Proposal on Unstructured Triangular Mesh Generation Method for Singular Stress Field Analysis of Bonded Structures Based on Finite Element Method

Σχετικά έγγραφα

Introduction to Theory of. Elasticity. Kengo Nakajima Summer

Constitutive Equation for Plastic Behavior of Hydrostatic Pressure Dependent Polymers

High order interpolation function for surface contact problem

Reaction of a Platinum Electrode for the Measurement of Redox Potential of Paddy Soil

* ** *** *** Jun S HIMADA*, Kyoko O HSUMI**, Kazuhiko O HBA*** and Atsushi M ARUYAMA***

Quantum dot sensitized solar cells with efficiency over 12% based on tetraethyl orthosilicate additive in polysulfide electrolyte

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

Study of urban housing development projects: The general planning of Alexandria City

Dr. D. Dinev, Department of Structural Mechanics, UACEG

On a four-dimensional hyperbolic manifold with finite volume

Hydrologic Process in Wetland

ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ ΛΕΩΝΙΔΑΣ Α. ΣΠΥΡΟΥ Διδακτορικό σε Υπολογιστική Εμβιομηχανική, Τμήμα Μηχανολόγων Μηχανικών, Πανεπιστήμιο Θεσσαλίας.

Stress Relaxation Test and Constitutive Equation of Saturated Soft Soil

Συγκριτική Αξιολόγηση Προσοµοιωµάτων Τοιχείων και Πυρήνων Κτηρίων µε τη Μέθοδο των Πεπερασµένων Στοιχείων και Πειραµατικά Αποτελέσµατα

Strain gauge and rosettes

ΜΑΘΗΜΑΤΙΚΗ ΠΡΟΣΟΜΟΙΩΣΗ ΤΗΣ ΔΥΝΑΜΙΚΗΣ ΤΟΥ ΕΔΑΦΙΚΟΥ ΝΕΡΟΥ ΣΤΗΝ ΠΕΡΙΠΤΩΣΗ ΑΡΔΕΥΣΗΣ ΜΕ ΥΠΟΓΕΙΟΥΣ ΣΤΑΛΑΚΤΗΦΟΡΟΥΣ ΣΩΛΗΝΕΣ ΣΕ ΔΙΑΣΤΡΩΜΕΝΑ ΕΔΑΦΗ

Buried Markov Model Pairwise

Resurvey of Possible Seismic Fissures in the Old-Edo River in Tokyo

Comparison of Evapotranspiration between Indigenous Vegetation and Invading Vegetation in a Bog

Approximation of distance between locations on earth given by latitude and longitude

Study on Re-adhesion control by monitoring excessive angular momentum in electric railway traction

GPGPU. Grover. On Large Scale Simulation of Grover s Algorithm by Using GPGPU

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems

; +302 ; +313; +320,.

Web-based supplementary materials for Bayesian Quantile Regression for Ordinal Longitudinal Data

ER-Tree (Extended R*-Tree)

ADVANCED STRUCTURAL MECHANICS

MECHANICAL PROPERTIES OF MATERIALS

ST5224: Advanced Statistical Theory II

Mechanical Behaviour of Materials Chapter 5 Plasticity Theory

Nov Journal of Zhengzhou University Engineering Science Vol. 36 No FCM. A doi /j. issn

CorV CVAC. CorV TU317. 1

1 (forward modeling) 2 (data-driven modeling) e- Quest EnergyPlus DeST 1.1. {X t } ARMA. S.Sp. Pappas [4]

IPSJ SIG Technical Report Vol.2014-CE-127 No /12/6 CS Activity 1,a) CS Computer Science Activity Activity Actvity Activity Dining Eight-He

«ΑΝΑΠΣΤΞΖ ΓΠ ΚΑΗ ΥΩΡΗΚΖ ΑΝΑΛΤΖ ΜΔΣΔΩΡΟΛΟΓΗΚΩΝ ΓΔΓΟΜΔΝΩΝ ΣΟΝ ΔΛΛΑΓΗΚΟ ΥΩΡΟ»

ΓΕΩΜΕΣΡΙΚΗ ΣΕΚΜΗΡΙΩΗ ΣΟΤ ΙΕΡΟΤ ΝΑΟΤ ΣΟΤ ΣΙΜΙΟΤ ΣΑΤΡΟΤ ΣΟ ΠΕΛΕΝΔΡΙ ΣΗ ΚΤΠΡΟΤ ΜΕ ΕΦΑΡΜΟΓΗ ΑΤΣΟΜΑΣΟΠΟΙΗΜΕΝΟΤ ΤΣΗΜΑΣΟ ΨΗΦΙΑΚΗ ΦΩΣΟΓΡΑΜΜΕΣΡΙΑ

HIV HIV HIV HIV AIDS 3 :.1 /-,**1 +332

Supplementary Materials for Evolutionary Multiobjective Optimization Based Multimodal Optimization: Fitness Landscape Approximation and Peak Detection

ON NEGATIVE MOMENTS OF CERTAIN DISCRETE DISTRIBUTIONS

College of Life Science, Dalian Nationalities University, Dalian , PR China.

EXPERIMENTAL AND NUMERICAL STUDY OF A STEEL-TO-COMPOSITE ADHESIVE JOINT UNDER BENDING MOMENTS

(, ) (SEM) [4] ,,,, , Legendre. [6] Gauss-Lobatto-Legendre (GLL) Legendre. Dubiner ,,,, (TSEM) Vol. 34 No. 4 Dec. 2017

Macromechanics of a Laminate. Textbook: Mechanics of Composite Materials Author: Autar Kaw

Chapter 7 Transformations of Stress and Strain

ΜΕΤΑΛΛΙΚΑ ΥΠΟΣΤΥΛΩΜΑΤΑ ΥΠΟ ΘΛΙΨΗ ΚΑΙ ΚΑΜΨΗ

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

Statistical Inference I Locally most powerful tests

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

Ι ΑΚΤΟΡΙΚΗ ΙΑΤΡΙΒΗ. Χρήστος Αθ. Χριστοδούλου. Επιβλέπων: Καθηγητής Ιωάννης Αθ. Σταθόπουλος

VBA Microsoft Excel. J. Comput. Chem. Jpn., Vol. 5, No. 1, pp (2006)

Optimizing Microwave-assisted Extraction Process for Paprika Red Pigments Using Response Surface Methodology

Capacitors - Capacitance, Charge and Potential Difference

No. 7 Modular Machine Tool & Automatic Manufacturing Technique. Jul TH166 TG659 A

ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΕΡΙΒΑΛΛΟΝΤΟΣ

Homework 8 Model Solution Section

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ "ΠΟΛΥΚΡΙΤΗΡΙΑ ΣΥΣΤΗΜΑΤΑ ΛΗΨΗΣ ΑΠΟΦΑΣΕΩΝ. Η ΠΕΡΙΠΤΩΣΗ ΤΗΣ ΕΠΙΛΟΓΗΣ ΑΣΦΑΛΙΣΤΗΡΙΟΥ ΣΥΜΒΟΛΑΙΟΥ ΥΓΕΙΑΣ "

Congruence Classes of Invertible Matrices of Order 3 over F 2

(Mechanical Properties)

An Automatic Modulation Classifier using a Frequency Discriminator for Intelligent Software Defined Radio

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

Other Test Constructions: Likelihood Ratio & Bayes Tests

EE512: Error Control Coding

Q L -BFGS. Method of Q through full waveform inversion based on L -BFGS algorithm. SUN Hui-qiu HAN Li-guo XU Yang-yang GAO Han ZHOU Yan ZHANG Pan

Διπλωματική Εργασία. Μελέτη των μηχανικών ιδιοτήτων των stents που χρησιμοποιούνται στην Ιατρική. Αντωνίου Φάνης

Applying Markov Decision Processes to Role-playing Game

Research on Economics and Management

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Study on the Strengthen Method of Masonry Structure by Steel Truss for Collapse Prevention

FP series Anti-Bend (Soft termination) capacitor series

EXPERIMENT RESEARCH OF INFLUENCE OF DYNAMIC LOADING ON PROCESS OF CRACK FORMATION AT BOOTY OF LITHOIDAL BLOCKS T.

A summation formula ramified with hypergeometric function and involving recurrence relation

Homework 3 Solutions

Solution Series 9. i=1 x i and i=1 x i.

Parametrized Surfaces

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Σχολή Πολιτικών Μηχανικών Τοµέας οµοστατικής ΑΛΛΗΛΕΠΙ ΡΑΣΗ ΑΣΤΟΧΙΑΣ ΑΠΟ ΛΥΓΙΣΜΟ ΚΑΙ ΠΛΑΣΤΙΚΟΠΟΙΗΣΗ ΣΕ ΜΕΤΑΛΛΙΚΑ ΠΛΑΙΣΙΑ

*,* + -+ on Bedrock Bath. Hideyuki O, Shoichi O, Takao O, Kumiko Y, Yoshinao K and Tsuneaki G

EM Baum-Welch. Step by Step the Baum-Welch Algorithm and its Application 2. HMM Baum-Welch. Baum-Welch. Baum-Welch Baum-Welch.

Stresses in a Plane. Mohr s Circle. Cross Section thru Body. MET 210W Mohr s Circle 1. Some parts experience normal stresses in

Math 6 SL Probability Distributions Practice Test Mark Scheme

Supporting information. Influence of Aerosol Acidity on the Chemical Composition of Secondary Organic Aerosol from β caryophyllene

Statistics 104: Quantitative Methods for Economics Formula and Theorem Review

GF GF 3 1,2) KP PP KP Photo 1 GF PP GF PP 3) KP ULultra-light 2.KP 2.1KP KP Fig. 1 PET GF PP 4) 2.2KP KP GF 2 3 KP Olefin film Stampable sheet

Homomorphism in Intuitionistic Fuzzy Automata

ΕΠΙΧΕΙΡΗΣΙΑΚΟ ΠΡΟΓΡΑΜΜΑ «ΕΚΠΑΙΔΕΥΣΗ ΚΑΙ ΔΙΑ ΒΙΟΥ ΜΑΘΗΣΗ»

,,, (, ) , ;,,, ; -

Matrices and Determinants

n 1 n 3 choice node (shelf) choice node (rough group) choice node (representative candidate)

Study of In-vehicle Sound Field Creation by Simultaneous Equation Method

Eigenfunction expansion for penny-shaped and circumferential cracks

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΡΗΤΗΣ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ (ΣΔΟ) ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ

Stabilization of stock price prediction by cross entropy optimization

Mechanics of Materials Lab

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΕΠΑΝΑΣΧΕΔΙΑΣΜΟΣ ΓΡΑΜΜΗΣ ΣΥΝΑΡΜΟΛΟΓΗΣΗΣ ΜΕ ΧΡΗΣΗ ΕΡΓΑΛΕΙΩΝ ΛΙΤΗΣ ΠΑΡΑΓΩΓΗΣ REDESIGNING AN ASSEMBLY LINE WITH LEAN PRODUCTION TOOLS

Schedulability Analysis Algorithm for Timing Constraint Workflow Models

Supporting Information

90 [, ] p Panel nested error structure) : Lagrange-multiple LM) Honda [3] LM ; King Wu, Baltagi, Chang Li [4] Moulton Randolph ANOVA) F p Panel,, p Z

Crack Propagation Terminating at a Bimaterial Interface Studied Using Extended Finite Element Method

HW 3 Solutions 1. a) I use the auto.arima R function to search over models using AIC and decide on an ARMA(3,1)

Transcript:

(Journal of the Society of Materials Science, Japan), Vol. 66, No. 11, pp. 853-860, Nov. 2017 論文 Proposal on Unstructured Triangular Mesh Generation Method for Singular Stress Field Analysis of Bonded Structures Based on Finite Element Method by Takahiko KURAHASHI and Kengo YAMAGIWA In this paper, we present new unstructured triangular mesh generation method for singular stress field analysis of bonded structures based on finite element method. If tensile and bending loadings are applied to the bonded structure, stress concentration occurs around singular point. It is known that stress and strain distribution are proportional to r λ, i.e., r is distance from singular point and λ is order of singularity. In addition, in case of the stress analysis based on the FEM, it is known that the value of the stress component at singular point increases with decreasing mesh size around bonded structure. Therefore, fracture of the bonded structure evaluates by the intensity of stress singularity obtained by the stress distribution, and it is the most important that high accurate stress distribution is obtained. In this study, we introduce new mesh division procedure considering stress singularity near singular point, and some results for numerical experiments show in this paper. Key words: Automatic mesh generation, Unstructured triangular mesh, Finite element method, Stress analysis, Stress singularity, Bonded structures. 1 1),2) 3),4) 5) 6),7) 8),9) r λ σ ij r λ 3),4) λ 10) 1980 11) 12),13) 2 FEM (1)- (3) σ ij,j =0 (1) ϵ ij = 1 (ui,j + uj,i) (2) 2 σ ij = D ijkl ϵ kl (3) σ ijϵ kl u i D ijkl (1)-(3) (1)-(3) 3 2 λ Fig.1 2 σ ij 28 11 28 Received Nov. 28, 2016 c 2017 The Society of Materials Science, Japan 940-2188 Department of Mechanical Engineering, Nagaoka University of Technology, Kamitomioka, Nagaoka, 940-2188.

854 σ r λ = r 1 p (4) p 0 <p<1 14) λ 0 < λ < 1 λ p Bogy 10) p Aβ 2 +2Bαβ + Cα 2 +2Dβ +2Eα + F =0 (5) αβ Dundurs { α = µ 2 (x 1 +1) µ 1 (x 2 +1) µ 2 (x 1 +1)+µ 1 (x 2 +1) β = µ 2(x 1 1) µ 1 (x 2 1) µ 2 (x 1 +1)+µ 1 (x 2 +1) (6) { 3 4µi (Plane strain) x i = 3 µ i 1+µ i (Plane stress) (7) E i µ i =, (i =1, 2) 2(1 + ν i) (8) E i µ i (5) AF A =4K(p, θ 1)K(p, θ 2) B =2p 2 sin 2 θ 1K(p, θ 2)+2p 2 sin 2 θ 2K(p, θ 1) C =4p 2 (p 2 1) sin 2 θ 1 sin 2 θ 2 + K(p, θ 1 + θ 2) D =2p 2 (sin 2 θ 1 sin 2 (pθ 2) sin 2 θ 2 sin 2 (pθ 1) E = D + K(p, θ 2) K(p, θ 1) F = K(p, θ 1 θ 2) (9) (9) K(p, x) K(p, x) =sin 2 (px) p 2 sin 2 x (10) Fig. 1 Bonded structure model. 4 4 1 r θ λ (11) σ ij(r, θ) =K ijf(θ)r λ +(Other terms) (11) K ij f(θ) (Other terms) (11) ϵ ij(r, θ) =A ijg(θ)r λ +(Other terms) (12) (12) ϵ rr r r r (12) (12) r ϵ rr r 3 λ 0 <λ<1 (13) (13) r 1 ϵ rrdr = A rrg(θ)r λ dr = α(θ)r λ dr α(θ) = λ +1 r λ+1 + C (13) (13) r (14) r = α(θ) λ +1 r λ+1 + C (14) C (14) 4 2 7 Step1: Step2: Step3: (14) Step4: (14) Step5: Step6: N Step7: Fig.7 y

855 Fig. 2 Input of node and data in Step1. Fig. 6 Node relocation in Step6. e 1 e 2 e 3 : Node : Interface (a) Step7-1 Fig. 3 Generation of rough meshes in Step2. e 3 e 1 e 2 : Node : Interface (b) Step7-2 Fig. 4 Generation of new nodes in Step3,4. (c) Comparison of node locations. Fig. 7 Node relocation on interface in Step7. Fig. 5 Generation of fine meshes in Step5. Step3,4 6 Step3,4 Fig.8 δ

856 r r r r A r B r C (15) r(x, y) =N A r A + N B r B + N C r C (15) N AN BN C Fig.8 P r P Step6 Fig.9 P (16) M M A ex e A ey e x P e=1 =, y M P e=1 = (16) M A e A e e=1 e=1 A e N 3 5 2 Fig.10 Fig.10 x =0mmy =3mm Table1 4 λ 0.1 4.2 Case Case Table2 Fig.11 Case α(θ) α(θ) C C δ δ Case-a Table 1 Mesh division parameter. Case α(θ) C δ a 0.1 0.001 0.001 b 0.15 0.01 0.001 c 0.1 0.01 0.001 d 0.1 0.001 0.01 Fig. 8 Process of node generation. 1mm Material1 Singularty point 3mm Material2 3mm Fig. 9 Process of node relocation. Fig. 10 Bonded structure model.

857 Table 2 Numbers of nodes and elements for each meshes. Case node element a 936 1741 b 463 834 c 507 920 d 653 1199 (d)generated mesh in Case-d. Fig. 11 Generated meshes around singularity point. (a)generated mesh in Case-a. (b)generated mesh in Case-b. (c)generated mesh in Case-c. 6 2 1/4 Fig.12 Fig.12 Material1 Table3 Material2 E 2 70GPa ν 2 0.3 Bogy p λ Fig.13 Fig.13 (14) α(θ) 0.1 C 0.001Fig.8 δ 0.001 λ 4.2 Case Fig.12 r σ yy Fig.14 Fig.14 σ yy = K yyr λ λ K yy σ yy = K yyr λ Fig.14(a) Table3 Material1 Material2 E 2 70GPa ν 2 0.3 Dundurs αβ λ f Bogy

858 λ λ λ f Table4 Table4 Dundurs αβ Fig.15 Fig.15 α β λ λ f α β 1mm yy=10mpa Material1 Singularty point 3mm (b)finite element mesh in Case-(a-2) (E 1 = 30GPa λ =0.0384) Material2 3mm Fig. 12 Computational model and boundary conditions. Table 3 Material property (Material1) Case Young s modulus,gpa Poisson ratio a-1 20 a-2 30 0.3 a-2 40 a-3 50 b-1 20 b-2 30 0.4 b-1 40 b-3 50 c-1 20 c-1 30 c-2 40 0.5 c-3 50 (c)finite element mesh in Case-(a-3) (E 1 = 40GPa λ =0.0180) (a)finite element mesh in Case-(a-1) (E 1 = 20GPa λ =0.0735) Fig. 13 (d)finite element mesh in Case-(a-4) (E 1 = 50GPa λ =0.0068) Finite element mesh generation considering order of singularity λ in interface of bonded structure.

859 yy,mpa 15.0 14.0 13.0 12.0 11.0 10.0 9.0 1.000E-03 1.000E-02 1.000E-01 1.000E+00 distance from singular point r,mm Case-(a-1) Fitting curve Case-(a-2) Fitting curve Case-(a-3) Fitting curve Case-(a-4) Fitting curve Fig. 14 Result of stress analysis for each case. Table 4 Relation between the absolute error λ λ f and Dundurs parameters,α and β. Case α β λ λ f λ λ f a-1 0.5556 0.1944 0.0735 0.0645 0.00902 a-2 0.4000 0.1400 0.0384 0.0320 0.00644 a-3 0.2727 0.0956 0.0180 0.0154 0.00260 a-4 0.1667 0.0583 0.0068 0.0054 0.00141 b-1 0.5705 0.1604 0.1037 0.0898 0.01393 b-2 0.4182 0.1109 0.0616 0.0483 0.01326 b-3 0.2928 0.0702 0.0344 0.0253 0.00907 b-4 0.1878 0.0360 0.0171 0.0112 0.00586 c-1 0.5826 0.1248 0.1304 0.1094 0.02098 c-2 0.4331 0.0799 0.0833 0.0658 0.01749 c-3 0.3094 0.0428 0.0508 0.0352 0.01559 c-4 0.2053 0.0116 0.0284 0.0163 0.01206 Fig. 15 Distribution of the absolute error λ λ f in field of Dundurs parameters α and β. Dundurs αβ λ f Bogy λ λ λ f α β λ λ f α β Dundurs α β 3 15) E 200GPa ν 0.3 Fig.16 () Case1 (1013,1936)Case2 (3671,7200)Case3 (870,1627) Case1:1.286mmCase2:0.189mm Case3:0.131mm Fig.17 y=0mm σ yy λ Case1:0.416Case2:0.446Case3:0.438 0.5 Case2 Case3 Case2 Case3 σ yy 7 λ 15)

860 Fig. 16 r Computational model. yy Fig. 17 Stress distribution from sigular point on line y=0mm. 5 PRIMERGY CX400 1) S. Ioka, K. Masuda and S. Kubo, Free-edge singular stress field of bonded dissimilar materials with an elastic-plastic interlayertransaction of Japan Society of Mechanical Engineers, Series A, Vol.73, No.729, pp.611-618 (2007). 2) N. Noda, Z. Wang, K. Iida, Y. Sano and T. Miyazaki, Intensity of singular stress under tension for bonded pipe in comparison with bonded plate, Journal of the Society of Materials Science, Japan, Vol.65, No.6, pp.443-450 (2016). 3) H. Koguchi, K. Hoshi and T. Kurahashi, Analysis for three-dimensional singular stress field at a vertex of bonded interface edge in single lap joint under tensile-shear load, Transaction of Japan Society of Mechanical Engineers, Series A, Vol.78, No.795, pp.1558-1574 (2012). 4) T. Kurahashi, M. Nakajima, A. Ishikawa, K. Hoshi and H. Koguchi,Critical intensity of stress singularity at vertex in three dimensional dissimilar material joints (in case of rectangular bonded area), Transaction of Japan Society of Mechanical Engineers, Series A, Vol.78, No.794, pp.1382-1399 (2012). 5) Y. Liu, S. Murakami and K. Hayakawa, Mesh dependence and stress singularity in local approach to creep-crack growth analysis Transaction of Japan Society of Mechanical Engineers, Series A, Vol.59, No.564, pp.1811-1818 (1993). 6) S. Wang, M. Shiratori and Q. Yu, Evaluation of singular stress field at the end of the interface of dissimilar materials using akins singular element, Transaction of Japan Society of Mechanical Engineers, Series A, Vol.63, No.606, pp.322-327 (1997). 7) T. Kurahashi, S. Oshima, K. Ibe, Y. Watanabe, T. Kondo and H. Koguchi,Remarks for relationship between iterfacial average stress in delamination and non-dimensional intensity of stress singularity for bonded strips (stress analysis based on FEM using singular element), Journal of the Society of Materials Science, Japan, Vol.64, No.12, pp.1018-1025 (2015). 8) S.S. Pageau, and S.B. Biggers,JR, Enrichment of finite element with numerical solutions for singular stress fields, International Journal for Numerical Methods in Engineering, Vol.40, 2693-2713 (1997). 9) C. Luangarpa. and H. Koguchi, Evaluation of intensity of singularity for three-materials joints with power-logarithmic singularities using an enriched finite element method, Journal of Computational Science and Technology, Vol.7, No.2, pp.239-250 (2013). 10) D.B.Bogy, Two edge-bonded elastic wedges of different materials and wedge angles under surface tractions Journal of Applied Mechanics,Vol.38,pp.377-386 (1971). 11) M.A. Yerry and M.S. Shephard, Automatic three dimensional mesh generation by the modified octree technique, International Journal for Numerical Methods in Engineering, Vol.21, pp.1965-1990 (1984). 12) S.H.Lo, A new mesh generation scheme for arbitorary planar domains, International Journal for Numerical Methods in Engineering, Vol.21, pp.1403-1426 (1985). 13) K.Kashiyama and T.Okada, Automatic mesh generation method for shallow water flow analysis, International Journal for Numerical Methods in Fluids, Vol.15, pp.1037-1057 (1992). 14) R.Yuuki, Mechanics of interface, P.25(1993),Baifukan. 15) T.Kurahashi, A.Sukigara, K.Yamagiwa, K.Maruoka and T.Iyama, Automatic mesh generation of triangular meshes in finite element analysis -mesh generation considering stress concentration near crack and notch tips-, Research Reports of National Institute of Technology, Nagaoka College, Vol.52, pp.11-20 (2016).