Wishart α-determinant, α-hafnian

Σχετικά έγγραφα
Sho Matsumoto Graduate School of Mathematics, Nagoya University. Tomoyuki Shirai Institute of Mathematics for Industry, Kyushu University

Horizontal and Vertical Recurrence Relations for Exponential Riordan Matrices and Their Applications

J. of Math. (PRC) Banach, , X = N(T ) R(T + ), Y = R(T ) N(T + ). Vol. 37 ( 2017 ) No. 5

Fundamentals of Probability: A First Course. Anirban DasGupta

g-selberg integrals MV Conjecture An A 2 Selberg integral Summary Long Live the King Ole Warnaar Department of Mathematics Long Live the King

ON NEGATIVE MOMENTS OF CERTAIN DISCRETE DISTRIBUTIONS

[I2], [IK1], [IK2], [AI], [AIK], [INA], [IN], [IK2], [IA1], [I3], [IKP], [BIK], [IA2], [KB]

Statistical Inference I Locally most powerful tests

Congruence Classes of Invertible Matrices of Order 3 over F 2

Tridiagonal matrices. Gérard MEURANT. October, 2008

A summation formula ramified with hypergeometric function and involving recurrence relation

255 (log-normal distribution) 83, 106, 239 (malus) 26 - (Belgian BMS, Markovian presentation) 32 (median premium calculation principle) 186 À / Á (goo

Bundle Adjustment for 3-D Reconstruction: Implementation and Evaluation

( ) 1.1. (2 ),,.,.,.,,,,,.,,,,.,,., K, K.

DETERMINANT AND PFAFFIAN OF SUM OF SKEW SYMMETRIC MATRICES. 1. Introduction

Determinant and inverse of a Gaussian Fibonacci skew-hermitian Toeplitz matrix

2 Composition. Invertible Mappings

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

Βιογραφικό Σημείωμα. Γεωργίου Κ. Ελευθεράκη ΓΕΝΙΚΑ ΣΤΟΙΧΕΙΑ EKΠΑΙΔΕΥΣΗ

Computable error bounds for asymptotic expansions formulas of distributions related to gamma functions

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

ST5224: Advanced Statistical Theory II

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

On the Galois Group of Linear Difference-Differential Equations

Discriminantal arrangement

Jordan Form of a Square Matrix

Statistics 104: Quantitative Methods for Economics Formula and Theorem Review

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation

A Bonus-Malus System as a Markov Set-Chain. Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics

COMPUTING MULTIVARIATE STATISTICS

Takeaki Yamazaki (Toyo Univ.) 山崎丈明 ( 東洋大学 ) Oct. 24, RIMS

Probability and Random Processes (Part II)

Homomorphism in Intuitionistic Fuzzy Automata

Solution Series 9. i=1 x i and i=1 x i.

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

The k-α-exponential Function

Βιογραφικό Σημείωμα. Διεύθυνση επικοινωνίας: Τμήμα Μαθηματικών, Πανεπιστήμιο Πατρών

Matrices and vectors. Matrix and vector. a 11 a 12 a 1n a 21 a 22 a 2n A = b 1 b 2. b m. R m n, b = = ( a ij. a m1 a m2 a mn. def

ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ Ä Œμ Ìμ. ±É- É Ê ± μ Ê É Ò Ê É É, ±É- É Ê, μ Ö

N. P. Mozhey Belarusian State University of Informatics and Radioelectronics NORMAL CONNECTIONS ON SYMMETRIC MANIFOLDS

The Spiral of Theodorus, Numerical Analysis, and Special Functions

Properties of Matrix Variate Hypergeometric Function Distribution

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Mantel & Haenzel (1959) Mantel-Haenszel

Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation. Mathematica StandardForm notation

Stabilization of stock price prediction by cross entropy optimization

w o = R 1 p. (1) R = p =. = 1

Optimal Parameter in Hermitian and Skew-Hermitian Splitting Method for Certain Two-by-Two Block Matrices

Matrices and Determinants

Example Sheet 3 Solutions

Notations. Primary definition. Specific values. General characteristics. Series representations. Traditional name. Traditional notation

Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science.

6.3 Forecasting ARMA processes

The Jordan Form of Complex Tridiagonal Matrices

= λ 1 1 e. = λ 1 =12. has the properties e 1. e 3,V(Y

Other Test Constructions: Likelihood Ratio & Bayes Tests

Cyclic or elementary abelian Covers of K 4

Homework 3 Solutions

Introduction to Time Series Analysis. Lecture 16.

Jean Bourgain Institute for Advanced Study Princeton, NJ 08540

Exponential Families

TMA4115 Matematikk 3

On the summability of divergent power series solutions for certain first-order linear PDEs Masaki HIBINO (Meijo University)

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

ExpIntegralE. Notations. Primary definition. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation

Covariance and Pseudo-Covariance of Complex Uncertain Variables

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

11 Drinfeld. k( ) = A/( ) A K. [Hat1, Hat2] k M > 0. Γ 1 (M) = γ SL 2 (Z) f : H C. ( ) az + b = (cz + d) k f(z) ( z H, γ = cz + d Γ 1 (M))

Gaussian related distributions

Divergence for log concave functions

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Magnetically Coupled Circuits

The Determinant of a Hypergeometric Period Matrix and a Generalization of Selberg s Integral

4.6 Autoregressive Moving Average Model ARMA(1,1)

A General Note on δ-quasi Monotone and Increasing Sequence

New bounds for spherical two-distance sets and equiangular lines

Global nonlinear stability of steady solutions of the 3-D incompressible Euler equations with helical symmetry and with no swirl

HOSVD. Higher Order Data Classification Method with Autocorrelation Matrix Correcting on HOSVD. Junichi MORIGAKI and Kaoru KATAYAMA

CBC MATHEMATICS DIVISION MATH 2412-PreCalculus Exam Formula Sheets

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

ACTA MATHEMATICAE APPLICATAE SINICA Nov., ( µ ) ( (

ΚΑΘΟΡΙΣΜΟΣ ΠΑΡΑΓΟΝΤΩΝ ΠΟΥ ΕΠΗΡΕΑΖΟΥΝ ΤΗΝ ΠΑΡΑΓΟΜΕΝΗ ΙΣΧΥ ΣΕ Φ/Β ΠΑΡΚΟ 80KWp

6. MAXIMUM LIKELIHOOD ESTIMATION

L p approach to free boundary problems of the Navier-Stokes equation

arxiv: v1 [math.ra] 19 Dec 2017

An Automatic Modulation Classifier using a Frequency Discriminator for Intelligent Software Defined Radio

Commutative Monoids in Intuitionistic Fuzzy Sets

Complex Hadamard Matrices and Combinatorial Structures

794 Appendix A:Tables

PROPERTIES OF CERTAIN INTEGRAL OPERATORS. a n z n (1.1)

arxiv:math/ v1 [math.rt] 30 Oct 2006

ΖΩΝΟΠΟΙΗΣΗ ΤΗΣ ΚΑΤΟΛΙΣΘΗΤΙΚΗΣ ΕΠΙΚΙΝΔΥΝΟΤΗΤΑΣ ΣΤΟ ΟΡΟΣ ΠΗΛΙΟ ΜΕ ΤΗ ΣΥΜΒΟΛΗ ΔΕΔΟΜΕΝΩΝ ΣΥΜΒΟΛΟΜΕΤΡΙΑΣ ΜΟΝΙΜΩΝ ΣΚΕΔΑΣΤΩΝ

Biostatistics for Health Sciences Review Sheet

Εξοικονόμηση Ενέργειας σε Εγκαταστάσεις Δρόμων, με Ρύθμιση (Dimming) ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

«ΑΝΑΠΣΤΞΖ ΓΠ ΚΑΗ ΥΩΡΗΚΖ ΑΝΑΛΤΖ ΜΔΣΔΩΡΟΛΟΓΗΚΩΝ ΓΔΓΟΜΔΝΩΝ ΣΟΝ ΔΛΛΑΓΗΚΟ ΥΩΡΟ»

5.4 The Poisson Distribution.

Supplementary Material For Testing Homogeneity of. High-dimensional Covariance Matrices

APPENDICES APPENDIX A. STATISTICAL TABLES AND CHARTS 651 APPENDIX B. BIBLIOGRAPHY 677 APPENDIX C. ANSWERS TO SELECTED EXERCISES 679

Lecture 10 - Representation Theory III: Theory of Weights

Coefficient Inequalities for a New Subclass of K-uniformly Convex Functions

Transcript:

Wishart α-determinant, α-hafnian (, JST CREST) (, JST CREST), Wishart,. ( )Wishart,. determinant Hafnian analogue., ( )Wishart,. 1 Introduction, Wishart. p ν M = (µ 1,..., µ ν ) = (µ ij ) i=1,...,p p p Σ = (σ i,j ) fix = M tm. j=1,...,ν X 1 = (x i1 ) 1 i p, X 2 = (x i2 ) 1 i p,..., X ν = (x iν ) 1 i p ν p, N p (µ 1, Σ),..., N p (µ ν, Σ),, N p (µ i, Σ) µ i, Σ. X (X 1,..., X p ) ν p, W = (w ij ) W = X tx., W, W Wishart W p (ν, Σ, )., mean square matrix, = 0 Wishart W p (ν, Σ).,, W = X t X Wishart CWp (ν, Σ, ).,. x = (x 1,..., x m ) D. n = (n 1,..., n m ), x n = x n 1 1 xn m m E[x n 1 1 xn m m ] D (n- ). D, D., Wishart, Wishart : E[e tr(θw ) ] = det(i 2ΘΣ) ν 2 e 1 2 tr(i (I 2ΘΣ) 1 )Ω,, Θ p p symmetric parameter matrix, Ω ΣΩ = 1

. Wishart ( [2, 11] ). Wishart E[w i1,i 2 ]., determinant analogue. E[w i1,i 2 ]. [5]. 2 Notation of graphs,.,. v w, v w {v, w}. v w, {v, w} = {w, v}., self loop {v, v}. V, U, K V K V,U : K V,U = { {v, u} v V, u U, v u }, K V = K V,V = { {v, u} v u V }. V E K V G = (V, E ), vertex(e ) = { v V {v, u} E for some u V }. (V, K ). E K (V, K ) : {v, u}, {v, u } E = u = u., ( ) 1. M (V, K ) (V, K )., (V, K V ) M (V, K V ) M (V )., (V, K ) E vertex(e ) = V, E perfect. ( 1.) P (V, K ) (V, K ) perfect matchings. P (V ) = P(V, K V ).. v w (v, u). v u, (v, u) (u, v).,, self loop (v, v)., self loop. V, U, K V K V,U K V,U = { (v, u) v V, u U }, K V = K V,V = { (v, u) v, u V }. V E K V G = (V, E), start(e) end(e) 2

: start(e) = { v V (v, u) E for some u V }, end(e) = { u V (v, u) E for some v V }. (V, K). 2 E K (V, K) : (v, u), (v, u ) E = u = u (v, u), (v, u) E = v = v., ( ) ( ) 1. (V, K) M(V, K). E M(V, K) start(e) = V end(e) = V, perfect, P(V, K) (V, K) perfect matching. Perfect matching 1., M(V ) = M(V, K V ), P(V ) = P(V, K V ). Remark 2.1. V Z, V = { v v V }, V = { v v V }, l = 2l 1, l = 2l., (V, E) 2 ( V, V, { { v, ü} (v, u) E })., M(V, K) 2 ( V, V, { { v, ü} (v, u) E }). M(V, K). 3 Definition of our polynomials l Z, l = 2l 1, l = 2l. n Z>0 fix, V, V fix : V = [n] = { 1,..., n }, V = [n] = { 1,..., ṅ }, V = [n] { = 1,..., n }, V = V V = [n] [n] = [2n].,. E M(V ). (V, E). len(e) (V, E). V \ start(e) (V, E), V \ end(e)., Ě : Ě = { (v, u) K V \start(e),v \end(e) E u v. } K V. Remark 3.1. E M(V ), Ě : Ě M(V ), Ě E =, Ě E P(E), (V, E) (V, Ě E). 3

Remark 3.2. E M(V ), len(e) : len(e) = ((V, E) ) Ě., E P(V ), (i, j) E σ E (i) = j n S n σ E, E, len(e) σ E. (V, E) x = (x i,j ), weight monomial x E x E = (v,u) E. : Definition 3.3. K K V, det α (x, y; K) det α (x; K) : det α (x, y; K) = α n len(e) x E yě, det α (x; K) = E M(V,K) E P(V,K) x v,u α n len(e) x E., det α (x, y) = det α (x, y; K V ), det α (x) = det α (x; K V ). Remark 3.4. det α (x; K) = det α (x, 0; K). {,. { 1, 1},..., {ṅ, n} } K V, E V 0. E M (V ), Ě len(e ) : { } Ě = {v, u} K V \vertex(e ) E E 0 v u. len(e ) = ((V, E E 0) ) Ě. Remark 3.5. E M (V ), Ě : Ě M (V ), Ě E =, Ě E P (E ), (V, E E 0) (V, Ě E E 0). Remark 3.6. E M (V ), (V, E E 0)., (V, E E 0). E V \ vertex(e ) (V, E E 0). (V, E E 0) Ě. 4

(V, E ) x = (x i,j ), weight monomial x E x E = {v,u} E x v,u. v, u V x v,u = x u,v, x E well-defined. Definition 3.7. K K V, Hf α(x, y; K ) Hf α (x; K ) : Hf α (x, y; K ) = α n len(e ) x E, yě Hf α (x; K ) = E M (V,K ) E P (V,K ) α n len(e ) x E. Hf α (x, y) = Hf α (x, y; K V ), Hf α(x) = Hf α (x; K V ). Remark 3.8., Hf α (x; K ) = Hf α (x, 0; K ). Remark 3.9. A = (a ij ), α-determinant (or α-permanent) : det α (A) = σ S n α n len(σ) a 1,σ(1) a 2,σ(2) a n,σ(n). determinant permanent α-analogue ;, α-determinant α = 1 determinant, α = 1 permanent. (See also [13, 14].) Remark 3.2, α-determinant det α (A). [9] α-pfaffian, skew-symmetric matrix A : Pf α (A) = E P (V ) ( α) n len(e ) sgn(e )A E. sgn(e )A E E = { {x 1, x 1 },..., {x ṅ, x n } } x S 2n sgn(x)a x 1,x 1 a xṅ,x n, A skew symmetric sgn(e )A E x S 2n. α-pfaffian Pfaffian α-analogue,, α = 1 α-pfaffian Pfaffian Pf(A), i.e., sgn(x)a x 1 x 1 a xṅx n,., symmetric matrix B Hf α (B) Hf α (B) = α n len(e ) B E E P (V ),, α = 1, Hafnian Hf(B) = b x 1 x 1 b xṅx n. Hafnian analogue. 5

4 Main results det α (x, y), Hf α (x, y) Wishart. Propsition 4.1. W = (w i,j ) W p (ν, Σ, ),, W Wishart W p (ν, Σ, ). A B : a u,v = σ u,v, b u,v = δ u,v. : E[w 1,2 w 3,4 w 2n 1,2n ] = E[w 1, 1 w 2, 2 w ṅ, n] = ν n Hf ν 1(A, B) = Hf ν 1(νA, νb). : Theorem 4.2. A B : a u,v = σ iu,i v, b u,v = δ iu,i v. W W p (ν, Σ, ) : E[w i1,i 2 ] = E[w i w 1,i 1 i w 2,i 2 iṅ,i n ] = ν n Hf ν 1(A, B) = Hf ν 1(νA, νb)., Wishart : Propsition 4.3. W = (w i,j ) CW p (ν, Σ, ), A, B : a u,v = σ u, v, b u,v = δ u, v. : E[w 1,2 w 3,4 w 2n 1,2n ] = E[w 1, 1 w 2, 2 w ṅ, n] = ν n det ν 1(A, B) = det ν 1(νA, νb)., : Theorem 4.4. A, B : a u,v = σ i u,i v, b u,v = δ i u,i v., W = (w i,j ) CW p (ν, Σ, ) : E[w i1,i 2 ] = E[w i w 1,i 1 i w 2,i 2 iṅ,i n ] = ν n det ν 1(A, B) = det ν 1(νA, νb). Remark 4.5.,, Wishart,. [5, 12]. Remark 4.6. Wishart,, Wishart, Lu, Richards [7]; Graczyk, Letac, Massam [3, 4]; Vere-Jones [13]., Letac, Massam [6] Wishart,., Wishart,, Matsumoto [10]. 6

[1] Bai, Z. D. (1999). Methodologies in spectral analysis of large dimensional random matrices, A review. Statist. Sinica, 9, 611 677. [2] Goodman, N. R. (1963). Statistical analysis based on a certain multivariate complex Gaussian distribution (An introduction). Ann. Math. Statist., 34, 152 177. [3] Graczyk, P., Letac, G. and Massam, H. (2003). The complex Wishart distribution and the symmetric groups. Ann. Statist., 31, 287 309. [4] Graczyk, P., Letac, G. and Massam, H. (2005). The hyperoctahedral group, symmetric group representations and the moments of the real Wishart distribution. J. Theor. Probab., 18, 1 42. [5] Kuriki, S. and Numata, Y. (2009). Graph representations for moments of noncentral Wishart distributions and their applications. Submitted. arxiv:0912.0577v1 [6] Letac, G. and Massam, H. (2008). The noncentral Wishart as an exponential family, and its moments. J. Multivariate Anal., 99, 1393 1417. [7] Lu, I-L. and Richards, D. St. P. (2001). MacMahon s master theorem, representation theory, and moments of Wishart distributions. Adv. Appl. Math., 27, 531 547. [8] Maiwald, D. and Kraus, D. (2000). Calculation of moments of complex Wishart and complex inverse Wishart distributed matrices. IEE Proc.-Radar, Sonar Navig, 147, 162 168. [9] Matsumoto, S. (2005) α-pfaffian, pfaffian point process and shifted Schur measure. Linear Algebra and its Applications, 403, 369 398. [10] Matsumoto, S. (2010) General moments of the inverse real Wishart distribution and orthogonal Weingarten functions, arxiv:1004.4717v2 [11] Muirhead, R. J. (1982). Aspects of Multivariate Statistical Theory. John Wiley & Sons [12] Numata, Y. and Kuriki, S. (2009). On formulas for moments of the Wishart distributions as weighted generating functions of matchings, DMTCS Proceedings, 22nd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2010), pp. 953-964. (online journal) [13] Vere-Jones, D. (1988). A generalization of permanents and determinants. Linear Algebra Appl., 111, 119 124. [14] Vere-Jones, D. (1997). Alpha-permanents and their applications to multivariate gamma, negative binomial and ordinary binomial distributions. New Zealand J. Math., 26, 125 149. 7