Major Concepts. Multiphase Equilibrium Stability Applications to Phase Equilibrium. Two-Phase Coexistence

Σχετικά έγγραφα
Free Energy and Phase equilibria

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Free Energy Calculation

Homework 8 Model Solution Section

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

DuPont Suva 95 Refrigerant

( y) Partial Differential Equations

DuPont Suva 95 Refrigerant

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Technical Information T-9100 SI. Suva. refrigerants. Thermodynamic Properties of. Suva Refrigerant [R-410A (50/50)]

DuPont Suva. DuPont. Thermodynamic Properties of. Refrigerant (R-410A) Technical Information. refrigerants T-410A ENG

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

PARTIAL NOTES for 6.1 Trigonometric Identities

Finite Field Problems: Solutions

Example Sheet 3 Solutions

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 10η: Basics of Game Theory part 2 Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

The Simply Typed Lambda Calculus

Areas and Lengths in Polar Coordinates

EE512: Error Control Coding

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems

Solutions to Exercise Sheet 5

Inverse trigonometric functions & General Solution of Trigonometric Equations

Concrete Mathematics Exercises from 30 September 2016

Συστήματα Βιομηχανικών Διεργασιών 6ο εξάμηνο

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

Differential equations

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Areas and Lengths in Polar Coordinates

Depth versus Rigidity in the Design of International Trade Agreements. Leslie Johns

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

C.S. 430 Assignment 6, Sample Solutions

P AND P. P : actual probability. P : risk neutral probability. Realtionship: mutual absolute continuity P P. For example:

Matrices and Determinants

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών

Matrices and vectors. Matrix and vector. a 11 a 12 a 1n a 21 a 22 a 2n A = b 1 b 2. b m. R m n, b = = ( a ij. a m1 a m2 a mn. def

Approximation of distance between locations on earth given by latitude and longitude

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

The kinetic and potential energies as T = 1 2. (m i η2 i k(η i+1 η i ) 2 ). (3) The Hooke s law F = Y ξ, (6) with a discrete analog

Reminders: linear functions

Second Order Partial Differential Equations

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

Ύγρανση και Αφύγρανση. Ψυχρομετρία. 21-Nov-16

Lifting Entry (continued)

Solutions to the Schrodinger equation atomic orbitals. Ψ 1 s Ψ 2 s Ψ 2 px Ψ 2 py Ψ 2 pz

By R.L. Snyder (Revised March 24, 2005)

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Jordan Form of a Square Matrix

Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O

D Alembert s Solution to the Wave Equation

Lifting Entry 2. Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion MARYLAND U N I V E R S I T Y O F

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

The Probabilistic Method - Probabilistic Techniques. Lecture 7: The Janson Inequality

Section 8.3 Trigonometric Equations

Μηχανική Μάθηση Hypothesis Testing

Section 8.2 Graphs of Polar Equations

The challenges of non-stable predicates

ΗΜΥ 220: ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι Ακαδημαϊκό έτος Εαρινό Εξάμηνο Κατ οίκον εργασία αρ. 2

Finite difference method for 2-D heat equation

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

Heisenberg Uniqueness pairs

Για αραιά διαλύματα : x 1 0 : μ i = μ i 0 RTlnx i χ. όπου μ i φ =μ i 0 χ

Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΑΛΛΗΛΟΓΡΑΦΙΑ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑ ΣΤΗΝ ΑΓΓΛΙΚΗ ΓΛΩΣΣΑ

Srednicki Chapter 55

Ηλεκτρονικοί Υπολογιστές IV

Local Approximation with Kernels

Spherical Coordinates

ADVANCED STRUCTURAL MECHANICS

Ηλεκτρονικοί Υπολογιστές IV

Numerical Analysis FMN011

2. Chemical Thermodynamics and Energetics - I

CE 530 Molecular Simulation

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Forced Pendulum Numerical approach

Queensland University of Technology Transport Data Analysis and Modeling Methodologies

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 9η: Basics of Game Theory Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών

derivation of the Laplacian from rectangular to spherical coordinates

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ

Bounding Nonsplitting Enumeration Degrees

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)

6.003: Signals and Systems. Modulation

ST5224: Advanced Statistical Theory II

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

Math221: HW# 1 solutions

of the methanol-dimethylamine complex

Homework 3 Solutions

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

Parametrized Surfaces

ΔΙΑΚΡΙΤΟΣ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER - Discrete Fourier Transform - DFT -

A Bonus-Malus System as a Markov Set-Chain. Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics

Fractional Colorings and Zykov Products of graphs

is like multiplying by the conversion factor of. Dividing by 2π gives you the

Transcript:

Major Concepts Multiphase Equilibrium Stability Applications to Phase Equilibrium Phase Rule Clausius-Clapeyron Equation Special case of Gibbs-Duhem wo-phase Coexistence Criticality Metastability Spinodal decomposition Equilibrium Stability III

Recall: dp d = Δ trs S m Δ trs V m Clapeyron Equation Solid-liquid boundary: Recall: dp d = Δ H fus Δ fus V Δ fus S = Δ fus H ( transition = fusion )! # d = " dp d almost does not depend on! # # " Δ fus H Δ fus V d always correct But if H and V are constant w.r.t., then P P dp Δ fus H Δ fus V ( *d ) P P Δ H fus Δ fus V ln ( * ) Recall: ln(+x) = x x / + ln(y) = (y ) (y ) / + P P + Δ H fus Δ fus V ) ) ( ( Q: Why are the other coexistence curves not linear? Q: Can * be 3? Equilibrum Stability III 3

Stability Criterion at Constant P Equilibrum Stability III 4

Stability Criterion at Constant Equilibrum Stability III 5

Clausius-Clapeyron Equation Recall: dp d = Δ trs S m Δ trs V m = Δ trs H m Δ trs V m Solid Liquid vapor boundary: Assumptions: ( sublimation, vaporization ) Why? Δ trs V m V m (g) Ideal gas behavior: V m (g) = R/P Ideal gas behavior: Δ trs H is weakly dependent on. dp d = Δ H trs m R P dp dp P = P = Δ H trs m d R P " ln P " = Δ H " trs # P # R # (Clausius-Clapeyron Equation) P Δ trs H R d Equilibrum Stability III 6

Vapor Pressure hink-pair-share, but not multiple choice! Equilibrum Stability III 7

Classifying Phase ransitions (ala Ehrenfest) Recall: " # µ α P " µ β # P = Δ trs S m = Δ trs H m " # H P = C P st order: µ α µ β pc µ H (continuous with kink) (discontinuous) C p solid-liquid-gas trans. µ α = µ β nd order: µ α µ but β C< p µ (continuous) H C p (continuous with kink) (discontinuos) conductingsuperconducting transition λ-transition: but C p µ α = µ β µ H C p superfluidity of He, ferromagnetism, order-disorder trans. (in alloys) (continuous) (extreme kink) Equilibrum Stability III 8

Multiphase Equilibrium E = E E (g) E (l) -phase system -phase -component system α labels the phases i labels components E (g) (g), E E (l) (l), E r E = E i i= surface terms are ignored since E(vol) N E(surf) N /3 E(surf) E(vol) N /3 if surface terms cannot be ignored, then they must be added as additional phases E (g) E (s) E (l) Equilibrium Stability III 9

Multiphase Equilibrium -phase r-component system E (g), E (g) (α E ) (α, E ) (β E ) (β, E ) E (l), E (l) Extensive variables: E = E V = V S = S n i = n i E (γ ), E (γ ) # r δe = δe = δs p δv (α + µ ) i δn i ( i= Equilibrium Stability III 30

Multiphase Equilibrium -phase r-component system E (g), E (g) (α E ) (α, E ) (β E ) (β, E ) E (l), E (l) Extensive variables: E = E V = V S = S n i = n i E (γ ), E (γ ) # r δe = δe = δs p δv (α + µ ) i δn i ( i= Equilibrium Stability III 3

Multiphase Equilibrium -phase r-component system E (g), E (g) (α E ) (α, E ) (β E ) (β, E ) E (l), E (l) Extensive variables: E = E V = V S = S n i = n i E (γ ), E (γ ) # r δe = δe = δs p δv (α + µ ) i δn i ( i= Equilibrium Stability III 3

Multiphase Equilibrium -phase r-component system E (g), E (g) (α E ) (α, E ) (β E ) (β, E ) E (l), E (l) Extensive variables: E = E V = V S = S n i = n i E (γ ), E (γ ) # r δe = δe = δs p δv (α + µ ) i δn i ( i= Equilibrium Stability III 33

Multiphase Equilibrium -phase r-component system E (g), E (g) (α E ) (α, E ) (β E ) (β, E ) E (l), E (l) Extensive variables: E = E V = V S = S n i = n i E (γ ), E (γ ) # r δe = δe = δs p δv (α + µ ) i δn i ( Equilibrium ( δe) S,V,ni 0 S, V, n i must be constant: δv i= = 0, δs = 0, δn i = 0 Equilibrium Stability III 34

-phase r-component system: =, i= r E (), E () E (), E () Equilibrium ( δe) S,V,ni 0 Multiphase Equilibrium 0 ( δe) S,V,ni = ( () () )δs () p () p () S, V, n i must be constant: δv = 0 δv () = δv () δs = 0 δs () = δs () δn i = 0 δn i () = δn i () " () = () (for unconstrained system) # p () = p () µ () () i = µ i ( )δv () + ( µ () () () i µ i )δn i r i= ( δe) S,V,ni = 0 Equilibrium Stability III 35

At equilibrium ( δe) S,V,ni = 0 Stability Mechanical analogue: H(x) unstable stable x ΔH = δh +δ H +... = dh dx δx + Equilibrium: Stability: δ H = δh = dh dx δx = 0 d H dx δx > 0 d H dx δx +... Equilibrium Stability III 36

At equilibrium ( δe) S,V,ni = 0 Stability ( ΔE) S,V,ni = ( δe) S,V,ni + ( δ E) +... S,V,ni ( δ E) > 0 S,V,ni ( δ E) < 0 S,V,ni stable unstable hese inequalities hold for all free energies! Equilibrium Stability III 37

-component system: Stability: Example de = " # ds p dv + µ dn If compartments exchange only heat, then δs = 0 = δs () + δs (), δv () = δv () = 0, δn () = δn () = 0, and () () ( δ E) = V,n " # E S V,n ( δ E) = ( δ E) () S,V,n V,n ( δs ) = + ( δ E) () = V,n " # S (" * )* # V,n S ( δs ) () V,n " + # S () + -, ( ) > 0 V,n- δs() # S ( V,n = C v 0 at equilibrium. Equilibrium Stability III 38

-component system: he volumes can fluctuate: ( δ A) =,n Stability: Example da = " # S d p dv + µ dn " A # V,n ( δ A) = ( δ A) (),V,n,n () () δv = 0 = δv () + δv (), δn () = δn () = 0, and ( δv ) = + ( δ A) () =,n " p # V,n )# p + ( * + V ( δv ) (),n # + p ( V (),n,. -. ( () δv ) > 0 p V ) (,n > 0 or the isothermal compressibility K = V # V p (,n > 0 Equilibrium Stability III 39

Phase Equilibria -phase r-component system E (g), E (g) (α E ) (α, E ) (β E ) (β, E ) E (l), E (l) (γ E ) (γ, E ) At equilibrium " () = () =... # p () = p () =... µ () i = µ () i =... ( δe) S,V,ni = 0 µ s are the functions of, p and r mole fractions for each phase α : (α µ ) (α i = µ ) (α i (, p, x ) (α, x ) r ) (α x ), x r At equilibrium (α µ ) (α i (, p, x ) (α x ) (β r ) = µ ) (β i (, p, x ) (β x ) (γ r ) = µ ) (γ i (, p, x ) (γ x ) r ) =... here are r ( ) equations and (r ) + variables. he number of degrees of freedom is f = (r )+ r( ) = + r he Gibbs phase rule Equilibrium Stability III 40