } 3+ = { Fe } 3+ 2 15. 5 K 10 = 2+ 2 + 2 0. 5 { Fe } { H } ( P O ) 2 2+ { Fe } = 10 2 ( 15. 5 / 2) + 0. 25 { H }( P O ) = 10 5. 58 {Fe 3+ }+{Fe 2+ } = 10-4 {Fe 3+ }=10-4 {Fe 2+ }=10-4 /10 5.88 =10-9.88 15

+ 2 { H } = 10 =. { Mn }( ) 0. 71 K 2+ P O 2 0 5 ph = 7 10 Mn = = 4. 35x10 10 ( 0. 21) 14 2+ { } 0. 7 0. 5 15 16

Fe 3+ /Fe 2+ 17

Fe 3+ /Fe 2+ log K 18 Stumm & Morgan

Water Stability 19

20

Example 8.4. Construct a diagram showing the pε dependence of a 10-4 M SO 4 2- -HS - system at ph = 10 and 25 o C. = kj/mol SO4-742 HS 12.6 H2O -237.2-194.2 21

log (H 2 )=-20-2pe log (O 2 ) =-43.1+4pe pe 8(Pe+7) 1+8(Pe+7) log(1+8(pe+7) LOG(HS) LOG(SO4 log O2 Log(H2) -12-40 1 0-4 -44-91.1 4-11 -32 1 0-4 -36-87.1 2-10 -24 1 0-4 -28-83.1 0-9 -16 1 0-4 -20-79.1-2 -8-8 1.00000001 4.34294E-09-4 -12-75.1-4 -7 0 2 0.301029996-4.301-4.301-71.1-6 -6 8 100000001 8.000000004-12 -4-67.1-8 -5 16 1E+16 16-20 -4-63.1-10 -4 24 1E+24 24-28 -4-59.1-12 -3 32 1E+32 32-36 -4-55.1-14 -2 40 1E+40 40-44 -4-51.1-16 -1 48 1E+48 48-52 -4-47.1-18 0 56 1E+56 56-60 -4-43.1-20 1 64 1E+64 64-68 -4-39.1-22 2 72 1E+72 72-76 -4-35.1-24 3 80 1E+80 80-84 -4-31.1-26 4 88 1E+88 88-92 -4-27.1-28 5 96 1E+96 96-100 -4-23.1-30 6 104 1E+104 104-108 -4-19.1-32 7 112 1E+112 112-116 -4-15.1-34 8 120 1E+120 120-124 -4-11.1-36 9 128 1E+128 128-132 -4-7.1-38 10 136 1E+136 136-140 -4-3.1-40 11 144 1E+144 144-148 -4 0.9-42 12 152 1E+152 152-156 -4 4.9-44 pe=-7+ (1/8)log([SO 4 ]/[HS]) log([so 4 ]/[HS]) = 8(pe+7) [SO 4 ]/[HS]=exp{8(pe+7)} S T =[SO 4 ]+[HS] S T =[HS](1+exp{8(pe+7)} [HS]=S T /(1+exp{8(pe+7)} log(hs) = log S T - log(1+8(pe+7)) log (SO 4 )= log (HS)+8(pe+7) 22

log (H 2 )=-20-2pe log (O 2 ) =-43.1+4pe 23 Stumm & Morgan

Example 8.6. reduction of NO 3 - to NH 4 + at ph =7 N T =10-4 M At ph = 7 [NH 4+ ]/[NH 3 ] =10 49.2 [e] 8 [NH 4+ ]=[NH 3 ]10 49.2 [e] 8 N T =[NH 3 ]+[NH 4+ ] N T ]=[NH 3 ](1+10 49.2 [e] 8 ) [NH 3 ]=N T /(1+10 49.2 [e] 8 ) log[nh 3 ]= log N T log(1+10 49.2 [e] 8 ) log[nh 4+ ]=log[nh 3 ]+49.2+log[e] 8 24

pe e 1+10^(49.2) NH3 NH4 O2 H2 e -2 100 1.5849E+65-69.2-4 -63.1-10 2-1 10 1.5849E+57-61.2-4 -59.1-12 1 0 1 1.5849E+49-53.2-4 -55.1-14 0 1 0.1 1.5849E+41-45.2-4 -51.1-16 -1 2 0.01 1.5849E+33-37.2-4 -47.1-18 -2 3 0.001 1.5849E+25-29.2-4 -43.1-20 -3 4 0.0001 1.5849E+17-21.2-4 -39.1-22 -4 5 0.00001 1584893193-13.2-4 -35.1-24 -5 6 1E-06 16.8489319-5.22657238-4.02657238-31.1-26 -6 7 1E-07 1.00000016-4.00000007-10.8000001-27.1-28 -7 8 1E-08 1-4 -18.8-23.1-30 -8 9 1E-09 1-4 -26.8-19.1-32 -9 10 1E-10 1-4 -34.8-15.1-34 -10 11 1E-11 1-4 -42.8-11.1-36 -11 12 1E-12 1-4 -50.8-7.1-38 -12 25

Example 8.7. Redox equilibrium of chlorine How do Cl 2 (aq), HOCl, OCl - and Cl - depend on pε in a solution in which TOTAL = 10-5 M? 26

Cl T = [HOCl] + [Cl - ] [Cl - ] = [HOCl]10 50.8 [H + ][e] 2 ph =2 Cl T = [HOCl](1 + 10 48.8 [e] 2 ) Cl T = [HOCl](1 + 10 48.8 [e] 2 ) log [HOCl] = -5 + log(1+10 48.8 [e] 2 ) log[ocl - ] = -7.3 + ph + log[hocl] log[cl - ] = 48.8-2pε + log[hocl] log[cl 2 (aq)] = 53.8-2pH - 2pε + 2 log[hocl] log[cl 2 (aq)] = 49.8-2pε + 2 log[hocl] log[cl 2 (aq)] = -47.2 + 2pε + 2 log[cl - ] ph =5 Cl T = [HOCl](1 + 10 45.8 [e] 2 ) Cl T = [HOCl](1 + 10 45.8 [e] 2 ) log [HOCl] = -5 + log(1+10 45.8 [e] 2 ) log[ocl - ] = -7.3 + ph + log[hocl] log[cl - ] = 45.8-2pε + log[hocl] log[cl 2 (aq)] = 43.8-2pε + 2 log[hocl] 27 log[cl 2 (aq)] = -47.2 + 2pε + 2 log[cl - ]

ph =8 Cl T = [HOCl](1 + 10 43.8 [e] 2 ) Cl T = [HOCl](1 + 10 43.8 [e] 2 ) log [HOCl] = -5 + log(1+10 43.8 [e] 2 ) log[ocl - ] = -7.3 + ph + log[hocl] log[cl - ] = 43.8-2pε + log[hocl] log[cl 2 (aq)] = 53.8-2pH - 2pε + 2 log[hocl] log[cl 2 (aq)] = 37.8-2pε + 2 log[hocl] log[cl 2 (aq)] = -47.2 + 2pε + 2 log[cl - ] 28

ph = 2 pe e 1+10^(48.8)e2 [HOCl] [Cl] [Cl2(aq)] [OCl] 18 1E-18 6.30957E+12-17.8-5 -21.8-21.2-23.1 19 1E-19 63095734449-15.8-5 -19.8-19.2-21.1 20 1E-20 630957345.5-13.8-5 -17.8-17.2-19.1 21 1E-21 6309574.445-11.8000001-5 -15.8-15.2-17.1 22 1E-22 63096.73445-9.80000688-5 -13.8-13.2-15.1 23 1E-23 631.9573445-7.80068777-5.0007-11.801-11.201-13.101 24 1E-24 7.309573445-5.86389203-5.0639-9.9278-9.3278-11.164 25 1E-25 1.063095734-5.02657238-6.2266-10.253-9.6531-10.327 26 1E-26 1.000630957-5.00027393-8.2003-12.201-11.601-10.3 27 1E-27 1.00000631-5.00000274-10.2-14.2-13.6-10.3 28 1E-28 1.000000063-5.00000003-12.2-16.2-15.6-10.3 29

pe e 1+10^(45.8)e2 [HOCl] [Cl] [Cl2(aq)] [OCl] 18 1E-18 6309573446-14.8-5 -21.8-21.2-17.1 19 1E-19 63095735.45-12.8-5 -19.8-19.2-15.1 20 1E-20 630958.3445-10.8000007-5 -17.8-17.2-13.1 21 1E-21 6310.573445-8.80006883-5.0001-15.8-15.2-11.1 22 1E-22 64.09573445-6.80682913-5.0068-13.814-13.214-9.1068 23 1E-23 1.630957344-5.2124426-5.4124-12.625-12.025-7.5124 24 1E-24 1.006309573-5.0027316-7.2027-14.205-13.605-7.3027 25 1E-25 1.000063096-5.0000274-9.2-16.2-15.6-7.3 26 1E-26 1.000000631-5.00000027-11.2-18.2-17.6-7.3 27 1E-27 1.000000006-5 -13.2-20.2-19.6-7.3 28 1E-28 1-5 -15.2-22.2-21.6-7.3 30

pe e 1+10^(42.8)e2 [HOCl] [Cl] [Cl2(aq)] [OCl] 18 1E-18 6309574.445-11.8000001-5 -21.8-21.2-17.1 19 1E-19 63096.73445-9.80000688-5 -19.8-19.2-15.1 20 1E-20 631.9573445-7.80068777-5.0007-17.801-17.201-13.101 21 1E-21 7.309573445-5.86389203-5.0639-15.928-15.328-11.164 22 1E-22 1.063095734-5.02657238-6.2266-16.253-15.653-10.327 23 1E-23 1.000630957-5.00027393-8.2003-18.201-17.601-10.3 24 1E-24 1.00000631-5.00000274-10.2-20.2-19.6-10.3 25 1E-25 1.000000063-5.00000003-12.2-22.2-21.6-10.3 26 1E-26 1.000000001-5 -14.2-24.2-23.6-10.3 27 1E-27 1-5 -16.2-26.2-25.6-10.3 28 1E-28 1-5 -18.2-28.2-27.6-10.3 31

Electrochemical potential revisit 32

33

34

35

pε vs ph diagrams 36

37

38

39

40 Stumm & Morgan

41

Fe(III)/CO 2 /H 2 O (1) Fe 3+ + e = Fe 2+ ; E o = 0.7817; K = 10 13.029 (2) Fe 3+ + OH - = Fe(OH) 2+ ; K = 10 11.57 (3) Fe(OH) 2+ + e = Fe 3+ + OH-; E o = 0.086; K = 10 1.45 (4) Fe(OH) 3 (s) + e = Fe 2+ + 3OH - ; E o = -1.4267; K = 10-24.12 (5) FeCO 3 (s) = Fe 2+ + CO 2-3 ; K = 10-13.45 (6) Fe(OH) 3 (s) + e + CO 2-3 = FeCO 3 (s) + 3OH - ; K = 10-13.46 (7) FeCO 3 (s) + 2OH - = Fe(OH) 2 + CO 2-3 ; K = 10 4.05 (8) Fe(OH) 3 (s) + CO 2-3 + e = FeCO 3 (s) + 3OH - ; E o = -0.796; K = 10-13.46 (9) Fe(OH) 2 (s) + OH - = Fe(OH) 3- ; K =10 8.44 (10) Fe(OH) 3 (s) + e = Fe(OH) 3- ; E o = -0.56; K =10-9.46 42

43

44

45 Stumm & Morgan

46 Stumm & Morgan

47 Stumm & Morgan

48 Stumm & Morgan

2 + SO 4 + 8H + 6e = S(s) + 4H2O;logK = 36. 2 + S (s) + 2H + 2e = H2 S(aq);logK = 4. 8 + HS = S(s) + H + 2 e;logk = 2. 2 2 + SO 4 + 3H 2S(aq) + 2H = 4S(s) + 4H2O;logK = 21. 8 49 Stumm & Morgan

S T = 10-2 M; ph =4 i) H 2 S-S S(s) + 2H + + 2e = H 2 S(aq); K = 104.8 10 4. 8 = [ H S( aq) ] 2 + 2 2 [ S( s) ][ H ] [ e] 4.8 = log {[H 2 S(aq]/[S(s)]} +2pH +2e log {[H 2 S(aq]/[S(s)]} +2pE =4.8-2pH log {[H 2 S(aq]/[S(s)]} +2pE =-3.2 at ph =4 at log {[H 2 S(aq]/[S(s)]} = 0 pe = -0.6 pe < -0.6; [H 2 S(aq)] =S T =10-2 M pe >-0.6; log[h 2 S(aq)] =-3.2-2pE 50

ii) S(s)-SO 4 2- SO 4 2- + 8H + + 6e =S(s) +4H 2 O; K=10 36.2 10 36. 2 = [ S( s) ] 2 + 8 [ SO ][ H ] [ e] 6 4 36.2 = log {[S(s)/[SO 2-4 ]} + 8pH + 6 pe log {[S(s)/[SO 2-4 ]} + 6 pe =36.2 8pH at ph =4 log {[S(s)/[SO 2-4 ]} + 6 pe =36.2 8pH = 4.2 at log {[S(s)/[SO 2-4 ]} =0, pe = 4.2/6 = 0.4 pe > 0.4; [SO 4 2- ]] = 10-2 pe <0.4; log [SO 4 2- ] = 6pE -4.2 51

iii) H 2 S(aq)/SO 4 2- SO 4 2- + 10H + +8e = H 2 S(aq)+ 4H 2 O; K=10 41 41 10 = [ H S( aq) ] [ ][ ] 2 + 10 SO H [ e] 8 4 2 41 = log{[h 2 S(aq)]/[SO 4 2- ] +10 ph + 8 pe log{[h 2 S(aq)]/[SO 4 2- ] }+8 pe = 41-10 ph at ph = 4; log{[h 2 S(aq)]/[SO 4 2- ] } + 8pE = 1 at [H 2 S(aq)]/[SO 4 2- ] = 1; pe =1/8 = 0.125 pe < 0.125; log[so 4 2- ] = 8 pe -1; [H 2 S(aq)] = 10-2 pe > 0.125; log[h 2 S(aq)] = 1-8 pe; [SO 4 2- ] = 10-2 52

53

Reference electrodes AgCl/Ag electrode Calomel electrode 54

55

56

57

58

59

60

61

(a) The chemical reaction taking place in cell (i) is composed of the following half reactions: E cell (i) is a direct measure of G o =-nfe cell (i) G o =1x96530.47x1.13569/1000=109.612 kj (b) The standard potential of the Cl 2 /Cl electrode, 0.5Cl 2 (g) + e = Cl - is given by: E(Cl 2,Cl)=E cell (i)+e(agcl,cl)=1.13596+0.22234= 1.3580V G o = FE= -96530.47X1.3580 = -131.068 kj 62

(c) S o and H o for the cell Ag(s) +0.5Cl 2 (g)=agcl(s) S = nf(de cell /dt) H =-nfe + nft(de cell /dt) E cell = 1.28958-(4.31562x10-1 )T-(2.7922x10-7 )T 2 de cell /dt=-4.31562x10-1 -2x2.7922x10-7 T At 25 o C, de cell /dt=-0.43173 (mv/deg) E cell = -0.12742 V H o = 96500(-0.12742-0.00043173*298.19)/1000 = -24.463 kj/mol S o = 96500*(0.00043173)=41.6618 J/deg/mol 63

Effect of complex formation on EMF I = 0 I >0 = 64

E Zn RT 2F 1 ln [ Zn 2+ = E + 2 o, Zn( s) 2 Zn, Zn( s) + ] Zn( II) = = [ Zn 2+ ] + [ ZnCl 2+ 4 [ Zn ]( 1 + β [ Cl ] ) 4 2 4 ] E Zn Zn( II) = 1 ] 2+ [ ] + β4[ Cl Zn 2+, Zn( s) o = E + Zn 2 4, Zn( s) RT 2F ln 4 ( 1+ β [ Cl ] ) 4 [ Zn( II)] E Zn 4 RT ( 1+ [ Cl ] ) + ln ([ Zn( )]) o RT = E 2+ ln II, Zn( s) Zn, Zn( s) 4 2F 2F 2+ β 65

Redox conditions in natural water pε o (w) =pε o +(n H /2) log K w Table 8.6a at ph = 7, NO 3 - can oxidize HS - to SO 4 2-66

67 Stumm & Morgan

68

This, for a set of assumed actual conditions, such as p(co 2 )=10-3.5 atm, [CH 2 O]=10-6 M, [SO 4 2- ]=10-3 M, p(h 2 S) =10-2 atm, Q =10 2.35 Q/K=10-37.6+2.35 =10-35.25 < 0 69

Redox Intensity and the biochemical cycle 70

Microbial mediation 71

72 Stumm & Morgan

73 Stumm & Morgan

74 Stumm & Morgan

75

Microbial Mediated Redox Reactions Oxygen reduction C organic + O 2 == CO 2 Nitrate reduction (nitrate reducing bacteria) 5C organic + 4NO 3 + 4H + == NH 4 + + 5CO 2 + 2H 2 O Fe 3+ reduction C organic + 4Fe(OH) 3 + 8H + == 4Fe 2+ + CO 2 + 10H 2 O Fe 3+ is insoluble, Fe 2+ is soluble Sulfate reduction SO 4 2- + 2C organic + 2H 2 O == H 2 S + 2HCO 3 Pyrite versus siderite If Fe 2+ is present: Fe 2+ + H 2 S + S = FeS 2 (pyrite) + 2H + Pyrite (and other sulfide minerals are highly insoluble. If iron is not present, but HCO 3 is (i.e., ph > 7): Fe 2+ + HCO 3 == FeCO 3 (siderite) + H + 76

Microbially Mediated Redox Reactions Methanogenesis CO 2 reduction Aceticlasis Fermentation CO 2 + 4H 2 = CH 4 + 2H 2 O CH 3 COO - + H + = CO 2 + CH 4 No outside electron donors organic compounds serve as electron donor and acceptor Products included acetate and H 2 77

78

79 Stumm & Morgan

80

81

82

83

84

Succession of Redox Environments 85

86 Stumm & Morgan