[I2], [IK1], [IK2], [AI], [AIK], [INA], [IN], [IK2], [IA1], [I3], [IKP], [BIK], [IA2], [KB]
|
|
- Ζηναις Φλέσσας
- 8 χρόνια πριν
- Προβολές:
Transcript
1 (Akihiko Inoue) Graduate School of Science, Hiroshima University (Yukio Kasahara) Graduate School of Science, Hokkaido University Mohsen Pourahmadi, Department of Statistics, Texas A&M University 1, = ( ) ( ) von Neumann, =. [I1] [I2], [IK1], [IK2], [AI], [AIK], [INA], [IN], [IK2], [IA1], [I3], [IKP], [BIK], [IA2], [KB],, (Orthogonal Polynomials on the Unit Circle, OPUC). Barry Simon 2005 AMS OPUC 2 [Si1, Si2] OPUC Verblunsky, Verblunsky =.,, Verblunsky. Verblunsky CGMV ([CGMV]). Simon rigid (phase coefficients Nehari ).,, Bingham [KB]. 1
2 rigid (rigid Sarason [Sa2, Ch. X] ) rigid Sarason [Sa1] [N1] strongly outer 1 ([AIK], [INA], [IN] ) , [I1], [I2], [I3], [IK1], [IK2], [KB] 2013 rigid (= ) rigid 2 rigid T D C 1 p L p T ( Lebegue ) Lebesgue M := M d (C) d d V := C d Euclid. T M - f det f 0 a.e. L p M (Lp V ) T M - (V - ) Lebesgue. Hardy H p M : H p M {f := L p M 2π 0 } e inθ f(e iθ )dθ = 0 for n = 1, 2,. Hardy H p V M V. g H p M outer det g(z) 1 outer c = det g(0)/ det g(0) : ( 1 2π ) e iθ + z det g(z) = c exp 2π 0 e iθ z log det g(eiθ ) dθ (z D). 2 (d 2) outer g : D := {(f, f ) H 2 M H 2 M : f, f outer, f f = f f }. F H 1 M : F = ff, (f, f ) D (2.1) 2
3 (Helson Lowdenslager[HL] ). HL- F f HM 2 (f, f ) D f, F HM 1 U F F = U F F F = F F U F. HL- F = ff, : U F = f(f ) 1 = (f ) 1 f. (2.2) ( ) rigid. 2.1 ( rigid ). F HM 1 rigid : G HM 1 G = gg HL- U F = U G = G = fkf k M. rigid outer, rigid outer (1 ) : H 2 V := { f L 2 V 2π 0 } e inθ f(e iθ )dθ = 0 for n = 0, 1, 2, (f, f ) D F := ff. : (1) F rigid. (2) (g, g ) D, G = gg, U F = U G g = fc c M. (3) U F H 2 V H 2 V = {0}., rigid 1. X = (X j ) j Z, X j = (X j,1,, X j,d ), 0 d- X (purely non-deterministic, PND) full rank det w > 0 a.e., log det w L 1 w L 1 M w : E[Xj X 0 ] = 1 2π e ijθ w(θ)dθ (j Z) 2π 0 w = h h = h h. (2.3) 3
4 h h HM 2 outer (cf. [HL]), 1 (d=1) w = h 2, h = h. 2 h h 1 2 I R H I {X j,k : j I Z, k = 1,, d} L 2 (Ω, F, P ) 2.3. X (completely non-deterministic, CND) H (,0] H [1, ) = {0}. : X CND h(h ) 1 H 2 V H 2 V = {0} : (1) hh rigid. (2) (g, g ) D, h(h ) 1 = g(g ) 1 g = fc c M. (3) X CND. 2.2, 2.4 Levinson McKean [LM], Bloomfield et al. [BJH], [N2], CND 1. PND X, X 0, X 1,, X n 1 X n ˆX n, : ˆX n = X n 1 ϕ 1,n + X n 1 ϕ 2,n + + X 0 ϕ n,n. (2.4) n ϕ n,n. 1 (d = 1), {ϕ n,n } n=1 {X n }, OPUC w Verblunsky. v := h(0) h(0), v := h (0)h (0). 1- (phase coefficients) γ n : γ n := 1 2π e inθ h(h 2π ) 1 dθ. (2.5) 0 1 [BIK] [KB], ϕ n,n n ( ϕ n,k γ n ) [IK2] [I3]. 4
5 2.5. X CND, ϕ n,n : ϕ n,n = v 1 ( k=0 ) t γ n ( Γ n Γ n ) k e v (n N). (2.6) : γ n γ n := γ n+1 γ n+2, Γ n := γ n+1 γ n+2 γ n+3 γ n+2 γ n+3 γ n+4 γ n+3 γ n+4 γ n+5, e := id o o. References [AI] [AIK] [BIK] [BJH] V. V. Anh and A. Inoue, Financial markets with memory I: Dynamic models, Stochastic Anal. Appl. 23 (2005), V. V. Anh, A. Inoue and Y. Kasahara, Financial markets with memory II: Innovation processes and expected utility maximization, Stochastic Anal. Appl. 23 (2005), N. H. Bingham, A. Inoue and Y. Kasahara, An explicit representation of Verblunsky coefficients, Statist. Probab. Lett., 82 (2012), P. Bloomfield, N. P. Jewell and E. Hayashi, Characterizations of completely nondeterministic stochastic processes, Pacific J. Math. 107 (1983), [CGMV] M. J. Cantero, F. A. Grünbaum, L. Moral and L. Velázquez, Matrix-valued Szeg o polynomials and quantum random walks, Commun. Pure Appl. Math. 58 (2010), [HL] [I1] [I2] [I3] [IA1] [IA2] [IK1] H. Helson and D. Lowdenslager, Prediction theory and Fourier series in several variables. Acta Math. 99 (1958), ; II. Acta Math. 106 (1961) A. Inoue, Asymptotics for the partial autocorrelation function of a stationary process, J. Anal. Math. 81 (2000), A. Inoue, Asymptotic behavior for partial autocorrelation functions of fractional ARIMA processes, Ann. Appl. Probab. 12 (2002), A. Inoue, AR and MA representation of partial autocorrelation functions, with applications, Probab. Theory Related Fields 140 (2008), A. Inoue and V. V. Anh, Prediction of fractional Brownian motion-type processes, Stoch. Anal. Appl. 25 (2007), A. Inoue and V. V. Anh, Prediction of fractional processes with long-range dependence, Hokkaido Math. J. 41 (2012), A. Inoue and Y. Kasahara, Partial autocorrelation functions of fractional ARIMA processes with negative degree of differencing, J. Multivariate Anal. 89 (2004),
6 [IK2] [IKP] [IN] [INA] [KB] A. Inoue and Y. Kasahara, Explicit representation of finite predictor coefficients and its applications, Ann. Statist. 34 (2006), A. Inoue, Y. Kasahara and P. Phartyal, Baxter s inequality for fractional Brownian motion-type processes with Hurst index less than 1/2, Statist. Probab. Lett. 78 (2008), A. Inoue and Y. Nakano, Optimal long-term investment model with memory, Appl. Math. Optim. 55 (2007), 55 (2007), A. Inoue, Y. Nakano and V. V. Anh, Linear filtering of systems with memory and application to finance, J. Appl. Math. Stoch. Anal. (2006), Art. ID 53104, 26 pp. Y. Kasahara and N. H. Bingham, Verblunsky coefficients and Nehari sequences, Trans. Amer. Math. Soc., electronically published in [LM] N. Levinson and H. P. McKean, Weighted trigonometrical approximation on R 1 with application to the germ field of a stationary Gaussian noise, Acta Math. 112 (1964), [N1] T. Nakazi, Exposed points and extremal problems in H 1, J. Funct. Anal. 53 (1983), [N2] T. Nakazi, Kernels of Toeplitz operators, J. Math. So. Japan 38 (1986), [Sa1] D. Sarason, Exposed points in H 1, Oper. Theory Adv. Appl. 41 (1989), [Sa2] D. Sarason, Sub-Hardy Hilbert Spaces in the Unit Disk, Wiley, [Si1] [Si2] B. Simon, Orthogonal Polynomials on the Unit Circle. Part 1. Classical Theory., AMS, B. Simon, S., Orthogonal Polynomials on the Unit Circle. Part 2. Spectral Theory., AMS,
J. of Math. (PRC) Banach, , X = N(T ) R(T + ), Y = R(T ) N(T + ). Vol. 37 ( 2017 ) No. 5
Vol. 37 ( 2017 ) No. 5 J. of Math. (PRC) 1,2, 1, 1 (1., 225002) (2., 225009) :. I +AT +, T + = T + (I +AT + ) 1, T +. Banach Hilbert Moore-Penrose.. : ; ; Moore-Penrose ; ; MR(2010) : 47L05; 46A32 : O177.2
Wishart α-determinant, α-hafnian
Wishart α-determinant, α-hafnian (, JST CREST) (, JST CREST), Wishart,. ( )Wishart,. determinant Hafnian analogue., ( )Wishart,. 1 Introduction, Wishart. p ν M = (µ 1,..., µ ν ) = (µ ij ) i=1,...,p p p
Markov chains model reduction
Markov chains model reduction C. Landim Seminar on Stochastic Processes 216 Department of Mathematics University of Maryland, College Park, MD C. Landim Markov chains model reduction March 17, 216 1 /
Βιογραφικό Σημείωμα. Γεωργίου Κ. Ελευθεράκη ΓΕΝΙΚΑ ΣΤΟΙΧΕΙΑ EKΠΑΙΔΕΥΣΗ
Βιογραφικό Σημείωμα Γεωργίου Κ. Ελευθεράκη ΓΕΝΙΚΑ ΣΤΟΙΧΕΙΑ Ημερομηνία Γέννησης: 23 Δεκεμβρίου 1962. Οικογενειακή Κατάσταση: Έγγαμος με δύο παιδιά. EKΠΑΙΔΕΥΣΗ 1991: Πτυχίο Οικονομικού Τμήματος Πανεπιστημίου
Single-value extension property for anti-diagonal operator matrices and their square
1 215 1 Journal of East China Normal University Natural Science No. 1 Jan. 215 : 1-56412151-95-8,, 71119 :, Hilbert. : ; ; : O177.2 : A DOI: 1.3969/j.issn.1-5641.215.1.11 Single-value extension property
Durbin-Levinson recursive method
Durbin-Levinson recursive method A recursive method for computing ϕ n is useful because it avoids inverting large matrices; when new data are acquired, one can update predictions, instead of starting again
C-19 (B) Development of stochastic numerics and probability theory via lacunary series (FUKUYAMA KATUSI)
C-9 2 3 3 (B) 2005 2008 7340029 Development of stochastic numerics and probability theory via lacunary series (FUKUYAMA KATUSI) 6028956 discrepancy Hardy-Littewood-Pólya 3,200,000 0 3,200,000 2,600,000
ACTA MATHEMATICAE APPLICATAE SINICA Nov., ( µ ) ( (
35 Þ 6 Ð Å Vol. 35 No. 6 2012 11 ACTA MATHEMATICAE APPLICATAE SINICA Nov., 2012 È ÄÎ Ç ÓÑ ( µ 266590) (E-mail: jgzhu980@yahoo.com.cn) Ð ( Æ (Í ), µ 266555) (E-mail: bbhao981@yahoo.com.cn) Þ» ½ α- Ð Æ Ä
Laplace Expansion. Peter McCullagh. WHOA-PSI, St Louis August, Department of Statistics University of Chicago
Laplace Expansion Peter McCullagh Department of Statistics University of Chicago WHOA-PSI, St Louis August, 2017 Outline Laplace approximation in 1D Laplace expansion in 1D Laplace expansion in R p Formal
Prey-Taxis Holling-Tanner
Vol. 28 ( 2018 ) No. 1 J. of Math. (PRC) Prey-Taxis Holling-Tanner, (, 730070) : prey-taxis Holling-Tanner.,,.. : Holling-Tanner ; prey-taxis; ; MR(2010) : 35B32; 35B36 : O175.26 : A : 0255-7797(2018)01-0140-07
Takeaki Yamazaki (Toyo Univ.) 山崎丈明 ( 東洋大学 ) Oct. 24, RIMS
Takeaki Yamazaki (Toyo Univ.) 山崎丈明 ( 東洋大学 ) Oct. 24, 2017 @ RIMS Contents Introduction Generalized Karcher equation Ando-Hiai inequalities Problem Introduction PP: The set of all positive definite operators
J. of Math. (PRC) 6 n (nt ) + n V = 0, (1.1) n t + div. div(n T ) = n τ (T L(x) T ), (1.2) n)xx (nt ) x + nv x = J 0, (1.4) n. 6 n
Vol. 35 ( 215 ) No. 5 J. of Math. (PRC) a, b, a ( a. ; b., 4515) :., [3]. : ; ; MR(21) : 35Q4 : O175. : A : 255-7797(215)5-15-7 1 [1] : [ ( ) ] ε 2 n n t + div 6 n (nt ) + n V =, (1.1) n div(n T ) = n
Introduction to Time Series Analysis. Lecture 16.
Introduction to Time Series Analysis. Lecture 16. 1. Review: Spectral density 2. Examples 3. Spectral distribution function. 4. Autocovariance generating function and spectral density. 1 Review: Spectral
Sho Matsumoto Graduate School of Mathematics, Nagoya University. Tomoyuki Shirai Institute of Mathematics for Industry, Kyushu University
Sho Matsumoto Graduate School of Mathematics, Nagoya University Tomoyuki Shirai Institute of Mathematics for Industry, Kyushu University. Kac f n (t) = n k=0 a kt k ({a k } n k=0 i.i.d. ) N n E[N n ] =
Introduction to the ML Estimation of ARMA processes
Introduction to the ML Estimation of ARMA processes Eduardo Rossi University of Pavia October 2013 Rossi ARMA Estimation Financial Econometrics - 2013 1 / 1 We consider the AR(p) model: Y t = c + φ 1 Y
g-selberg integrals MV Conjecture An A 2 Selberg integral Summary Long Live the King Ole Warnaar Department of Mathematics Long Live the King
Ole Warnaar Department of Mathematics g-selberg integrals The Selberg integral corresponds to the following k-dimensional generalisation of the beta integral: D Here and k t α 1 i (1 t i ) β 1 1 i
Bayesian modeling of inseparable space-time variation in disease risk
Bayesian modeling of inseparable space-time variation in disease risk Leonhard Knorr-Held Laina Mercer Department of Statistics UW May, 013 Motivation Ohio Lung Cancer Example Lung Cancer Mortality Rates
Ψηφιακή Επεξεργασία Φωνής
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Επεξεργασία Φωνής Ενότητα 4η: Γραμμική Πρόβλεψη: Ανάλυση και Σύνθεση Στυλιανού Ιωάννης Τμήμα Επιστήμης Υπολογιστών CS578- Speech Signal Processing Lecture
6.3 Forecasting ARMA processes
122 CHAPTER 6. ARMA MODELS 6.3 Forecasting ARMA processes The purpose of forecasting is to predict future values of a TS based on the data collected to the present. In this section we will discuss a linear
Module 5. February 14, h 0min
Module 5 Stationary Time Series Models Part 2 AR and ARMA Models and Their Properties Class notes for Statistics 451: Applied Time Series Iowa State University Copyright 2015 W. Q. Meeker. February 14,
Discriminantal arrangement
Discriminantal arrangement YAMAGATA So C k n arrangement C n discriminantal arrangement 1989 Manin-Schectman Braid arrangement Discriminantal arrangement Gr(3, n) S.Sawada S.Settepanella 1 A arrangement
u = g(u) in R N, u > 0 in R N, u H 1 (R N ).. (1), u 2 dx G(u) dx : H 1 (R N ) R
2017 : msjmeeting-2017sep-05i002 ( ) 1.. u = g(u) in R N, u > 0 in R N, u H 1 (R N ). (1), N 2, g C 1 g(0) = 0. g(s) = s + s p. (1), [8, 9, 17],., [15] g. (1), E(u) := 1 u 2 dx G(u) dx : H 1 (R N ) R 2
Bundle Adjustment for 3-D Reconstruction: Implementation and Evaluation
3 2 3 2 3 undle Adjustment or 3-D Reconstruction: Implementation and Evaluation Yuuki Iwamoto, Yasuyuki Sugaya 2 and Kenichi Kanatani We describe in detail the algorithm o bundle adjustment or 3-D reconstruction
1. 3. ([12], Matsumura[13], Kikuchi[10] ) [12], [13], [10] ( [12], [13], [10]
3. 3 2 2) [2] ) ) Newton[4] Colton-Kress[2] ) ) OK) [5] [] ) [2] Matsumura[3] Kikuchi[] ) [2] [3] [] 2 ) 3 2 P P )+ P + ) V + + P H + ) [2] [3] [] P V P ) ) V H ) P V ) ) ) 2 C) 25473) 2 3 Dermenian-Guillot[3]
Βιογραφικό Σημείωμα. Γεωργίου Κ. Ελευθεράκη ΓΕΝΙΚΑ ΣΤΟΙΧΕΙΑ EKΠΑΙΔΕΥΣΗ
Βιογραφικό Σημείωμα Γεωργίου Κ. Ελευθεράκη ΓΕΝΙΚΑ ΣΤΟΙΧΕΙΑ Ημερομηνία Γέννησης: 23 Δεκεμβρίου 1962. Οικογενειακή Κατάσταση: Έγγαμος με δύο παιδιά. EKΠΑΙΔΕΥΣΗ 1991: Πτυχίο Οικονομικού Τμήματος Πανεπιστημίου
d dt S = (t)si d dt R = (t)i d dt I = (t)si (t)i
d d S = ()SI d d I = ()SI ()I d d R = ()I d d S = ()SI μs + fi + hr d d I = + ()SI (μ + + f + ())I d d R = ()I (μ + h)r d d P(S,I,) = ()(S +1)(I 1)P(S +1, I 1, ) +()(I +1)P(S,I +1, ) (()SI + ()I)P(S,I,)
: Monte Carlo EM 313, Louis (1982) EM, EM Newton-Raphson, /. EM, 2 Monte Carlo EM Newton-Raphson, Monte Carlo EM, Monte Carlo EM, /. 3, Monte Carlo EM
2008 6 Chinese Journal of Applied Probability and Statistics Vol.24 No.3 Jun. 2008 Monte Carlo EM 1,2 ( 1,, 200241; 2,, 310018) EM, E,,. Monte Carlo EM, EM E Monte Carlo,. EM, Monte Carlo EM,,,,. Newton-Raphson.
RCA models with correlated errors
Applied Mathematics Letters 19 (006) 84 89 www.elsevier.com/locate/aml RCA models with correlated errors S.S. Appadoo a,a.thavaneswaran a,,jagbir Singh b a Department of Statistics, The University of Manitoba,
255 (log-normal distribution) 83, 106, 239 (malus) 26 - (Belgian BMS, Markovian presentation) 32 (median premium calculation principle) 186 À / Á (goo
(absolute loss function)186 - (posterior structure function)163 - (a priori rating variables)25 (Bayes scale) 178 (bancassurance)233 - (beta distribution)203, 204 (high deductible)218 (bonus)26 ( ) (total
Research on model of early2warning of enterprise crisis based on entropy
24 1 Vol. 24 No. 1 ont rol an d Decision 2009 1 Jan. 2009 : 100120920 (2009) 0120113205 1, 1, 2 (1., 100083 ; 2., 100846) :. ;,,. 2.,,. : ; ; ; : F270. 5 : A Research on model of early2warning of enterprise
Arithmetical applications of lagrangian interpolation. Tanguy Rivoal. Institut Fourier CNRS and Université de Grenoble 1
Arithmetical applications of lagrangian interpolation Tanguy Rivoal Institut Fourier CNRS and Université de Grenoble Conference Diophantine and Analytic Problems in Number Theory, The 00th anniversary
Reflecting Brownian motion in two dimensions: Exact asymptotics for the stationary distribution
Reflecting Brownian motion in two dimensions: Exact asymptotics for the stationary distribution Jim Dai Joint work with Masakiyo Miyazawa July 8, 211 211 INFORMS APS conference at Stockholm Jim Dai (Georgia
Dispersive estimates for rotating fluids and stably stratified fluids
特別講演 17 : msjmeeting-17sep-5i4 Dispersive estimates for rotating fluids and stably stratified fluids ( ) 1. Navier-Stokes (1.1) Boussinesq (1.) t v + (v )v = v q t >, x R, v = t >, x R, t v + (v )v = v
x xn w(x) = 0 ( n N)
( ). Wierstrass Bernstein ([]) lim x xn w(x) = 0 ( n N) R w fw C 0 (R) lim (f P n)w L n (R) = 0 {P n } w Bernstein 950 ([5], [8] ) 970 Freud Freud weights w α (x) = exp( x α ) ([3] ) α Bernstein w α Christoffel
Computer No.53 (1992) IBM 650. Bacon TSS JRR-2.[1] free inductin decay IBM 7044 FACOM
Computer No.53 (1992) 49-60 1 30 33 10 IBM 650 32 4 Bacon IBM 650 TSS JRR-2.[1] 2 43 IBM FACOM Abragam CaF 2 free inductin decay IBM 7044 FACOM 230-60 1 S34-47 [2-5] FACOM 230-60 S48-52 [6-8] FACOM 230-60
( ) 1.1. (2 ),,.,.,.,,,,,.,,,,.,,., K, K.
( ),.,,, 1, [17]. 1. 1.1. (2 ),,.,.,.,,,,,.,,,,.,,., K, K. 1.2. Σ g g. M g, Σ g. g 1 Σ g,, Σ g Σ g. Σ g, M g,, Σ g.. g = 1, M 1 M 1, SL(2, Z). Q. g = 2, 2000 M 2 (Korkmaz [20], Bigelow Budney [5])., Bigelow
Horizontal and Vertical Recurrence Relations for Exponential Riordan Matrices and Their Applications
4th RART, July 17-20 2017, Universidad Complutense de Madrid Horizontal and Vertical Recurrence Relations for Exponential Riordan Matrices and Their Applications Ji-Hwan Jung Sungkyunkwan University, Korea
. (1) 2c Bahri- Bahri-Coron u = u 4/(N 2) u
. (1) Nehari c (c, 2c) 2c Bahri- Coron Bahri-Lions (2) Hénon u = x α u p α (3) u(x) u(x) + u(x) p = 0... (1) 1 Ω R N f : R R Neumann d 2 u + u = f(u) d > 0 Ω f Dirichlet 2 Ω R N ( ) Dirichlet Bahri-Coron
2. ARMA 1. 1 This part is based on H and BD.
2. ARMA 1 1 This part is based on H and BD. 1 1 MA 1.1 MA(1) Let ε t be WN with variance σ 2 and consider the zero mean 2 process Y t = ε t + θε t 1 (1) where θ is a constant. MA(1). This time series is
Feasible Regions Defined by Stability Constraints Based on the Argument Principle
Feasible Regions Defined by Stability Constraints Based on the Argument Principle Ken KOUNO Masahide ABE Masayuki KAWAMATA Department of Electronic Engineering, Graduate School of Engineering, Tohoku University
HW 3 Solutions 1. a) I use the auto.arima R function to search over models using AIC and decide on an ARMA(3,1)
HW 3 Solutions a) I use the autoarima R function to search over models using AIC and decide on an ARMA3,) b) I compare the ARMA3,) to ARMA,0) ARMA3,) does better in all three criteria c) The plot of the
Vol. 41 No Journal of Jiangxi Normal University Natural Science May A DOI /j. cnki. issn
41 3 Vol 41 No 3 017 5 Journal of Jiangxi Normal UniversityNatural Science May 017 1000-58601703-05-04 Dirichlet 1 * 1 01001 51030 Dirichlet Dirichlet a s Borel Borel Dirichlet Borel O 174 5 A DOI10 16357
Web-based supplementary materials for Bayesian Quantile Regression for Ordinal Longitudinal Data
Web-based supplementary materials for Bayesian Quantile Regression for Ordinal Longitudinal Data Rahim Alhamzawi, Haithem Taha Mohammad Ali Department of Statistics, College of Administration and Economics,
Neighborhood and partial sums results on the class of starlike functions involving Dziok-Srivastava operator
Stud. Univ. Babeş-Bolyai Math. 58(23), No. 2, 7 8 Neighborhood and partial sums results on the class of starlike functions involving Dziok-Srivastava operator K. Vijaya and K. Deepa Abstract. In this paper,
L p approach to free boundary problems of the Navier-Stokes equation
L p approach to free boundary problems of the Navier-Stokes equation e-mail address: yshibata@waseda.jp 28 4 1 e-mail address: ssshimi@ipc.shizuoka.ac.jp Ω R n (n 2) v Ω. Ω,,,, perturbed infinite layer,
1 (forward modeling) 2 (data-driven modeling) e- Quest EnergyPlus DeST 1.1. {X t } ARMA. S.Sp. Pappas [4]
212 2 ( 4 252 ) No.2 in 212 (Total No.252 Vol.4) doi 1.3969/j.issn.1673-7237.212.2.16 STANDARD & TESTING 1 2 2 (1. 2184 2. 2184) CensusX12 ARMA ARMA TU111.19 A 1673-7237(212)2-55-5 Time Series Analysis
Adachi-Tamura [4] [5] Gérard- Laba Adachi [1] 1
207 : msjmeeting-207sep-07i00 ( ) Abstract 989 Korotyaev Schrödinger Gérard Laba Multiparticle quantum scattering in constant magnetic fields - propagator ( ). ( ) 20 Sigal-Soffer [22] 987 Gérard- Laba
ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 4, Νέα Κτίρια ΣΗΜΜΥ Θεωρία Πιθανοτήτων & Στοχαστικές Ανελίξεις - 2
ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 4, Νέα Κτίρια ΣΗΜΜΥ Θεωρία Πιθανοτήτων & Στοχαστικές Ανελίξεις - 5.4: Στατιστικοί Μέσοι Όροι 5.5 Στοχαστικές Ανελίξεις (Stochastic Processes)
Review: Molecules = + + = + + Start with the full Hamiltonian. Use the Born-Oppenheimer approximation
Review: Molecules Start with the full amiltonian Ze e = + + ZZe A A B i A i me A ma ia, 4πε 0riA i< j4πε 0rij A< B4πε 0rAB Use the Born-Oppenheimer approximation elec Ze e = + + A A B i i me ia, 4πε 0riA
SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018
Journal of rogressive Research in Mathematics(JRM) ISSN: 2395-028 SCITECH Volume 3, Issue 2 RESEARCH ORGANISATION ublished online: March 29, 208 Journal of rogressive Research in Mathematics www.scitecresearch.com/journals
( ) Kähler X ( ),. Floer -Oh- - [6]. X Fano *, X ( = (C ) N ) W : X C ( ) (X,W). X = P, W (y) =y + Q/y. Q P. Φ:X R N, Δ=Φ(X). u Int Δ, Lagrange L(u) =
Floer Cohomologes of Non-torus Fbers of the Gelfand-Cetln System (X, ω) 2N. X N Φ=(ϕ,...,ϕ N ):X R N, Posson, Φ. Φ, Arnold-Louvlle Largange. Φ (u) = T N, ω Φ (u) =0.. Gelfand-Cetln, Gullemn-Sternberg [9]
ON A SUBCLASS OF UNIFORMLY CONVEX FUNCTIONS INVOLVING CHO-SRIVASTAVA OPERATOR
Novi Sad J. Math. Vol. 39, No. 1, 29, 47-56 ON A SUBCLASS OF UNIFORMLY CONVEX FUNCTIONS INVOLVING CHO-SRIVASTAVA OPERATOR G. Murugusundaramoorthy 1, S. Sivasubramanian 2, R. K. Raina 3 Abstract. The authors
Orthogonal systems and semigroups
Orthogonal systems and semigroups José Luis Torrea Orthonet Logroño, 23 Febrero 213 () Orthogonal systems and semigroups Logroño, 23 Febrero 213 1 / 29 Jorge Betancor, Raquel Crescimbeni, Eleonor Harboure
Buried Markov Model Pairwise
Buried Markov Model 1 2 2 HMM Buried Markov Model J. Bilmes Buried Markov Model Pairwise 0.6 0.6 1.3 Structuring Model for Speech Recognition using Buried Markov Model Takayuki Yamamoto, 1 Tetsuya Takiguchi
172,,,,. P,. Box (1980)P, Guttman (1967)Rubin (1984)P, Meng (1994), Gelman(1996)De la HorraRodriguez-Bernal (2003). BayarriBerger (2000)P P.. : Casell
20104 Chinese Journal of Applied Probability and Statistics Vol.26 No.2 Apr. 2010 P (,, 200083) P P. Wang (2006)P, P, P,. : P,,,. : O212.1, O212.8. 1., (). : X 1, X 2,, X n N(θ, σ 2 ), σ 2. H 0 : θ = θ
6.1. Dirac Equation. Hamiltonian. Dirac Eq.
6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2
PROPERTIES OF CERTAIN INTEGRAL OPERATORS. a n z n (1.1)
GEORGIAN MATHEMATICAL JOURNAL: Vol. 2, No. 5, 995, 535-545 PROPERTIES OF CERTAIN INTEGRAL OPERATORS SHIGEYOSHI OWA Abstract. Two integral operators P α and Q α for analytic functions in the open unit disk
Ηλεκτρονικοί Υπολογιστές IV
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ηλεκτρονικοί Υπολογιστές IV Μοντέλα χρονολογικών σειρών Διδάσκων: Επίκουρος Καθηγητής Αθανάσιος Σταυρακούδης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό
f p = lim (1 a n ) < n=0
Πανειστήμιο Κρήτης Τμήμα Μαθηματικών Συντελεστές Taylor συναρτήσεων σε χώρους Hardy Καλλιόη Παολίνα Κουτσάκη Ειβλέων Καθηγητής: Μιχαήλ Πααδημητράκης Ειτροή: Μιχαήλ Κολουντζάκης, Θεμιστοκλής Μήτσης και
SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions
SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)
Estimation for ARMA Processes with Stable Noise. Matt Calder & Richard A. Davis Colorado State University
Estimation for ARMA Processes with Stable Noise Matt Calder & Richard A. Davis Colorado State University rdavis@stat.colostate.edu 1 ARMA processes with stable noise Review of M-estimation Examples of
11 Drinfeld. k( ) = A/( ) A K. [Hat1, Hat2] k M > 0. Γ 1 (M) = γ SL 2 (Z) f : H C. ( ) az + b = (cz + d) k f(z) ( z H, γ = cz + d Γ 1 (M))
Drinfeld Drinfeld 29 8 8 11 Drinfeld [Hat3] 1 p q > 1 p A = F q [t] A \ F q d > 0 K A ( ) k( ) = A/( ) A K Laurent F q ((1/t)) 1/t C Drinfeld Drinfeld p p p [Hat1, Hat2] 1.1 p 1.1.1 k M > 0 { Γ 1 (M) =
CERTAIN SUBCLASSES OF UNIFORMLY STARLIKE AND CONVEX FUNCTIONS DEFINED BY CONVOLUTION WITH NEGATIVE COEFFICIENTS
MATEMATIQKI VESNIK 65, 1 (2013), 14 28 March 2013 originalni nauqni rad research paper CERTAIN SUBCLASSES OF UNIFORMLY STARLIKE AND CONVEX FUNCTIONS DEFINED BY CONVOLUTION WITH NEGATIVE COEFFICIENTS M.K.
Homomorphism in Intuitionistic Fuzzy Automata
International Journal of Fuzzy Mathematics Systems. ISSN 2248-9940 Volume 3, Number 1 (2013), pp. 39-45 Research India Publications http://www.ripublication.com/ijfms.htm Homomorphism in Intuitionistic
4.6 Autoregressive Moving Average Model ARMA(1,1)
84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this
Outline Analog Communications. Lecture 05 Angle Modulation. Instantaneous Frequency and Frequency Deviation. Angle Modulation. Pierluigi SALVO ROSSI
Outline Analog Communications Lecture 05 Angle Modulation 1 PM and FM Pierluigi SALVO ROSSI Department of Industrial and Information Engineering Second University of Naples Via Roma 9, 81031 Aversa (CE),
(, ) (SEM) [4] ,,,, , Legendre. [6] Gauss-Lobatto-Legendre (GLL) Legendre. Dubiner ,,,, (TSEM) Vol. 34 No. 4 Dec. 2017
34 4 17 1 JOURNAL OF SHANGHAI POLYTECHNIC UNIVERSITY Vol. 34 No. 4 Dec. 17 : 11-4543(174-83-8 DOI: 1.1957/j.cnki.jsspu.17.4.6 (, 19 :,,,,,, : ; ; ; ; ; : O 41.8 : A, [1],,,,, Jung [] Legendre, [3] Chebyshev
Finite size Emptiness Formation Probability for the XXZ spin chain at = 1/2
Finite size Emptiness Formation Probability for the XXZ spin chain at = 1/2 Luigi Cantini luigi.cantini@u-cergy.fr LPTM, Université de Cergy-Pontoise (France) CFT AND INTEGRABLE MODELS Bologna, September
Fundamentals of Probability: A First Course. Anirban DasGupta
Fundamentals of Probability: A First Course Anirban DasGupta Contents 1 Introducing Probability 5 1.1 ExperimentsandSampleSpaces... 6 1.2 Set Theory Notation and Axioms of Probability........... 7 1.3
Diderot (Paris VII) les caractères des groupes de Lie résolubles
Βιογραφικο Σημειωμα Μ. Ανουσης Προσωπικά στοιχεία Εκπαίδευση Μιχάλης Ανούσης Πανεπιστήμιο Αιγαίου 83200 Καρλόβασι Σάμος Τηλ.: (3022730) 82127 Email: mano@aegean.gr 1980 Πτυχίο από το Τμήμα Μαθηματικών
ON INTEGRAL MEANS FOR FRACTIONAL CALCULUS OPERATORS OF MULTIVALENT FUNCTIONS. S. Sümer Eker 1, H. Özlem Güney 2, Shigeyoshi Owa 3
ON INTEGRAL MEANS FOR FRACTIONAL CALCULUS OPERATORS OF MULTIVALENT FUNCTIONS S. Sümer Eker 1, H. Özlem Güney 2, Shigeyoshi Owa 3 Dedicated to Professor Megumi Saigo, on the occasion of his 7th birthday
Probability and Random Processes (Part II)
Probability and Random Processes (Part II) 1. If the variance σ x of d(n) = x(n) x(n 1) is one-tenth the variance σ x of a stationary zero-mean discrete-time signal x(n), then the normalized autocorrelation
Stationary Univariate Time Series Models 1
Stationary Univariate Time Series Models 1 Sebastian Fossati University of Alberta 1 These slides are based on Eric Zivot s time series notes available at: http://faculty.washington.edu/ezivot Example
Matrices and vectors. Matrix and vector. a 11 a 12 a 1n a 21 a 22 a 2n A = b 1 b 2. b m. R m n, b = = ( a ij. a m1 a m2 a mn. def
Matrices and vectors Matrix and vector a 11 a 12 a 1n a 21 a 22 a 2n A = a m1 a m2 a mn def = ( a ij ) R m n, b = b 1 b 2 b m Rm Matrix and vectors in linear equations: example E 1 : x 1 + x 2 + 3x 4 =
On Classes Of Analytic Functions Involving A Linear Fractional Differential Operator
International Journal of Pure and Applied Mathematical Sciences. ISSN 972-9828 Volume 9, Number 1 (216), pp. 27-37 Research India Publications http://www.ripublication.com/ijpams.htm On Classes Of Analytic
Retrieval of Seismic Data Recorded on Open-reel-type Magnetic Tapes (MT) by Using Existing Devices
No. 3 + 1,**- Technical Research Report, Earthquake Research Institute, University of Tokyo, No. 3, pp. + 1,,**-. MT * ** *** Retrieval of Seismic Data Recorded on Open-reel-type Magnetic Tapes (MT) by
Computing the Macdonald function for complex orders
Macdonald p. 1/1 Computing the Macdonald function for complex orders Walter Gautschi wxg@cs.purdue.edu Purdue University Macdonald p. 2/1 Integral representation K ν (x) = complex order ν = α + iβ e x
CSJ. Speaker clustering based on non-negative matrix factorization using i-vector-based speaker similarity
i-vector 1 1 1 1 i-vector CSJ i-vector Speaker clustering based on non-negative matrix factorization using i-vector-based speaker similarity Fukuchi Yusuke 1 Tawara Naohiro 1 Ogawa Tetsuji 1 Kobayashi
Lecture 21: Scattering and FGR
ECE-656: Fall 009 Lecture : Scattering and FGR Professor Mark Lundstrom Electrical and Computer Engineering Purdue University, West Lafayette, IN USA Review: characteristic times τ ( p), (, ) == S p p
Applying Markov Decision Processes to Role-playing Game
1,a) 1 1 1 1 2011 8 25, 2012 3 2 MDPRPG RPG MDP RPG MDP RPG MDP RPG MDP RPG Applying Markov Decision Processes to Role-playing Game Yasunari Maeda 1,a) Fumitaro Goto 1 Hiroshi Masui 1 Fumito Masui 1 Masakiyo
High order interpolation function for surface contact problem
3 016 5 Journal of East China Normal University Natural Science No 3 May 016 : 1000-564101603-0009-1 1 1 1 00444; E- 00030 : Lagrange Lobatto Matlab : ; Lagrange; : O41 : A DOI: 103969/jissn1000-56410160300
Stabilization of stock price prediction by cross entropy optimization
,,,,,,,, Stabilization of stock prediction by cross entropy optimization Kazuki Miura, Hideitsu Hino and Noboru Murata Prediction of series data is a long standing important problem Especially, prediction
Vol. 37 ( 2017 ) No. 3. J. of Math. (PRC) : A : (2017) k=1. ,, f. f + u = f φ, x 1. x n : ( ).
Vol. 37 ( 2017 ) No. 3 J. of Math. (PRC) R N - R N - 1, 2 (1., 100029) (2., 430072) : R N., R N, R N -. : ; ; R N ; MR(2010) : 58K40 : O192 : A : 0255-7797(2017)03-0467-07 1. [6], Mather f : (R n, 0) R
Probabilistic Approach to Robust Optimization
Probabilistic Approach to Robust Optimization Akiko Takeda Department of Mathematical & Computing Sciences Graduate School of Information Science and Engineering Tokyo Institute of Technology Tokyo 52-8552,
SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM
SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr T t N n) Pr max X 1,..., X N ) t N n) Pr max
Nachrichtentechnik I WS 2005/2006
Nachrichtentechnik I WS 2005/2006 1 Signals & Systems wt 10/2005 1 Overview (Signals & Systems) Signals: definition & classification properties basic signals Signal transformations Fourier transformation
Using Long-Run Consumption-Return Correlations to Test Asset Pricing Models : Internet Appendix
Using Long-Run Consumption-Return Correlations to Test Asset Pricing Models : Internet Appendix Jianfeng Yu University of Minnesota April 0, 0 Proof. [For Equation 6]: To derive the log-linear approximation
Higher spin gauge theories and their CFT duals
Higher spin gauge theories and their CFT duals E-mail: hikida@phys-h.keio.ac.jp 2 AdS Vasiliev AdS/CFT 4 Vasiliev 3 O(N) 3 Vasiliev 2 W N 1 AdS/CFT g µν Vasiliev AdS [1] AdS/CFT anti-de Sitter (AdS) (CFT)
90 [, ] p Panel nested error structure) : Lagrange-multiple LM) Honda [3] LM ; King Wu, Baltagi, Chang Li [4] Moulton Randolph ANOVA) F p Panel,, p Z
00 Chinese Journal of Applied Probability and Statistics Vol6 No Feb 00 Panel, 3,, 0034;,, 38000) 3,, 000) p Panel,, p Panel : Panel,, p,, : O,,, nuisance parameter), Tsui Weerahandi [] Weerahandi [] p
STRONG DIFFERENTIAL SUBORDINATIONS FOR HIGHER-ORDER DERIVATIVES OF MULTIVALENT ANALYTIC FUNCTIONS DEFINED BY LINEAR OPERATOR
Khayyam J. Math. 3 217, no. 2, 16 171 DOI: 1.2234/kjm.217.5396 STRONG DIFFERENTIA SUBORDINATIONS FOR HIGHER-ORDER DERIVATIVES OF MUTIVAENT ANAYTIC FUNCTIONS DEFINED BY INEAR OPERATOR ABBAS KAREEM WANAS
Fractional Calculus of a Class of Univalent Functions With Negative Coefficients Defined By Hadamard Product With Rafid -Operator
EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS Vol. 4, No. 2, 2, 62-73 ISSN 37-5543 www.ejpam.com Fractional Calculus of a Class of Univalent Functions With Negative Coefficients Defined By Hadamard
2011 Ð 5 ACTA MATHEMATICAE APPLICATAE SINICA May, ( MR(2000) ß Â 49J20; 47H10; 91A10
À 34 À 3 Ù Ú ß Vol. 34 No. 3 2011 Ð 5 ACTA MATHEMATICAE APPLICATAE SINICA May, 2011 Á É ÔÅ Ky Fan Ë ÍÒ ÇÙÚ ( ¾±» À ¾ 100044) (Ø À Ø 550025) (Email: dingtaopeng@126.com) Ü Ö Ë»«Æ Đ ĐÄ Ï Þ Å Ky Fan Â Ï Ò¹Ë
On the k-bessel Functions
International Mathematical Forum, Vol. 7, 01, no. 38, 1851-1857 On the k-bessel Functions Ruben Alejandro Cerutti Faculty of Exact Sciences National University of Nordeste. Avda. Libertad 5540 (3400) Corrientes,
Linear System Response to Random Inputs. M. Sami Fadali Professor of Electrical Engineering University of Nevada
Linear System Response to Random Inputs M. Sami Fadali Professor of Electrical Engineering University of Nevada 1 Outline Linear System Response to deterministic input. Response to stochastic input. Characterize
Στοχαστικές Διαδικασίες (έμφαση στις σ.δ. διακριτού χρόνου)
Στοχαστικές Διαδικασίες (έμφαση στις σ.δ. διακριτού χρόνου) Εισαγωγικές Έννοιες για το μάθημα Ψηφιακές Τηλεπικοινωνίες Τυχαίες Μεταβλητές: Ορισμοί Θεωρούμε το πείραμα της ρίψης ενός νομίσματος. Το πείραμα
D Alembert s Solution to the Wave Equation
D Alembert s Solution to the Wave Equation MATH 467 Partial Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Objectives In this lesson we will learn: a change of variable technique
A summation formula ramified with hypergeometric function and involving recurrence relation
South Asian Journal of Mathematics 017, Vol. 7 ( 1): 1 4 www.sajm-online.com ISSN 51-151 RESEARCH ARTICLE A summation formula ramified with hypergeometric function and involving recurrence relation Salahuddin
ΔΗΜΟΣΙΕΥΣΕΙΣ σε περιοδικά με κριτές
ΔΗΜΟΣΙΕΥΣΕΙΣ σε περιοδικά με κριτές 1. Patsis, P. A. & Zachilas, L.: 1990, Complex Instability Of Simple Periodic-Orbits In A Realistic 2-Component Galactic Potential, Astron. & Astroph., 227, 37 (ISI,
Ψηφιακή Επεξεργασία Φωνής
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Επεξεργασία Φωνής Διάλεξη: Προσαρμόσιμο Αρμονικό Μοντέλο Παρουσίαση: Gilles Degottex Στυλιανού Ιωάννης Τμήμα Επιστήμης Υπολογιστών A Full-Band Adaptive Harmonic
INTERVAL ARITHMETIC APPLIED TO STRUCTURAL DESIGN OF UNCERTAIN MECHANICAL SYSTEMS
INTERVAL ARITHMETIC APPLIED TO STRUCTURAL DESIGN OF UNCERTAIN MECHANICAL SYSTEMS O. Dessombz, F.Thouverez J-P. Laîné, L.Jézéquel Laboratoire de Tribologie et Dynamique des Systèmes UMR CNRS 5513 École