6.641, Electromagnetic Fields, Forces, and Motion Prof. Markus Zahn Lecture 7: Polarization and Conduction

Σχετικά έγγραφα
Note: Please use the actual date you accessed this material in your citation.

Note: Please use the actual date you accessed this material in your citation.

CHAPTER (2) Electric Charges, Electric Charge Densities and Electric Field Intensity

6.642 Continuum Electromechanics

6.642, Continuum Electromechanics, Fall 2004 Prof. Markus Zahn Lecture 8: Electrohydrodynamic and Ferrohydrodynamic Instabilities

6.642 Continuum Electromechanics

Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α


University of Kentucky Department of Physics and Astronomy PHY 525: Solid State Physics II Fall 2000 Final Examination Solutions

Note: Please use the actual date you accessed this material in your citation.

Second Order RLC Filters

Vidyamandir Classes. Solutions to Revision Test Series - 2/ ACEG / IITJEE (Mathematics) = 2 centre = r. a

Capacitors - Capacitance, Charge and Potential Difference

Self and Mutual Inductances for Fundamental Harmonic in Synchronous Machine with Round Rotor (Cont.) Double Layer Lap Winding on Stator

Rectangular Polar Parametric

Electromagnetic Waves I

F19MC2 Solutions 9 Complex Analysis

DETERMINATION OF DYNAMIC CHARACTERISTICS OF A 2DOF SYSTEM. by Zoran VARGA, Ms.C.E.

2-1. Power Transistors. Transistors for Audio Amplifier. Transistors for Humidifier. Darlington Transistors. Low VCE (sat) High hfe Transistors

Review-2 and Practice problems. sin 2 (x) cos 2 (x)(sin(x)dx) (1 cos 2 (x)) cos 2 (x)(sin(x)dx) let u = cos(x), du = sin(x)dx. = (1 u 2 )u 2 ( du)

Theoretical Competition: 12 July 2011 Question 2 Page 1 of 2

Space-Time Symmetries

Delhi Noida Bhopal Hyderabad Jaipur Lucknow Indore Pune Bhubaneswar Kolkata Patna Web: Ph:

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Radiation Stress Concerned with the force (or momentum flux) exerted on the right hand side of a plane by water on the left hand side of the plane.

5 Ι ^ο 3 X X X. go > 'α. ο. o f Ο > = S 3. > 3 w»a. *= < ^> ^ o,2 l g f ^ 2-3 ο. χ χ. > ω. m > ο ο ο - * * ^r 2 =>^ 3^ =5 b Ο? UJ. > ο ο.

Α Ρ Ι Θ Μ Ο Σ : 6.913

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Solutions to Exercise Sheet 5

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

Matrices and Determinants

ME 365: SYSTEMS, MEASUREMENTS, AND CONTROL (SMAC) I

Homework 8 Model Solution Section

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

ECE 222b Applied Electromagnetics Notes Set 4c

Integrals in cylindrical, spherical coordinates (Sect. 15.7)

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

The Probabilistic Method - Probabilistic Techniques. Lecture 7: The Janson Inequality

the total number of electrons passing through the lamp.

Magnetically Coupled Circuits

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

Handbook of Electrochemical Impedance Spectroscopy

2. Α ν ά λ υ σ η Π ε ρ ι ο χ ή ς. 3. Α π α ι τ ή σ ε ι ς Ε ρ γ ο δ ό τ η. 4. Τ υ π ο λ ο γ ί α κ τ ι ρ ί ω ν. 5. Π ρ ό τ α σ η. 6.

Solutions 3. February 2, Apply composite Simpson s rule with m = 1, 2, 4 panels to approximate the integrals:

Spherical Coordinates

ο ο 3 α. 3"* > ω > d καΐ 'Ενορία όλις ή Χώρί ^ 3 < KN < ^ < 13 > ο_ Μ ^~~ > > > > > Ο to X Η > ο_ ο Ο,2 Σχέδι Γλεγμα Ο Σ Ο Ζ < o w *< Χ χ Χ Χ < < < Ο

ECE 308 SIGNALS AND SYSTEMS FALL 2017 Answers to selected problems on prior years examinations

Lecture 21: Scattering and FGR

Chapter 5. Exercise Solutions. Microelectronics: Circuit Analysis and Design, 4 th edition Chapter 5 EX5.1 = 1 I. = βi EX EX5.3 = = I V EX5.

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

( )( ) La Salle College Form Six Mock Examination 2013 Mathematics Compulsory Part Paper 2 Solution

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET

RS306 High Speed Fuse for Semiconductor Protection

If ABC is any oblique triangle with sides a, b, and c, the following equations are valid. 2bc. (a) a 2 b 2 c 2 2bc cos A or cos A b2 c 2 a 2.

Electrical Specifications at T AMB =25 C DC VOLTS (V) MAXIMUM POWER (dbm) DYNAMIC RANGE IP3 (dbm) (db) Output (1 db Comp.) at 2 f U. Typ.

Bounding Nonsplitting Enumeration Degrees

QUICKTRONIC PROFESSIONAL QTP5

Design Method of Ball Mill by Discrete Element Method

Cable Systems - Postive/Negative Seq Impedance

Review of Single-Phase AC Circuits

Spectrum Representation (5A) Young Won Lim 11/3/16

ΘΕΩΡΙΑ ΤΩΝ ΗΜΙΑΓΩΓΩΝ ΔΕΥΤΕΡΗ ΕΝΟΤΗΤΑ ΟΜΟΓΕΝΕΙΣ ΗΜΙΑΓΩΓΟΙ ΦΑΙΝΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ

Dissertation for the degree philosophiae doctor (PhD) at the University of Bergen

Example 1: THE ELECTRIC DIPOLE

Durbin-Levinson recursive method

Rectangular Polar Parametric

Equations. BSU Math 275 sec 002,003 Fall 2018 (Ultman) Final Exam Notes 1. du dv. FTLI : f (B) f (A) = f dr. F dr = Green s Theorem : y da

Westfalia Bedienungsanleitung. Nr

Reminders: linear functions

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

[1] P Q. Fig. 3.1

w o = R 1 p. (1) R = p =. = 1

Written Examination. Antennas and Propagation (AA ) April 26, 2017.

Part III - Pricing A Down-And-Out Call Option

wave energy Superposition of linear plane progressive waves Marine Hydrodynamics Lecture Oblique Plane Waves:

Affine Weyl Groups. Gabriele Nebe. Summerschool GRK 1632, September Lehrstuhl D für Mathematik

Sampling Basics (1B) Young Won Lim 9/21/13

Ferrite Chip Beads For Automotive Use

0.635mm Pitch Board to Board Docking Connector. Lead-Free Compliance

Derivation of Optical-Bloch Equations

Second Order Partial Differential Equations

ΣΗΜΑΤΑ ΔΙΑΚΡΙΤΟΥ ΧΡΟΝΟΥ

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)

Strain gauge and rosettes

Advanced Subsidiary Unit 1: Understanding and Written Response

Physics/Astronomy 226, Problem set 5, Due 2/17 Solutions

Terminal Contact UL Insulation Designation (provided with) style form system approval Flux tight

Solving an Air Conditioning System Problem in an Embodiment Design Context Using Constraint Satisfaction Techniques

10.7 Performance of Second-Order System (Unit Step Response)

Physique des réacteurs à eau lourde ou légère en cycle thorium : étude par simulation des performances de conversion et de sûreté

Q π (/) ^ ^ ^ Η φ. <f) c>o. ^ ο. ö ê ω Q. Ο. o 'c. _o _) o U 03. ,,, ω ^ ^ -g'^ ο 0) f ο. Ε. ιη ο Φ. ο 0) κ. ο 03.,Ο. g 2< οο"" ο φ.

u = 0 u = ϕ t + Π) = 0 t + Π = C(t) C(t) C(t) = K K C(t) ϕ = ϕ 1 + C(t) dt Kt 2 ϕ = 0


Answers to practice exercises

= (2)det (1)det ( 5)det 1 2. u

Microelectronic Circuit Design Third Edition - Part I Solutions to Exercises

Surface Mount Multilayer Chip Capacitors for Commodity Solutions

Appendix A. Curvilinear coordinates. A.1 Lamé coefficients. Consider set of equations. ξ i = ξ i (x 1,x 2,x 3 ), i = 1,2,3

Parametrized Surfaces


Transcript:

6.641, Electromgnetic Fiels, Forces, n Motion Prof. Mrkus Zhn Lecture 7: Polriztion n Conuction I. Experimentl Oservtion A. Fixe oltge - Switch Close ( v= o ) As n insulting mteril enters free-spce cpcitor t constnt voltge more chrge flows onto the electroes; i.e. s x increses, i increses. B. Fixe Chrge - Switch open (i=0) As n insulting mteril enters free spce cpcitor t constnt chrge, the voltge ecreses; i.e. s x increses, v ecreses. II. Dipole Moel of Polriztion A. Polriztion ector P = Np = Nq ( p = q ipole moment) N ipoles/olume ( P is ipole ensity) q q Prof. Mrkus Zhn Pge 1 of 7

Courtesy of Krieger Pulishing. Use with permission. Prof. Mrkus Zhn Pge of 7

Q = qni = ρ insie S P pire chrge or equivlently polriztion chrge ensity Q = P i = ip = ρ insie S P (Divergence Theorem) P=qN i P = ρ P B. Guss Lw ( E) i = ρ = ρ ρ = ρ ip o totl u P u unpire chrge ensity; lso clle free chrge ensity ( E P ) = ρ i o u D = E P Displcement Flux Density o i D = ρ u C. Bounry Conitions Prof. Mrkus Zhn Pge 3 of 7

u u su S i D= ρ D i = ρ n i D D = σ P P sp S i P= ρ P i = ρ n i P P = σ ( ) i E = ρ ρ E i = ρ ρ n i E E = σ σ o u P o u P o su sp S D. Polriztion Current Density Q = qn = qni = P i [Amount of Chrge pssing through surfce re element ] i p Q P = = i t t [Current pssing through surfce re element ] = Jp i polriztion current ensity J p P = t Ampere s lw: xh = J J u p o E t P = Ju t o E t ( o ) = Ju E P t D t = Ju Prof. Mrkus Zhn Pge 4 of 7

III. Equipotentil Sphere in Uniform Electric Fiel r o o o lim Φ r, θ =Ercosθ Φ= E z =Ercosθ Φ ( r = R, θ ) = 0 3 R Φ ( r, θ ) = Eo r cos θ r This solution is compose of the superposition of uniform electric fiel plus the fiel ue to point electric ipole t the center of the sphere: p cosθ Φ = π ipole 4 or 3 with p = 4π E R o o This ipole is ue to the surfce chrge istriution on the sphere. 3 Φ R σ s ( r = R, θ ) = oer ( r = R, θ ) = o = oeo 1 cos 3 θ r r= R r r= R = 3 E cosθ o o Prof. Mrkus Zhn Pge 5 of 7

I. Artificil Dielectric v v E =, s E σ = = A q =σ sa = v C = q = A v _ υ E Courtesy of Hermnn A. Hus n Jmes R. Melcher. Use with permission. For sphericl rry of non-intercting spheres (s >> R) _ 3 3 P=4π R E iz P =N p =4π R E N o o z z o o N= 1 s 3 R 3 R 3 P= o 4π E= ψe o E ψe =4π s s ψ e (electric susceptiility) D= o E P= o 1 ψe E= E r (reltive ielectric constnt) 3 R = r o = o 1 ψ e = o 1 4π s Prof. Mrkus Zhn Pge 6 of 7

. Demonstrtion: Artificil Dielectric Courtesy of Hermnn A. Hus n Jmes R. Melcher. Use with permission. Prof. Mrkus Zhn Pge 7 of 7

Courtesy of Hermnn A. Hus n Jmes R. Melcher. Use with permission. v E= σs= E= v A q A q= σsa= v C= = v v i= ω C = R ( ) 3 o A R A C= =4πo s o s R=1.87 cm, s=8 cm, A= (0.4) m, =0.15m ω =π(50 Hz), R s =100 k Ω, =566 volts pek C=1.5 pf v 0 = ω CRs =(π) (50) (1.5 x 10-1 ) (10 5 ) 566 = 0.135 volts pek Prof. Mrkus Zhn Pge 8 of 7

I. Plsm Conuction Moel (Clssicl) v m = q E m v p ν t n v p m = qe mνv t n p = n kt, p = nkt k=1.38 x 10-3 joules/ o K Boltzmnn Constnt A. Lonon Moel of Superconuctivity [ T 0, ν± 0] v v m = q E, m = qe t t J = q n v, J = q n v ( ) J qe v q n = ( q n v ) = q n = q n = E t t t m m ω p ( ) J qe v q n = ( q n v ) = q n = q n = E t t t m m ω p ω q n q n p =, ω p = m m (ω p = plsm frequency) For electrons: q - =1.6 x 10-19 Couloms, m - =9.1 x 10-31 kg n - =10 0 /m 3 1, = 8.854 x10 frs/m o ω p ωp 10 f p = 9x10 π q n m 11 = 5.6 x10 Hz r/s Prof. Mrkus Zhn Pge 9 of 7

B. Drift-Diffusion Conuction [Neglect inerti] 0 v ( n k T) q k T m = q E m v v = E n ν t n m ν m ν n 0 v ( n k T) q k T m = q E m v v = E n ν t n mν mνn q n q k T J = q n v = E n m ν m ν q n q k T J = q n v = E n mν mν ρ =q n, ρ = q n J = ρ µ ED ρ J = ρ µ E D ρ µ q =, D = kt m ν m ν µ q kt =, D = mν m ν chrge moilities Moleculr Diffusion Coefficients D D kt = = µ µ q = therml voltge (5 m @ T 300 o K) Einstein s Reltion Prof. Mrkus Zhn Pge 10 of 7

C. Drift-Diffusion Conuction Equilirium ( J = J = 0 ) J = 0 = ρ µ ED ρ = ρ µ Φ D ρ J = 0 = ρ µ E D ρ = ρ µ Φ D ρ D kt Φ = ρ = lnρ ρ µ q D kt Φ = ρ = lnρ ρ µ q ρ ρ q /kt = oe Φ ρ ρ q /kt = oe Φ Boltzmnn Distriutions ( =0 ) = ( =0 ) = o ρ Φ ρ Φ ρ [Potentil is zero when system is chrge neutrl] ( ρ ρ) ρo Φ Φ ρ ρ Φ q Φ q /kt q /kt o = = = e e = sinh kt (Poisson-Boltzmnn Eqution) Smll Potentil Approximtion: q Φ << 1 kt qφ sinh kt qφ kt ρ0q Φ Φ =0 kt Φ L Φ kt =0 ; L = ρ q o Deye Length Prof. Mrkus Zhn Pge 11 of 7

D. Cse Stuies 1. Plnr Sheet Φ Φ x/l =0 Φ =A1 e A e x L x/l B.C. Φ( x ± ) =0 ( x 0 ) = o Φ = ( x) Φ = x/l o e x > 0 < x/l o e x 0 Prof. Mrkus Zhn Pge 1 of 7

Φ E x = = x o e x/l x > 0 L o e x/l x < 0 L Ex ρ = = x e x 0 o x/l > L e x 0 o x/l < L σ ( = ) ( = ) s x=0 = Ex x 0 Ex x 0 = L o. Point Chrge (Deye Shieling) Φ 1 r r r Φ L 1 = r r r =0 Φ r ( Φ) E. Ohmic Conuction r Φ rφ r Φ =0 L r = A e A e r/l Φ 1 Q r = e 4π r r/l 0 r/l J = ρ µ ED ρ J = ρ µ E D ρ If chrge ensity grients smll, then ρ negligile ± ρ = ρ = ρ o J=J J = ρ µ ρ µ E= ρ µ µ E= σe o J= σ E (Ohm s Lw) σ = ohmic conuctivity Prof. Mrkus Zhn Pge 13 of 7

F. pn Junction Dioe Prof. Mrkus Zhn Pge 14 of 7

kt N Φ = Φ Φ = ln N A D n p q ni qn x qn x Φ ( x=0 ) = Φ p = Φn A p D n qnd x qna x n Φ = Φn Φp = p qn D xn qnd xn ND = ( xn xp) = 1 NA Prof. Mrkus Zhn Pge 15 of 7

II. Reltionship Between Resistnce n Cpcitnce In Uniform Mei Descrie y n σ. Di Ei qu S S C= = = v Eis Eis L Eis Eis v L L R= = = i Ji σ Ei S L S Eis Ei L L RC = = σ Ei Eis S L σ Check: Prllel Plte Electroes: l A R=, C= RC= σ A l σ Prof. Mrkus Zhn Pge 16 of 7

Coxil ln πl R=, C= RC= πσl ln σ Concentric Sphericl 1 1 R R 4 π 1 1 σ R R 1 R=, C= RC= 4 πσ 1 Prof. Mrkus Zhn Pge 17 of 7

III. Chnge Relxtion in Uniform Conuctors i ρ t u J u = 0 i E= ρ u J u = σ E ρu ρu σ σ i E = 0 ρu = 0 t t ρu τ = e σ = ielectric relxtion time ρ u t t τ ρu =0 ρu = ρ0 r, t=0 e τ e e IX. Demonstrtion 7.7.1 Relxtion of Chrge on Prticle in Ohmic Conuctor Courtesy of Hermnn A. Hus n Jmes R. Melcher. Use with permission. Courtesy of Hermnn A. Hus n Jmes R. Melcher. Use with permission. Prof. Mrkus Zhn Pge 18 of 7

i i σ q q u J = σ E = = S S t q q =0 q=q t=0 e e τ = t τ e t τ ( e ) σ Prtilly Uniformly Chrge Sphere Courtesy of Krieger Pulishing. Use with permission. Prof. Mrkus Zhn Pge 19 of 7

ρ r < R 0 1 4 ρ ( t=0 ) = Q = πr ρ 3 0 r > R 3 u T 1 0 1 t τ ( t ) = e e r R = ρ ρ < τ σ u 0 1 e 0 r > R 1 r E r,t = t τe t τe ρ0 re Qre = 0 < r < R 3 4 π R Qe 4 π r t τe 0 Q 4 π r 3 1 R < r < R 1 r > R 1 σ ( r = R ) = E ( r = R ) E ( r = R ) su 0 r r t τe ( ) Q = 1 e 4 π R X. Self-Excite Wter Dynmos A. DC High oltge Genertion (Self-Excite) Prof. Mrkus Zhn Pge 0 of 7

Prof. Mrkus Zhn Pge 1 of 7

v st nc i v 1 = C v 1 = e nci = Cs t 1 1 v1 st nc i v = C v = e nci = Cs t 1 nci 1 1 Cs =0 nc i 1 Cs Det = 0 nci Cs nc C i ± =1 s= root lows up nci t C e Any perturtion grows exponentilly with time B. AC High oltge Self Excite Genertion v nc i v 1 = C ; v 1 = 1 e t v3 nc i v = C v = e t v1 nc i v 3 = C v 3 = 3 e t st st st nc i Cs 0 1 0 nci Cs =0 Cs 0 nc i 3 et = 0 Prof. Mrkus Zhn Pge of 7

( nc ) ( Cs ) =0 s= ( 1) 1 i nc C 3 3 i 3 s = nc C (exponentilly ecying solution) 1 i 13 1± 3j 1 = 1, ( ) nc C i s,3 = 1± 3 j (lows up exponentilly ecuse s rel >0 ; ut lso oscilltes t frequency s img 0) XI. Conservtion of Chrge Bounry Conition i ρ t u J u =0 i Ju ρu =0 S t ni J J σsu =0 t Prof. Mrkus Zhn Pge 3 of 7

XII. Mxwell s Cpcitor A. Generl Equtions E= _ E t i 0 < x < _ x E t i < x < 0 x E = v t =E t E t x x σsu ni J J =0 E ( t) E ( t) E ( t) E ( t ) σ σ =0 t t v t E ( t ) = E t v t v t σe ( t) σ E ( t) E ( t) E ( t) =0 t E σ σ v t v σ E ( t ) = t t Prof. Mrkus Zhn Pge 4 of 7

B. Step oltge: v ( t ) = u( t ) v = δ (n impulse) t Then ( t ) At t=0 E v = = t t t δ Integrte from t=0 - to t=0 0 E t t= 0 t= 0 δ t= 0 t t= 0 t= 0 ( = ) E t 0 = 0 t = E = t = E ( t = 0 ) = E ( t = 0 ) = For t > 0, v =0 t E σ σ σ E ( t ) = t σ t τ E ( t ) = A e ; τ = σ σ σ σ σ σ E ( t = 0 ) = A = A = σ σ σ σ σ t E ( t ) = ( 1 e ) e σ σ E t = E t τ t τ Prof. Mrkus Zhn Pge 5 of 7

σ ( t ) = E ( t) E ( t ) = E ( t) E ( t) su =E t ( σ σ ) ( σ σ ) = 1 e τ ( ) t C. Sinusoil Stey Stte: jω jω E t = Re E e jω E t = Re E e t t v t = Re e Conservtion of Chrge Interfcil Bounry Conition σ E ( t) σ E ( t) E ( t) E ( t ) = 0 t t E σ ω j E σ j ω = 0 E E = E E = E E σ jω σ j ω = 0 σ ω ( σ ω E ) σ ω j j = j = 0 E E = = jω σ jω σ ( σ ω ) ( σ ω ) j j σ = E E su ( ) σ σ ( σ ω ) ( σ ω ) = j j Prof. Mrkus Zhn Pge 6 of 7

D. Equivlent Circuit (Electroe Are A) I= j E A= j E A ( σ ω ) ( σ ω ) = R R R C jω 1 R C jω 1 R =, R = σ A σ A C =, C = A A Prof. Mrkus Zhn Pge 7 of 7