DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

Σχετικά έγγραφα
Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates

Section 8.3 Trigonometric Equations

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Srednicki Chapter 55

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

EE512: Error Control Coding

Finite Field Problems: Solutions

PARTIAL NOTES for 6.1 Trigonometric Identities

Review Test 3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Inverse trigonometric functions & General Solution of Trigonometric Equations

D Alembert s Solution to the Wave Equation

Math221: HW# 1 solutions

Second Order Partial Differential Equations

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

2 Composition. Invertible Mappings

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Trigonometric Formula Sheet

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

CRASH COURSE IN PRECALCULUS

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

Section 9.2 Polar Equations and Graphs

Homework 3 Solutions

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C

Example Sheet 3 Solutions

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

derivation of the Laplacian from rectangular to spherical coordinates

Homework 8 Model Solution Section

If we restrict the domain of y = sin x to [ π 2, π 2

Solutions to Exercise Sheet 5

Matrices and Determinants

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Numerical Analysis FMN011

Approximation of distance between locations on earth given by latitude and longitude

Section 7.6 Double and Half Angle Formulas

Similarly, we may define hyperbolic functions cosh α and sinh α from the unit hyperbola

Trigonometry 1.TRIGONOMETRIC RATIOS

C.S. 430 Assignment 6, Sample Solutions

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 24/3/2007

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

( ) 2 and compare to M.

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

1 String with massive end-points

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

Section 8.2 Graphs of Polar Equations

The Simply Typed Lambda Calculus

Statistical Inference I Locally most powerful tests

Μονοβάθμια Συστήματα: Εξίσωση Κίνησης, Διατύπωση του Προβλήματος και Μέθοδοι Επίλυσης. Απόστολος Σ. Παπαγεωργίου

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr

Spherical Coordinates

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Tridiagonal matrices. Gérard MEURANT. October, 2008

Other Test Constructions: Likelihood Ratio & Bayes Tests

Second Order RLC Filters

6.3 Forecasting ARMA processes

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

IIT JEE (2013) (Trigonomtery 1) Solutions

ΚΥΠΡΙΑΚΟΣ ΣΥΝΔΕΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY 21 ος ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ Δεύτερος Γύρος - 30 Μαρτίου 2011

Εργαστήριο Ανάπτυξης Εφαρμογών Βάσεων Δεδομένων. Εξάμηνο 7 ο

4.6 Autoregressive Moving Average Model ARMA(1,1)

Math 6 SL Probability Distributions Practice Test Mark Scheme

Notes on the Open Economy

Assalamu `alaikum wr. wb.

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

[1] P Q. Fig. 3.1

Solution Series 9. i=1 x i and i=1 x i.

the total number of electrons passing through the lamp.

Reminders: linear functions

Lecture 26: Circular domains

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET

Forced Pendulum Numerical approach

Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O

MathCity.org Merging man and maths

department listing department name αχχουντσ ϕανε βαλικτ δδσϕηασδδη σδηφγ ασκϕηλκ τεχηνιχαλ αλαν ϕουν διξ τεχηνιχαλ ϕοην µαριανι

ΑΝΙΧΝΕΥΣΗ ΓΕΓΟΝΟΤΩΝ ΒΗΜΑΤΙΣΜΟΥ ΜΕ ΧΡΗΣΗ ΕΠΙΤΑΧΥΝΣΙΟΜΕΤΡΩΝ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

( y) Partial Differential Equations

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

EE101: Resonance in RLC circuits

Potential Dividers. 46 minutes. 46 marks. Page 1 of 11

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

Calculating the propagation delay of coaxial cable

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 11/3/2006

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

w o = R 1 p. (1) R = p =. = 1

On a four-dimensional hyperbolic manifold with finite volume

Technical Information T-9100 SI. Suva. refrigerants. Thermodynamic Properties of. Suva Refrigerant [R-410A (50/50)]

CE 530 Molecular Simulation

Transcript:

DESIGN OF MACHINERY SOLUTION MANUAL -7-1! PROBLEM -7 Statement: Design a double-dwell cam to move a follower from to 25 6, dwell for 12, fall 25 and dwell for the remader The total cycle must take 4 sec Choose suitable programs for rise and fall to mimize accelerations Plot the SVAJ diagrams Given: RISE DWELL FALL DWELL 1 6 2 12 4 15 h 1 2 h 2 h 2 h 4 Cycle time: τ 4 sec Solution: See Mathcad file P7 1 The camshaft turns 2π rad durg the time for one cycle Thus, its speed is ω 2 rad τ ω = 1571 rad sec 2 From Table 9-2, the motion program with lowest acceleration that does not have fite jerk is the modified trapezoidal The modified trapezoidal motion is defed local coordates by equations 1 The numerical constants these equations are first defed below constants C 1 through C 11 c 1 944 c 2 9544 c 4124 c 4 61425769 c 5 2444614 c 6 22297 c 7 7247 c 1611154 c 9 5577 c 1 4666917 c 11 1229264 The equations for the rise or fall terval () are divided to 5 subtervals These are: for <= <= / where, for these equations, is a local coordate that ranges from to, s 1 (,, h) h c 1 c 2 s 4 v 1 (,, h) c h 1 1 cos 4 for / <= <= / a 1 (,, h) c h s 4 j 1 (,, h) c h 4 cos 4 2 2 s 2 (,, h) h c 5 c 6 c 7 v 2 (,, h) h c c 6 a 2 (,, h) c h j 2 (,, h) for / <= <= 5/ s (,, h) h c c 2 s 4 π c 9 2 v (,, h) h c c 1 cos 4 π

DESIGN OF MACHINERY SOLUTION MANUAL -7-2 a (,, h) c h s 4 π j (,, h) c h 4 cos 4 π 2 for 5/ <= <= 7/ 2 s 4 (,, h) h c 5 c 1 c 11 v 4 (,, h) h c c 1 a 4 (,, h) c h j 4 (,, h) 2 for 7/ <= <= s 5 (,, h) h c 1 c 2 s 4 π c 1 v 5 (,, h) c h 1 1 cos 4 π a 5 (,, h) c h s 4 π j 5 (,, h) c h 4 cos 4 π 2 4 The above equations can be used for a rise or fall by sertg the proper values of,, and h To plot the SVAJ curves, first defe a range function that has a value of one between the values of a and b and zero elsewhere R(, a, b) if( ( > a) ( b), 1, ) 5 The global SVAJ equations are composed of four tervals (rise, dwell, fall, and dwell) The local equations above must be assembled to a sgle equation each for S, V, A, and J that applies over the range <= <= 6 6 Write the global SVAJ equations for the first terval, <= <= 1 For this terval, the local and global frames are cocident so the local equations can be used as written, substitutg only for h 1 for h and 1 for Note that each subterval function is multiplied by the range function so that it will have nonzero values only over its subterval For <= <= 1 S 1 ( ) R, 1, 1 s 1, 1, h 1 R,, 1 s 2, 1, h 1 R, 5 1 s, 1, h 1 R, 7 1 s 4, 1, h 1 R, 7 1, 1 s 5, 1, h 1 V 1 ( ) R, 1, 1 v 1, 1, h 1 R,, 1 v 2, 1, h 1 R, 5 1 v, 1, h 1 R, 7 1 v 4, 1, h 1 R, 7 1, 1 v 5, 1, h 1

DESIGN OF MACHINERY SOLUTION MANUAL -7- A 1 ( ) R, 1, 1 a 1, 1, h 1 R,, 1 a 2, 1, h 1 R, 5 1 a, 1, h 1 R, 7 1 a 4, 1, h 1 R, 7 1, 1 a 5, 1, h 1 J 1 ( ) R, 1, 1 j 1, 1, h 1 R,, 1 j 2, 1, h 1 R, 5 1 j, 1, h 1 R, 7 1 j 4, 1, h 1 R, 7 1, 1 j 5, 1, h 1 7 Write the global SVAJ equations for the second terval, 1 <= <= 1 2 For this terval, the value of S is the value of S at the end of the previous terval and the values of V, A, and J are zero because of the dwell For 1 <= <= 1 2 S 2 ( ) R, 1, 1 2 S 1 1 V 2 ( ) R, 1, 1 2 A 2 ( ) R, 1, 1 2 J 2 ( ) R, 1, 1 2 Write the global SVAJ equations for the third terval, 1 2 <= <= 1 2 For this terval, the local and global frames are not cocident so we must transform the local to the global by subtractg the first two tervals from it Note that, for a fall, the local equation for s is subtracted from the value of S at the end of the previous terval while V, A, and J are simply negated For 1 2 <= <= 1 2 Let a 1 2 S ( ) R, a, a s 1 a,, h R, a, a s 2 a,, h R, a 5 s a,, h R, a 7 s 4 a,, h R, a 7, a s 5 a,, h R, a, a S 2 ( a)

DESIGN OF MACHINERY SOLUTION MANUAL -7-4 V ( ) R, a, a v 1 a,, h R, a, a v 2 a,, h R, a 5 v a,, h R, a 7 v 4 a,, h R, a 7, a v 5 a,, h A ( ) R, a, a a 1 a,, h R, a, a a 2 a,, h R, a 5 a a,, h R, a 7 a 4 a,, h R, a 7, a a 5 a,, h J ( ) R, a, a j 1 a,, h R, a, a j 2 a,, h R, a 5 j a,, h R, a 7 j 4 a,, h R, a 7, a j 5 a,, h 9 Write the global SVAJ equations for the fourth terval, 1 2 <= <= 1 2 4 For this terval, the values of S, V, A, and J are zero because of the dwell For 1 2 <= <= 1 2 4 Let a 1 2 S 4 ( ) R, a, a 4 V 4 ( ) R, a, a 4 A 4 ( ) R, a, a 4 J 4 ( ) R, a, a 4 1 Write the complete global equation for the displacement and plot it over one rotation of the cam, which is the sum of the four tervals defed above S( ) S 1 ( ) S 2 ( ) S ( ) S 4 ( ), 1 6

DESIGN OF MACHINERY SOLUTION MANUAL -7-5 DISPLACEMENT, S Displacement, S( ) 2 1 6 12 1 24 6 Cam Rotation Angle, 11 Write the complete global equation for the velocity and plot it over one rotation of the cam, which is the sum of the four tervals defed above V( ) V 1 ( ) V 2 ( ) V ( ) V 4 ( ) 5 VELOCITY, V Velocity, V( ) 5 1 6 12 1 24 6 Cam Rotation Angle, 12 Write the complete global equation for the acceleration and plot it over one rotation of the cam, which is the sum of the four tervals defed above A( ) A 1 ( ) A 2 ( ) A ( ) A 4 ( )

DESIGN OF MACHINERY SOLUTION MANUAL -7-6 5 ACCELERATION, A 25 Acceleration, A( ) 25 5 6 12 1 24 6 Cam Rotation Angle, 1 Write the complete global equation for the jerk and plot it over one rotation of the cam, which is the sum of the four tervals defed above J( ) J 1 ( ) J 2 ( ) J ( ) J 4 ( ) 15 JERK, J 1 Jerk, J( ) 5 5 1 6 12 1 24 6 Cam Rotation Angle,