, - [1]. - [2]., - - 2:10:20,. -,. -,. -,, -,. -, 1/3,,, [5] -. -

Σχετικά έγγραφα
Introduction of Numerical Analysis #03 TAGAMI, Daisuke (IMI, Kyushu University)

α β

EN40: Dynamics and Vibrations

FREE VIBRATION OF A SINGLE-DEGREE-OF-FREEDOM SYSTEM Revision B

1. For each of the following power series, find the interval of convergence and the radius of convergence:

On Inclusion Relation of Absolute Summability

On Generating Relations of Some Triple. Hypergeometric Functions

Homework for 1/27 Due 2/5

4.6 Autoregressive Moving Average Model ARMA(1,1)

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

CHAPTER 103 EVEN AND ODD FUNCTIONS AND HALF-RANGE FOURIER SERIES

K. Hausdorff K K O X = SDA. symbolic data analysis SDA SDA. Vol. 16 No. 3 Mar JOURNAL OF MANAGEMENT SCIENCES IN CHINA

MOTROL. COMMISSION OF MOTORIZATION AND ENERGETICS IN AGRICULTURE 2014, Vol. 16, No. 5,

ΕΚΤΙΜΗΣΗ ΤΟΥ ΚΟΣΤΟΥΣ ΤΩΝ ΟΔΙΚΩΝ ΑΤΥΧΗΜΑΤΩΝ ΚΑΙ ΔΙΕΡΕΥΝΗΣΗ ΤΩΝ ΠΑΡΑΓΟΝΤΩΝ ΕΠΙΡΡΟΗΣ ΤΟΥ

.. 2,.. 3,.. 4 , - [1].,, [2],. [2], 1. ,,. - ,..)., , ( - , - A n+1 A n A [5]. [6] : ; ; , - . «..»

The Neutrix Product of the Distributions r. x λ

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Potential Dividers. 46 minutes. 46 marks. Page 1 of 11

SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES. Reading: QM course packet Ch 5 up to 5.6

(1) A lecturer at the University College of Applied Sciences in Gaza. Gaza, Palestine, P.O. Box (1514).

LAD Estimation for Time Series Models With Finite and Infinite Variance

Inertial Navigation Mechanization and Error Equations

Solutions: Homework 3

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

Uniform Convergence of Fourier Series Michael Taylor

Pro duction Technology and Technical Efficiency in ( k, y) Sp ace

Approximation of distance between locations on earth given by latitude and longitude

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Outline. M/M/1 Queue (infinite buffer) M/M/1/N (finite buffer) Networks of M/M/1 Queues M/G/1 Priority Queue

Example Sheet 3 Solutions

Presentation of complex number in Cartesian and polar coordinate system

: Monte Carlo EM 313, Louis (1982) EM, EM Newton-Raphson, /. EM, 2 Monte Carlo EM Newton-Raphson, Monte Carlo EM, Monte Carlo EM, /. 3, Monte Carlo EM

A summation formula ramified with hypergeometric function and involving recurrence relation

INTEGRATION OF THE NORMAL DISTRIBUTION CURVE

Diane Hu LDA for Audio Music April 12, 2010

Homework 8 Model Solution Section

Ó³ Ÿ , º 2(214).. 171Ä176. Š Œ œ ƒˆˆ ˆ ˆŠ

Congruence Classes of Invertible Matrices of Order 3 over F 2

Σχέση στεφανιαίας νόσου και άγχους - κατάθλιψης

A study on generalized absolute summability factors for a triangular matrix

Design and Fabrication of Water Heater with Electromagnetic Induction Heating

.. 2,.. 3 .,, (, ) [1]. - [2]. [4], [5].., [6, 7] -. [8] [9]. -. [8], - ,,?, - . -, - ( ), ,.,. ,. : ; ; - ; ;. . «..»

Solve the difference equation

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님

The Equivalence Theorem in Optimal Design

p n r

Development of the Nursing Program for Rehabilitation of Woman Diagnosed with Breast Cancer

IIT JEE (2013) (Trigonomtery 1) Solutions

Spherical Coordinates

Class 03 Systems modelling

Inverse trigonometric functions & General Solution of Trigonometric Equations

Durbin-Levinson recursive method

..,.,

Correction of chromatic aberration for human eyes with diffractive-refractive hybrid elements

n r f ( n-r ) () x g () r () x (1.1) = Σ g() x = Σ n f < -n+ r> g () r -n + r dx r dx n + ( -n,m) dx -n n+1 1 -n -1 + ( -n,n+1)

Distributed method for measuring moisture content of soils based on C-DTS

DERIVATION OF MILES EQUATION Revision D

Lifting Entry (continued)

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΕΠΑΝΑΣΧΕΔΙΑΣΜΟΣ ΓΡΑΜΜΗΣ ΣΥΝΑΡΜΟΛΟΓΗΣΗΣ ΜΕ ΧΡΗΣΗ ΕΡΓΑΛΕΙΩΝ ΛΙΤΗΣ ΠΑΡΑΓΩΓΗΣ REDESIGNING AN ASSEMBLY LINE WITH LEAN PRODUCTION TOOLS

ΔΙΕΡΕΥΝΗΣΗ ΤΗΣ ΣΕΞΟΥΑΛΙΚΗΣ ΔΡΑΣΤΗΡΙΟΤΗΤΑΣ ΤΩΝ ΓΥΝΑΙΚΩΝ ΚΑΤΑ ΤΗ ΔΙΑΡΚΕΙΑ ΤΗΣ ΕΓΚΥΜΟΣΥΝΗΣ ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ

Review: Molecules = + + = + + Start with the full Hamiltonian. Use the Born-Oppenheimer approximation

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

þÿ ÀÌ Ä º± µä À ¹ ¼ ½

ΣΥΓΚΡΙΤΙΚΗ ΜΕΛΕΤΗ ΤΩΝ ΕΚΘΕΣΕΩΝ ΕΤΑΙΡΙΚΗΣ ΚΟΙΝΩΝΙΚΗΣ ΕΥΘΥΝΗΣ COSMOTE ΚΑΙ VODAFONE ΣΤΟΝ ΕΛΛΗΝΙΚΟ ΚΛΑΔΟ ΤΩΝ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ

ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΕΡΙΒΑΛΛΟΝΤΟΣ

CDMA. Performance Analysis of Chaotic Spread Spectrum CDMA Systems. LI Xiao - chao, GUO Dong - hui, ZENG Quan, WU Bo - xi RESEARCH & DEVELOPMENT

Πτυχιακή Εργασία Η ΠΟΙΟΤΗΤΑ ΖΩΗΣ ΤΩΝ ΑΣΘΕΝΩΝ ΜΕ ΣΤΗΘΑΓΧΗ

High order interpolation function for surface contact problem

Outline. Detection Theory. Background. Background (Cont.)

Degenerate Perturbation Theory

Homomorphism in Intuitionistic Fuzzy Automata

þÿÿ ÁÌ» Â Ä Å ¹µÅ Å½Ä ÃÄ

Lecture 3: Asymptotic Normality of M-estimators

Lecture 26: Circular domains

VBA Microsoft Excel. J. Comput. Chem. Jpn., Vol. 5, No. 1, pp (2006)

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΡΗΤΗΣ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ

A Laplace Type Problem for Lattice with Cell Composed by Four Isoscele Triangles and the Test Body Rectangle

Motion analysis and simulation of a stratospheric airship

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O

Prey-Taxis Holling-Tanner

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ. Πτυχιακή Εργασία

Steady-state Analysis of the GI/M/1 Queue with Multiple Vacations and Set-up Time

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET

Homomorphism of Intuitionistic Fuzzy Groups

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

[1] P Q. Fig. 3.1

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

DuPont Suva. DuPont. Thermodynamic Properties of. Refrigerant (R-410A) Technical Information. refrigerants T-410A ENG

Biodiesel quality and EN 14214:2012

«Συμπεριφορά μαθητών δευτεροβάθμιας εκπαίδευσης ως προς την κατανάλωση τροφίμων στο σχολείο»

the total number of electrons passing through the lamp.

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

Derivation of Optical-Bloch Equations

J. of Math. (PRC) Shannon-McMillan, , McMillan [2] Breiman [3] , Algoet Cover [10] AEP. P (X n m = x n m) = p m,n (x n m) > 0, x i X, 0 m i n. (1.

6.3 Forecasting ARMA processes

Transcript:

53.5.03 DOI: 10.1459/mmph17006..,..,., E-mail: demi@psu.ru. - -. -, -. : ; ; - ;.. -., - -,. - [1]. - []., -- :10:0,. -. -,. -, -. [3 5], - :0:40,. -,, -,. -,.., 1/3,,,...,, -.,, [5] -. -. «..» 017, 9,,. 47 54 47

,,,. - -., - - - :.,. y T h g d z -d l ) ). 1. (). () ε.,, 1.. -, (. 1, ). -,, d:l:h = :0:40; d, l, h,. -,., [6] = 0 (1 εt), ε. : 1) ). -. -,, - 3. [6] : 1 + ( ) = p + ( 1 kt ) k ( T ) k T rot + RaT, (1) t Pr Pr T + ( ) T = T, div = 0. () t, p, T,,, -. - :,, 3 : Ra = gβθ d 0χ, Pr = 0 χ, k = ε, 0 - ;,,, d, g -. 48 Bulleti of the South Ural State Uiversity Ser. Mathematics. Mechaics. Physics, 017, vol. 9, o., pp. 47 54

..,... «..» 017, 9,,. 47 54 : L = l d, H = h d.,,, -, : d, d / 0, /d, 0 /d, (ρ - ). Pr = 6,. (1) (),, = y, y =. - =,y,t cos π z.. ( ) ( ) : T = y + T, ( ) ( ) 1-1 cos ( ) T = θ,y,t + aπ π z. : = ( ) T z a T T, a = λ m /λ f D, λ m, λ f 0,, D -, T 0, -. z,,... - -: ϕ 8 ψ ϕ ψ ϕ 16a ϕ ϕ π = + 1+ ky k1+ θ ϕ + + t Pr 4 y y y 16a θ θ π ψ θ ψ θ π ψ + k 1+ ϕ + + + 4 y y 4 y y ψ θ ψ θ 16a ϕθ k 1 ϕ θ ϕ a + + + + θ 3 y y y y ϕ ψ θ ψ θ ψ θ ( + a) θ + + + Ra 16, (3) + a y y y y y π ( ) a 4 + a θ 8a ψ θ ψ θ + a ψ Pr1+ 1 = + + + π π a t y y π ψ ψ ϕ = + ; y ( ) θ θ ( ) a 4 + a a + a + 1+ + θ π, (4) y t = 0: ψ = ϕ = θ = 0; (5) y = 0, H: θ = 0, ψ = ψ = 0 ; = 0, L: ψ = ψ = 0 ; (6) y : θ = 0 ; θ : = 0. y.., [4] ( 1,1),. k : 4 π L H m m 1 Ram = 1+ k + + + 4 L H L H 49

1 π + 4a a 1 m + 1+ +. ( + ) + 4 a a L H m, y. - k = 0 (a = 0) (a = ). -. 1. a = 0,,. - Ra 0,9. 3.. (3) (4). (3) (6).. [7, 8] 8 16a π ϕt = ψϕ ψϕ + 1+ ky k1+ θ ϕ + ϕ yy ϕ + Pr y y 4 16a π π + k1+ ( θ + θ yy ) ϕ + ψθ + ψθ ψ 4 y y 4 y 16a aϕθ + ψθ + ψθ k1+ ϕ θ ϕ θ + 3 y y y y ( + a) ϕ + ψ Ra θ + ψ yyθ yy + ψ θ θ + 16a y y y π, (7) ( ) a 4 + a 8a + a Pr1+ θ 1 t = + a + ψ θ ψ θ ψ + π π y y π ( ) ( ) ( ) a 4 + a a + a + 1+ θ + θ θ yy, (8) π i in, y = 0, H: θ i,1 = 0, θ i, N = 0, ψ 1 = ψ = 0 j N j, = 0, L: ψ1, = ψ 1, = 0 ϕ ϕ 1, j = ψ, j i,1 = ψ i, y i, N i, N 1 y h, ϕ = ψ N1, j N1 1, j h, ϕ = ψ θ 1, j = 0, θ 1, = 0 N j ; h ; (9) h ; (10) θ 1, j = θ, j, θn1, j = θn1 1, j. ϕ = ψ + ψ ; i, j, N1, N yy y. ϕ [8]. + 1 fi, j fi, j fi+ 1, j fi 1, j fi+ 1, j fi, j fi, j fi 1, j f t =, f =, f =, f =. τ h h h τ, h, h y, y., - [8].,,.,.,.,... -, -. 50 Bulleti of the South Ural State Uiversity Ser. Mathematics. Mechaics. Physics, 017, vol. 9, o., pp. 47 54

..,... -. 5 49. -. FORTRAN-90. (7), (8) (9), (10) - --. 4..- ε = 0 (- )...., ) - Ra = 1,6; ) ) Ra =,7 Ra 0.8, (., ). -, -, (. 3,, [4])., -,,, ε = 0 Ra = 1,9,. (,1) Ra 1,0 (. 1, ) (1,1),.. (1,1). -, - Ra 1,5 (. 3, )., -, [4],.. «-»,.,,. -,, -, (., ;, )..,, -,. - -., -.,,. 5.. ε = 0,0 1/, 0.,,. «..» 017, 9,,. 47 54 51

Ra 1,. - (. 4, ).,, - (. 4, ).., ε,,.. 3., [4]: ) ) Ra = 0,9 1,4; ) Ra = 1,5. 4. ;) ) Ra = 1, Ra = 1,4;) ) Ra = 1,8, Ra = 1,6 -,.,. (. 4, ). - -., (. 3, 4, )., (. 4, ; 4, ). -. - -. 5 Bulleti of the South Ural State Uiversity Ser. Mathematics. Mechaics. Physics, 017, vol. 9, o., pp. 47 54

..,..., -., - -.,, - -,,. 1.,.. /..,.. //... 1979. 1.. 3 8..,.. /..,..,.. // :..., -. -. 1977.. 10.. 3 14. 3.,.. - /..,.. //.,. 006. 3.. 3 10. 4. Babushki, I.A. Eperimetal ad theoretical ivestigatio of trasitioal covective flows i Hele Shaw cell / I.A. Babushki, V.A. Demi, D.V. Aferov // Proceedig of Iteratioal Coferece. «Advaced Problems i Thermal Covectio». Perm, Russia, 004. P. 173 178. 5. /..,..,.. //... 009. 5.. 3 14. 6.,.. /..,..,....:, 1989. 30. 7.,.. /....:, 1977. 656. 8.,.. /... : -. -, 1990. 8. 10 017. Bulleti of the South Ural State Uiversity Series Mathematics. Mechaics. Physics 017, vol. 9, o., pp. 47 54 DOI: 10.1459/mmph17006 THE EFFECT OF TEMPERATURE DEPENDENCE OF THE VISCOSITY ON STATIONARY CONVECTIVE FLOWS IN HELE SHAW CELL V.A. Demi, M.I. Petukhov Perm State Natioal Research Uiversity, Perm, Russia Federatio E-mail: demi@psu.ru The results of direct umerical simulatio of statioary covective flows i a vertical Hele Shaw cell uder the uiform heatig from below are preseted i this paper. The calculatios have bee fulfilled for realistic values of the heat-trasfer coefficiet o vertical wide boudaries ad model thermal coditios o arrow vertical walls. The approimatio of plae trajectories has bee applied to calculate the flows i the Hele Shaw cell. The liear stability aalysis is eecuted for the situatio whe the viscosity depeds o the temperature. A aalytical formula for critical values of Rayleigh umber has bee deduced which determie the threshold of covectio i depedece o parameters of the problem. It has bee show that the umerical simulatio imitatig the full-scale eperimet gives adequate descriptio of the trasitio from oe-vorte statioary flow to the two-vorte steady regime whe the depedece of viscosity o the temperature is take ito accout i mathematical model. The equatios system of thermal covectio i Boussiesq approimatio was solved by the method of fiite. «..» 017, 9,,. 47 54 53

differeces at the PGU-Tesla supercomputer of the Research Academic Ceter Parallel ad Distributed Calculatios i Perm State Uiversity. The fields of stream fuctio i vertical sectio have bee calculated which cofirm the effect of the vortices ceters displacemet to the bottom of the cavity. Keywords: Hele Shaw cell; heatig from below; statioary regimes; o-homogeeity of viscosity. Refereces 1. Puti G.F., Tkacheva E.A. Izvestia RAN, Mekhaika Zhidkosti i Gaza, 1979, o. 1, pp. 3 8. (i Russ.).. Lyubimov D.V., Puti G.F., Cheratyskiy V.I. Gidrodiamika, 1977, Issue 10, pp. 3 14. (i Russ.). 3. Babushki I.A., Demi V.A. Izvestia RAN, Mekhaika Zhidkosti i Gaza, 006, o. 3, pp. 3 10. (i Russ.). 4. Babushki I.A., Demi V.A., Aferov D.V. Eperimetal ad theoretical ivestigatio of trasitioal covective flows i Hele Shaw cell. Proceedig of Iteratioal Coferece Advaced Problems i Thermal Covectio, Perm, Russia, 004, pp. 173 178. 5. Babushki I.A., Demi V.A., Glazki I.V., Platoova A.N., Puti G.F. Izvestia RAN, Mekhaika Zhidkosti i Gaza, 009, o. 5, pp. 3 14. (i Russ.). 6. Gershui G.Z., Zhukhovitskiy E.M., Nepomyashchiy A.A. Ustoychivost' kovektivykh techeiy (The stability of covective flows). Moscow, Nauka Publ., 1989, 30 p. (i Russ.). 7. Samarskiy A.A Teoriya razostykh skhem (Theory of differece schemes). Moscow, Nauka Publ., 1977, 656 p. (i Russ.). 8. Tarui E.L. Vychislitel'yy eksperimet v zadachakh svobodoy kovektsii (Computatioal eperimet i free covectio problems). Irkutsk, izd-vo Irkut. U-ta Publ., 1990, 8 p. (i Russ.). Received February 10, 017 54 Bulleti of the South Ural State Uiversity Ser. Mathematics. Mechaics. Physics, 017, vol. 9, o., pp. 47 54