Lecture 3: Asymptotic Normality of M-estimators

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Lecture 3: Asymptotic Normality of M-estimators"

Transcript

1 Lecture 3: Asymptotic Istructor: Departmet of Ecoomics Staford Uiversity Prepared by Webo Zhou, Remi Uiversity

2 Refereces Takeshi Amemiya, 1985, Advaced Ecoometrics, Harvard Uiversity Press Newey ad McFadde, 1994, Chapter 36, Volume 4, The Hadbook of Ecoometrics.

3 Asymptotic Normality The Geeral Framework Everythig is just some form of first order Taylor Expasio: Q (ˆθ) = 0 Q (θ 0 ) + ) (ˆθ 2 Q (θ ) θ0 = 0. ) ( (ˆθ 2 Q (θ ) 1 ) Q (θ 0 ) θ0 = ( LD 2 ) 1 Q (θ 0 ) Q (θ 0 ) d = N ( 0, A 1 BA 1) where ( 2 ) ( ) Q (θ 0 ) Q (θ 0 ) A = E, B = Var

4 Asymptotic Normality for MLE I MLE, Q(θ) = 1 Iformatio matrix: log L(θ). 2 Q (θ) = 1 2 log L(θ). E 2 log L (θ 0 ) = E log L (θ 0) log L (θ 0 ). by usig iterchage of itegratio ad differetiatio. So A = B, ad (ˆθ θ0 ) d N ( 0, A 1) = N ( 0, ( lim 1 ) 1 ) E 2 log L (θ). What if iterchagig itegratio ad differetiatio is ot possible? Example: If y (θ, ), the E log f (y;θ) = f (θ).

5 Asymptotic Normality for GMM Q (θ) = g (θ) Wg (θ), g (θ) = 1 t=1 g (z t, θ). Asymptotic ormality holds whe the momet fuctios oly have first derivatives. Deote G (θ) = g(θ), θ [θ 0, ˆθ], Ĝ G (ˆθ), G G (θ ), G = EG (θ 0 ), Ω = E ( g (z, θ 0 ) g (z, θ 0 ) ). 0 = Ĝ Wg (ˆθ) = Ĝ W ( ) g (θ 0 ) + G (ˆθ θ 0 ) = (ˆθ θ 0 ) = (Ĝ WG ) 1 Ĝ W g (θ 0 ) LD = (G WG) 1 G W g (θ 0 ) LD = (G WG) 1 G W N (0, Ω) = N (0, (G WG) 1 G W ΩWG (G WG) 1)

6 Examples Efficiet choice of W = Ω 1 (or W Ω 1 ), ) ( d (ˆθ θ 0 N 0, ( G Ω 1 G ) ) 1. Whe G is ivertible, W is irrelevat, ) ( (ˆθ ) ( d θ0 N 0, G 1 ΩG 1 = N 0, ( G Ω 1 G ) ) 1. Whe Ω = αg(or G Ω), ( ) d ˆβ β 0 N ( 0, αg 1).

7 Least square (LS): g (z, β) = x (y xβ). G = Exx, Ω = Eε 2 xx, the ( ) ( d ˆβ β0 N 0, (Exx ) 1 ( Eε 2 xx ) (Exx ) 1), the so-called White s heteroscedasticity cosistecy stadard error. If E [ ε 2 x ] = σ 2, the Ω = σ 2 G ad ( ˆβ β 0 ) ( d N 0, σ 2 (Exx ) 1). Weighted LS: g (z, β) = 1 E(ε 2 x) (y x β). G = E 1 E(ε 2 x) xx = Ω = ( ˆβ β 0 ) d N (0, G).

8 Liear 2SLS: g (z, β) = z (y xβ). G = Ezx, Ω = Eε 2 zz, W = (Ezz ) 1, the ( ) d ˆβ β0 N (0, V ). If Eε 2 zz = σ 2 Ezz, V = σ 2 [Exz (Ezz ) 1 Ezx ] 1. Liear 3SLS: g (z, β) = z (y xβ). G = Ezx, Ω = Eε 2 zz, W = ( Eε 2 zz ) 1, the ( ) [ d ˆβ β 0 N (0, V ) for V = Exz ( Eε 2 zz ) 1 1 Ezx ]. MLE as GMM: g (z, θ) = G = E 2 log f (z,θ) = Ω = E ) (ˆθ θ log f (z,θ). log f (z,θ) log f (z,θ), the d N ( 0, G 1) = N (0, Ω).

9 GMM agai: Take liear combiatios of the momet coditios to make Number of g (z, θ) = Number of θ. I particular, take h (z, θ) = G Wg (z, θ) ad use h (z, θ) as the ew momet coditios, the ˆθ = argmax θ [ 1 ] [ ] 1 h (z t, θ) h (z t, θ) t=1 t=1 is asymptotically equivalet to ˆθ = argmax θ g Wg, where G = E h(z,θ) = G WG, Ω = Eh (z, θ) h (z, θ) = G W ΩWG.

10 Quatile Regressio as GMM: g (z, β) = (τ 1 (y x β)) x, ad W is irrelevat. G = E g(z,β) β = E 1(y x β)x β. Proceedig with a quick ad dirty way take expectatio before takig differetiatio: G = E1 (y x β) x β =Ex F (y x β x) β = ExF (y x β x) β = Ef y (x β x) xx = Ef u (0 x) xx. Coditioal o x, [ τ 1 (y x β 0 ) = τ ] 1 (u 0) is a Beroulli r.v. E (τ 1 (y x β 0 )) 2 x = τ (1 τ), the Ω = EE [ ] (τ 1 (y x β 0 )) 2 x xx = τ (1 τ) Exx.

11 Quatile Regressio as GMM: ( ( ˆβ β 0 ) d N 0, τ (1 τ) [Ef u (0 x) xx ] 1 Exx [Ef u (0 x) xx ] 1). f (0 x) = f (0) if homoscedastic, the V = τ(1 τ) f (0) Exx. Cosistet estimatio of G ad Ω: Estimated by G. = 1 t=1 g(z t,ˆθ). For osmooth problems as quatile regressio, use Q (ˆθ+2h )+Q (ˆθ 2h ) 2Q(ˆθ) 4h 2 Require h = o (1) ad 1/h = o ( 1/ ). to approximate. For statioary data, heteroscedasticity ad depedece will oly affect estimatio of Ω. For idepedet data, use White s heteroscedasticity-cosistet estimate; for depedet data, use Newey-West s autocorrelatio-cosistet estimate.

12 Iteratio ad Oe Step Estimatio The iitial guess θ the ext roud guess θ. Newto-Raphso, use quadratic approximatio for Q (θ). Gauss-Newto, use liear approximatio for the first-order coditio, e.g. GMM. If the iitial guess is a cosistet estimate, more iteratio will ot icrease (first-order) asymptotic efficiecy. ) ( ) e.g. ( θ θ 0 = O 1 p, the ( θ ) LD= θ 0 (ˆθ θ 0 ), for ˆθ = argmax θ Q (θ).

13 1 Newto-Raphso, Use quadratic approximatio for Q (θ): ) ) ) Q ( θ ( Q (θ) Q ( θ + θ θ ) + 1 ( θ 2 θ ) 2 Q ( θ ( θ θ θ ) = 0. ) ) Q ( θ 2 Q ( θ ) = + ( θ θ = 0. ) 1 ( θ) = θ = θ 2 Q ( θ Q 2 Gauss-Newto, use liear approximatio for the first-order coditio, e.g. GMM: ( ) ( )) ( ) Q (θ) g ( θ + G θ θ W g ( θ + G ) ) = G Wg ( θ + G W G ( θ θ = 0. = θ = θ ( G) 1 ) G W GWg ( θ ( )) θ θ

14 If the iitial guess is a ( ) ( ) cosistet estimate, e.g. β β 0 = O 1 p, the ( θ ) LD= θ 0 (ˆθ θ 0 ), for ˆθ = argmax θ Q (θ). More iteratio will ot icrease (first-order) asymptotic efficiecy:

15 1 For Newto-Raphso: ( θ) ) ) ( θ θ 0 = ( θ θ 0 2 Q 1 ) Q ( θ ( θ) = ) ( θ θ 0 2 Q 1 [ Q (θ ) ] 0) + ( θ 2 Q (θ ) θ 0 ( θ) 1 ( θ) 1 = I 2 Q 2 Q (θ ) ) ( θ θ0 2 Q Q (θ 0) = o p (1) + ) (ˆθ θ0 2 For Gauss-Newto: ( θ θ0 ) = ( θ θ0 ) ( G) 1 G W G W [g ( θ )] (θ 0) + G θ0 ( ( ) ) 1 ) ( 1 = I G W G G WG ( θ θ 0 G W G) G W g (θ 0) = o p (1) + ) ( θ θ0

16 Ifluece Fuctio φ (z t ) is called ifluece fuctio if (ˆθ θ 0 ) = 1 t=1 φ (z t) + o p (1), Eφ (z t ) = 0, Eφ (z t ) φ (z t ) <. Thik of (ˆθ θ 0 ) distributed as φ (z t ) N ( 0, Eφφ ). Used for discussio of asymptotic efficiecy, two step or multistep estimatio, etc.

17 Examples For MLE, [ φ (z t ) = E 2 l f (y t, θ 0 ) For GMM, [ = E l f (y t, θ 0 ) ] 1 l f (yt, θ 0 ) ] l f (y t, θ 0 ) 1 l f (y t, θ 0 ). or φ = ( G WG ) 1 G Wg (z t, θ 0 ), ( φ = E h ) 1 h (z t, θ 0 ) for h (z t, θ 0 ) = G Wg (z t, θ 0 ). Quatile Regressio: φ (z t ) = [ Ef (0 x) xx ] 1 (τ 1 (u 0)) xt.

18 Asymptotic Efficiecy Is MLE efficiet amog all asymptotically ormal estimators? Superefficiet estimator: Suppose d (ˆθ θ 0 ) N (0, V ) for all θ. Now defie { ˆθ θ if ˆθ 1/4 = 0 if ˆθ < 1/4 d the (θ θ 0 ) N (0, 0) if θ 0 = 0, ad (θ θ 0 ) LD = d (ˆθ θ 0 ) N (0, V ) if θ 0 0. ˆθ is regular if for ay data geerated by θ = θ 0 + δ/, for δ 0, (ˆθ θ 0 ) has a limit distributio that does ot deped o δ.

19 For regular estimators, ifluece fuctio represetatio idexed by τ, (ˆθ (τ) θ 0 ) LD = φ (z, τ) N ( 0, Eφ (τ) φ (τ) ), ˆθ ( τ) is efficiet tha ˆθ (τ) if it has a smaller var-cov matrix. A ecessary coditio is that Cov (φ (z, τ) φ (z, τ), φ (z, τ)) = 0 for all τ icludig τ. The followig are equivalet: Cov (φ (z, τ) φ (z, τ), φ (z, τ)) = 0 Cov (φ (z, τ), φ (z, τ)) = Var (φ (z, τ)) Eφ (z, τ) φ (z, τ) = Eφ (z, τ) φ (z, τ)

20 Newey s efficiecy framework: Classify estimators ito the GMM framework with φ (z, τ) = D (τ) 1 m (z, τ). For the class idexed by τ = W, give a vector g (z, θ 0 ), D (τ) D (W ) = G WG ad m (z, τ) m (z, W ) = G Wg (z, θ 0 ). Cosider MLE amog the class of GMM estimators, so that τ idexes ay vector of momet fuctio havig the same dimesio as θ. I this case, D (τ) D (h) = E h ad m (z, τ) = h (z t, θ 0 ).

21 For this particular case where φ (z, τ) = D (τ) 1 m (z, τ), Eφ (z, τ) φ (z, τ) = Eφ (z, τ) φ (z, τ) = D (τ) 1 Em (z, τ) m (z, τ) D ( τ) 1 = D ( τ) 1 Em (z, τ) m (z, τ) D ( τ) 1. If τ satisfies D (τ) = Em (z, τ) m (z, τ) for all τ, the both sides above are the same D ( τ) 1 ad so efficiet. Examples. Check D (τ) = Em (z, τ) m (z, τ). GMM with optimal weightig matrix: D (τ) = G WG, m (z, τ) = m (z, W ) = G Wg(z, θ 0 ). To check D (τ) = Em (z, τ) m (z, τ) = G W Ω W G, G WG = G W Ω W G = Ω W = I = W = Ω 1.

22 MLE better tha ay GMM: D (τ) = E h(z,θ 0), m (z, τ) = h (z, θ 0 ). To check D (τ) = Eh (z, θ 0 ) h (z, θ 0 ), use the geeralized iformatio matrix equality: 0 = Eh (z, θ 0) = h (z, θ) f (z, θ) dz h (z, θ) l f (z, θ) = f (z, θ) dz + h (z, θ) f (z, θ) dz = E h (z, θ 0) + Eh (z, θ 0 ) l f (z, θ 0) = h (z, θ 0 ) = l f (y,θ 0), the score fuctio for MLE.

23 Two Step Estimator Geeral Framework: First step estimator (ˆγ γ 0 ) = 1 t=1 φ (z t) + o p (1). Estimate ˆθ by Q (ˆθ, ˆγ) = 1 t=1 q(z t, ˆθ, ˆγ) = 0 Let = 1 h(z t, ˆθ, ˆγ). t=1 Let H (z, θ, γ) = h (z, θ, γ), Γ (z, θ, γ) = H = EH (z t, θ 0, γ 0 ), Γ = EΓ (z, θ 0, γ 0 ) ; h = h (θ 0, γ 0 ). h (z, θ, γ) ; γ

24 1 The just taylor expad: h (z t, ˆθ, ) ˆγ = 0 1 h (θ0, ˆγ) + 1 H (θ, ˆγ) ) (ˆθ θ0 = 0 = ) [ 1 1 (ˆθ θ0 = H (θ 1, ˆγ)] h (θ0, ˆγ) [ LD = H 1 1 h (θ0, γ 0 ) + 1 Γ (θ0, γ ) ] (ˆγ γ 0 ) [ LD = H 1 1 ( 1 )] h + Γ φ (zt ) + o p (1) [ LD = H ] h + Γ φ (zt ). So that ) d (ˆθ θ0 N (0, V ) for V = H 1 E (h + Γφ) (h + φ Γ ) H 1.

25 GMM both first stage ˆγ ad secod stage ˆθ: φ = M 1 m (z), for some momet coditio m (z, γ). h (θ, ˆγ) = G Wg (z, θ, ˆγ) so that H = G WG, Γ = G W g γ G WG γ for G γ g γ. Plug these ito the above geeral case. If W = I, ad G is ivertible, the this simplies to V = G 1 [ Ω + (Egφ ) G γ + G γ (Eφg ) + G γ (Eφφ ) G γ] G 1. Agai if you have trouble differetiatig g(θ,γ) or g(θ,γ) γ, the simply take expectatio before differetiatio, just replace H ad Γ by Eg(θ,γ) ad Eg(θ,γ) γ.

Lecture 17: Minimum Variance Unbiased (MVUB) Estimators

Lecture 17: Minimum Variance Unbiased (MVUB) Estimators ECE 830 Fall 2011 Statistical Sigal Processig istructor: R. Nowak, scribe: Iseok Heo Lecture 17: Miimum Variace Ubiased (MVUB Estimators Ultimately, we would like to be able to argue that a give estimator

Διαβάστε περισσότερα

Homework for 1/27 Due 2/5

Homework for 1/27 Due 2/5 Name: ID: Homework for /7 Due /5. [ 8-3] I Example D of Sectio 8.4, the pdf of the populatio distributio is + αx x f(x α) =, α, otherwise ad the method of momets estimate was foud to be ˆα = 3X (where

Διαβάστε περισσότερα

true value θ. Fisher information is meaningful for families of distribution which are regular: W (x) f(x θ)dx

true value θ. Fisher information is meaningful for families of distribution which are regular: W (x) f(x θ)dx Fisher Iformatio April 6, 26 Debdeep Pati Fisher Iformatio Assume X fx θ pdf or pmf with θ Θ R. Defie I X θ E θ [ θ log fx θ 2 ] where θ log fx θ is the derivative of the log-likelihood fuctio evaluated

Διαβάστε περισσότερα

1. For each of the following power series, find the interval of convergence and the radius of convergence:

1. For each of the following power series, find the interval of convergence and the radius of convergence: Math 6 Practice Problems Solutios Power Series ad Taylor Series 1. For each of the followig power series, fid the iterval of covergece ad the radius of covergece: (a ( 1 x Notice that = ( 1 +1 ( x +1.

Διαβάστε περισσότερα

SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES. Reading: QM course packet Ch 5 up to 5.6

SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES. Reading: QM course packet Ch 5 up to 5.6 SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES Readig: QM course packet Ch 5 up to 5. 1 ϕ (x) = E = π m( a) =1,,3,4,5 for xa (x) = πx si L L * = πx L si L.5 ϕ' -.5 z 1 (x) = L si

Διαβάστε περισσότερα

LAD Estimation for Time Series Models With Finite and Infinite Variance

LAD Estimation for Time Series Models With Finite and Infinite Variance LAD Estimatio for Time Series Moels With Fiite a Ifiite Variace Richar A. Davis Colorao State Uiversity William Dusmuir Uiversity of New South Wales 1 LAD Estimatio for ARMA Moels fiite variace ifiite

Διαβάστε περισσότερα

Solutions: Homework 3

Solutions: Homework 3 Solutios: Homework 3 Suppose that the radom variables Y,, Y satisfy Y i = βx i + ε i : i,, where x,, x R are fixed values ad ε,, ε Normal0, σ ) with σ R + kow Fid ˆβ = MLEβ) IND Solutio: Observe that Y

Διαβάστε περισσότερα

The Equivalence Theorem in Optimal Design

The Equivalence Theorem in Optimal Design he Equivalece heorem i Optimal Desig Raier Schwabe & homas Schmelter, Otto vo Guericke Uiversity agdeburg Bayer Scherig Pharma, Berli rschwabe@ovgu.de PODE 007 ay 4, 007 Outlie Prologue: Simple eamples.

Διαβάστε περισσότερα

Last Lecture. Biostatistics Statistical Inference Lecture 19 Likelihood Ratio Test. Example of Hypothesis Testing.

Last Lecture. Biostatistics Statistical Inference Lecture 19 Likelihood Ratio Test. Example of Hypothesis Testing. Last Lecture Biostatistics 602 - Statistical Iferece Lecture 19 Likelihood Ratio Test Hyu Mi Kag March 26th, 2013 Describe the followig cocepts i your ow words Hypothesis Null Hypothesis Alterative Hypothesis

Διαβάστε περισσότερα

Introduction of Numerical Analysis #03 TAGAMI, Daisuke (IMI, Kyushu University)

Introduction of Numerical Analysis #03 TAGAMI, Daisuke (IMI, Kyushu University) Itroductio of Numerical Aalysis #03 TAGAMI, Daisuke (IMI, Kyushu Uiversity) web page of the lecture: http://www2.imi.kyushu-u.ac.jp/~tagami/lec/ Strategy of Numerical Simulatios Pheomea Error modelize

Διαβάστε περισσότερα

Endogoneity and All That

Endogoneity and All That Edogoeity ad All That Roger Koeker Uiversity of Illiois, Urbaa-Champaig Uiversity of Miho 12-14 Jue 2017 Roger Koeker (UIUC) Edogoeity Braga 12-14.6.2017 1 / 17 Is there IV for QR? Amemiya (1982) ad Powell

Διαβάστε περισσότερα

p n r.01.05.10.15.20.25.30.35.40.45.50.55.60.65.70.75.80.85.90.95

p n r.01.05.10.15.20.25.30.35.40.45.50.55.60.65.70.75.80.85.90.95 r r Table 4 Biomial Probability Distributio C, r p q This table shows the probability of r successes i idepedet trials, each with probability of success p. p r.01.05.10.15.0.5.30.35.40.45.50.55.60.65.70.75.80.85.90.95

Διαβάστε περισσότερα

Three Classical Tests; Wald, LM(Score), and LR tests

Three Classical Tests; Wald, LM(Score), and LR tests Eco 60 Three Classical Tests; Wald, MScore, ad R tests Suppose that we have the desity l y; θ of a model with the ull hypothesis of the form H 0 ; θ θ 0. et θ be the lo-likelihood fuctio of the model ad

Διαβάστε περισσότερα

Other Test Constructions: Likelihood Ratio & Bayes Tests

Other Test Constructions: Likelihood Ratio & Bayes Tests Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :

Διαβάστε περισσότερα

Solve the difference equation

Solve the difference equation Solve the differece equatio Solutio: y + 3 3y + + y 0 give tat y 0 4, y 0 ad y 8. Let Z{y()} F() Taig Z-trasform o both sides i (), we get y + 3 3y + + y 0 () Z y + 3 3y + + y Z 0 Z y + 3 3Z y + + Z y

Διαβάστε περισσότερα

1. Matrix Algebra and Linear Economic Models

1. Matrix Algebra and Linear Economic Models Matrix Algebra ad Liear Ecoomic Models Refereces Ch 3 (Turkigto); Ch 4 5 (Klei) [] Motivatio Oe market equilibrium Model Assume perfectly competitive market: Both buyers ad sellers are price-takers Demad:

Διαβάστε περισσότερα

n r f ( n-r ) () x g () r () x (1.1) = Σ g() x = Σ n f < -n+ r> g () r -n + r dx r dx n + ( -n,m) dx -n n+1 1 -n -1 + ( -n,n+1)

n r f ( n-r ) () x g () r () x (1.1) = Σ g() x = Σ n f < -n+ r> g () r -n + r dx r dx n + ( -n,m) dx -n n+1 1 -n -1 + ( -n,n+1) 8 Higher Derivative of the Product of Two Fuctios 8. Leibiz Rule about the Higher Order Differetiatio Theorem 8.. (Leibiz) Whe fuctios f ad g f g are times differetiable, the followig epressio holds. r

Διαβάστε περισσότερα

L.K.Gupta (Mathematic Classes) www.pioeermathematics.com MOBILE: 985577, 4677 + {JEE Mai 04} Sept 0 Name: Batch (Day) Phoe No. IT IS NOT ENOUGH TO HAVE A GOOD MIND, THE MAIN THING IS TO USE IT WELL Marks:

Διαβάστε περισσότερα

On Generating Relations of Some Triple. Hypergeometric Functions

On Generating Relations of Some Triple. Hypergeometric Functions It. Joural of Math. Aalysis, Vol. 5,, o., 5 - O Geeratig Relatios of Some Triple Hypergeometric Fuctios Fadhle B. F. Mohse ad Gamal A. Qashash Departmet of Mathematics, Faculty of Educatio Zigibar Ade

Διαβάστε περισσότερα

Proof of Lemmas Lemma 1 Consider ξ nt = r

Proof of Lemmas Lemma 1 Consider ξ nt = r Supplemetary Material to "GMM Estimatio of Spatial Pael Data Models with Commo Factors ad Geeral Space-Time Filter" (Not for publicatio) Wei Wag & Lug-fei Lee April 207 Proof of Lemmas Lemma Cosider =

Διαβάστε περισσότερα

Solution Series 9. i=1 x i and i=1 x i.

Solution Series 9. i=1 x i and i=1 x i. Lecturer: Prof. Dr. Mete SONER Coordinator: Yilin WANG Solution Series 9 Q1. Let α, β >, the p.d.f. of a beta distribution with parameters α and β is { Γ(α+β) Γ(α)Γ(β) f(x α, β) xα 1 (1 x) β 1 for < x

Διαβάστε περισσότερα

Lecture 21: Properties and robustness of LSE

Lecture 21: Properties and robustness of LSE Lecture 21: Properties and robustness of LSE BLUE: Robustness of LSE against normality We now study properties of l τ β and σ 2 under assumption A2, i.e., without the normality assumption on ε. From Theorem

Διαβάστε περισσότερα

3. SEEMINGLY UNRELATED REGRESSIONS (SUR)

3. SEEMINGLY UNRELATED REGRESSIONS (SUR) 3. SEEMINGLY UNRELATED REGRESSIONS (SUR) [] Examples Demad for some commodities: y Nike,t = x Nike,t β Nike + ε Nike,t y Reebok,t = x Reebok,t β Reebok + ε Reebok,t ; where y Nike,t is the quatity demaded

Διαβάστε περισσότερα

Outline. Detection Theory. Background. Background (Cont.)

Outline. Detection Theory. Background. Background (Cont.) Outlie etectio heory Chapter7. etermiistic Sigals with Ukow Parameters afiseh S. Mazloum ov. 3th Backgroud Importace of sigal iformatio Ukow amplitude Ukow arrival time Siusoidal detectio Classical liear

Διαβάστε περισσότερα

Ψηφιακή Επεξεργασία Εικόνας

Ψηφιακή Επεξεργασία Εικόνας ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ψηφιακή Επεξεργασία Εικόνας Φιλτράρισμα στο πεδίο των συχνοτήτων Διδάσκων : Αναπληρωτής Καθηγητής Νίκου Χριστόφορος Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

6.3 Forecasting ARMA processes

6.3 Forecasting ARMA processes 122 CHAPTER 6. ARMA MODELS 6.3 Forecasting ARMA processes The purpose of forecasting is to predict future values of a TS based on the data collected to the present. In this section we will discuss a linear

Διαβάστε περισσότερα

EE 570: Location and Navigation

EE 570: Location and Navigation EE 570: Locatio ad Navigatio INS Iitializatio Aly El-Osery Electrical Egieerig Departmet, New Mexico Tech Socorro, New Mexico, USA April 25, 2013 Aly El-Osery (NMT) EE 570: Locatio ad Navigatio April 25,

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

Degenerate Perturbation Theory

Degenerate Perturbation Theory R.G. Griffi BioNMR School page 1 Degeerate Perturbatio Theory 1.1 Geeral Whe cosiderig the CROSS EFFECT it is ecessary to deal with degeerate eergy levels ad therefore degeerate perturbatio theory. The

Διαβάστε περισσότερα

Outline. M/M/1 Queue (infinite buffer) M/M/1/N (finite buffer) Networks of M/M/1 Queues M/G/1 Priority Queue

Outline. M/M/1 Queue (infinite buffer) M/M/1/N (finite buffer) Networks of M/M/1 Queues M/G/1 Priority Queue Queueig Aalysis Outlie M/M/ Queue (ifiite buffer M/M//N (fiite buffer M/M// (Erlag s B forula M/M/ (Erlag s C forula Networks of M/M/ Queues M/G/ Priority Queue M/M/ M: Markovia/Meoryless Arrival process

Διαβάστε περισσότερα

Second-order asymptotic comparison of the MLE and MCLE of a natural parameter for a truncated exponential family of distributions

Second-order asymptotic comparison of the MLE and MCLE of a natural parameter for a truncated exponential family of distributions A Ist Stat Math 06 68:469 490 DOI 0.007/s046-04-050-9 Secod-order asymptotic compariso of the MLE ad MCLE of a atural parameter for a trucated expoetial family of distributios Masafumi Akahira Received:

Διαβάστε περισσότερα

Homework 4.1 Solutions Math 5110/6830

Homework 4.1 Solutions Math 5110/6830 Homework 4. Solutios Math 5/683. a) For p + = αp γ α)p γ α)p + γ b) Let Equilibria poits satisfy: p = p = OR = γ α)p ) γ α)p + γ = α γ α)p ) γ α)p + γ α = p ) p + = p ) = The, we have equilibria poits

Διαβάστε περισσότερα

Homework 8 Model Solution Section

Homework 8 Model Solution Section MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

FREE VIBRATION OF A SINGLE-DEGREE-OF-FREEDOM SYSTEM Revision B

FREE VIBRATION OF A SINGLE-DEGREE-OF-FREEDOM SYSTEM Revision B FREE VIBRATION OF A SINGLE-DEGREE-OF-FREEDOM SYSTEM Revisio B By Tom Irvie Email: tomirvie@aol.com February, 005 Derivatio of the Equatio of Motio Cosier a sigle-egree-of-freeom system. m x k c where m

Διαβάστε περισσότερα

Second Order Partial Differential Equations

Second Order Partial Differential Equations Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y

Διαβάστε περισσότερα

6. MAXIMUM LIKELIHOOD ESTIMATION

6. MAXIMUM LIKELIHOOD ESTIMATION 6 MAXIMUM LIKELIHOOD ESIMAION [1] Maximum Likelihood Estimator (1) Cases in which θ (unknown parameter) is scalar Notational Clarification: From now on, we denote the true value of θ as θ o hen, view θ

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β 3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle

Διαβάστε περισσότερα

The Heisenberg Uncertainty Principle

The Heisenberg Uncertainty Principle Chemistry 460 Sprig 015 Dr. Jea M. Stadard March, 015 The Heiseberg Ucertaity Priciple A policema pulls Werer Heiseberg over o the Autobah for speedig. Policema: Sir, do you kow how fast you were goig?

Διαβάστε περισσότερα

Finite Field Problems: Solutions

Finite Field Problems: Solutions Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The

Διαβάστε περισσότερα

Section 9.2 Polar Equations and Graphs

Section 9.2 Polar Equations and Graphs 180 Section 9. Polar Equations and Graphs In this section, we will be graphing polar equations on a polar grid. In the first few examples, we will write the polar equation in rectangular form to help identify

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

Estimation for ARMA Processes with Stable Noise. Matt Calder & Richard A. Davis Colorado State University

Estimation for ARMA Processes with Stable Noise. Matt Calder & Richard A. Davis Colorado State University Estimation for ARMA Processes with Stable Noise Matt Calder & Richard A. Davis Colorado State University rdavis@stat.colostate.edu 1 ARMA processes with stable noise Review of M-estimation Examples of

Διαβάστε περισσότερα

Diane Hu LDA for Audio Music April 12, 2010

Diane Hu LDA for Audio Music April 12, 2010 Diae Hu LDA for Audio Music April, 00 Terms Model Terms (per sog: Variatioal Terms: p( α Γ( i α i i Γ(α i p( p(, β p(c, A j Σ i α i i i ( V / ep β (i j ij (3 q( γ Γ( i γ i i Γ(γ i q( φ q( ω { } (c A T

Διαβάστε περισσότερα

Econ Spring 2004 Instructor: Prof. Kiefer Solution to Problem set # 5. γ (0)

Econ Spring 2004 Instructor: Prof. Kiefer Solution to Problem set # 5. γ (0) Cornell University Department of Economics Econ 60 - Spring 004 Instructor: Prof. Kiefer Solution to Problem set # 5. Autocorrelation function is defined as ρ h = γ h γ 0 where γ h =Cov X t,x t h =E[X

Διαβάστε περισσότερα

4.6 Autoregressive Moving Average Model ARMA(1,1)

4.6 Autoregressive Moving Average Model ARMA(1,1) 84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

The Simply Typed Lambda Calculus

The Simply Typed Lambda Calculus Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and

Διαβάστε περισσότερα

Instruction Execution Times

Instruction Execution Times 1 C Execution Times InThisAppendix... Introduction DL330 Execution Times DL330P Execution Times DL340 Execution Times C-2 Execution Times Introduction Data Registers This appendix contains several tables

Διαβάστε περισσότερα

Lecture 7: Overdispersion in Poisson regression

Lecture 7: Overdispersion in Poisson regression Lecture 7: Overdispersion in Poisson regression Claudia Czado TU München c (Claudia Czado, TU Munich) ZFS/IMS Göttingen 2004 0 Overview Introduction Modeling overdispersion through mixing Score test for

Διαβάστε περισσότερα

IIT JEE (2013) (Trigonomtery 1) Solutions

IIT JEE (2013) (Trigonomtery 1) Solutions L.K. Gupta (Mathematic Classes) www.pioeermathematics.com MOBILE: 985577, 677 (+) PAPER B IIT JEE (0) (Trigoomtery ) Solutios TOWARDS IIT JEE IS NOT A JOURNEY, IT S A BATTLE, ONLY THE TOUGHEST WILL SURVIVE

Διαβάστε περισσότερα

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds! MTH U341 urface Integrals, tokes theorem, the divergence theorem To be turned in Wed., Dec. 1. 1. Let be the sphere of radius a, x 2 + y 2 + z 2 a 2. a. Use spherical coordinates (with ρ a) to parametrize.

Διαβάστε περισσότερα

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all

Διαβάστε περισσότερα

CRASH COURSE IN PRECALCULUS

CRASH COURSE IN PRECALCULUS CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter

Διαβάστε περισσότερα

Supplemental Material: Scaling Up Sparse Support Vector Machines by Simultaneous Feature and Sample Reduction

Supplemental Material: Scaling Up Sparse Support Vector Machines by Simultaneous Feature and Sample Reduction Supplemetal Material: Scalig Up Sparse Support Vector Machies by Simultaeous Feature ad Sample Reductio Weizhog Zhag * 2 Bi Hog * 3 Wei Liu 2 Jiepig Ye 3 Deg Cai Xiaofei He Jie Wag 3 State Key Lab of CAD&CG,

Διαβάστε περισσότερα

Solutions to Exercise Sheet 5

Solutions to Exercise Sheet 5 Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X

Διαβάστε περισσότερα

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

Approximation of distance between locations on earth given by latitude and longitude

Approximation of distance between locations on earth given by latitude and longitude Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth

Διαβάστε περισσότερα

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Partial Differential Equations in Biology The boundary element method. March 26, 2013 The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet

Διαβάστε περισσότερα

On Certain Subclass of λ-bazilevič Functions of Type α + iµ

On Certain Subclass of λ-bazilevič Functions of Type α + iµ Tamsui Oxford Joural of Mathematical Scieces 23(2 (27 141-153 Aletheia Uiversity O Certai Subclass of λ-bailevič Fuctios of Type α + iµ Zhi-Gag Wag, Chu-Yi Gao, ad Shao-Mou Yua College of Mathematics ad

Διαβάστε περισσότερα

EN40: Dynamics and Vibrations

EN40: Dynamics and Vibrations EN40: Dyamics a Vibratios School of Egieerig Brow Uiversity Solutios to Differetial Equatios of Motio for Vibratig Systems Here, we summarize the solutios to the most importat ifferetial equatios of motio

Διαβάστε περισσότερα

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

PARTIAL NOTES for 6.1 Trigonometric Identities

PARTIAL NOTES for 6.1 Trigonometric Identities PARTIAL NOTES for 6.1 Trigonometric Identities tanθ = sinθ cosθ cotθ = cosθ sinθ BASIC IDENTITIES cscθ = 1 sinθ secθ = 1 cosθ cotθ = 1 tanθ PYTHAGOREAN IDENTITIES sin θ + cos θ =1 tan θ +1= sec θ 1 + cot

Διαβάστε περισσότερα

Statistical Inference I Locally most powerful tests

Statistical Inference I Locally most powerful tests Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided

Διαβάστε περισσότερα

Srednicki Chapter 55

Srednicki Chapter 55 Srednicki Chapter 55 QFT Problems & Solutions A. George August 3, 03 Srednicki 55.. Use equations 55.3-55.0 and A i, A j ] = Π i, Π j ] = 0 (at equal times) to verify equations 55.-55.3. This is our third

Διαβάστε περισσότερα

A NEW CLASS OF SEMI-PARAMETRIC ESTIMATORS OF THE SECOND ORDER PARAMETER *

A NEW CLASS OF SEMI-PARAMETRIC ESTIMATORS OF THE SECOND ORDER PARAMETER * PORTUGALIAE MATHEMATICA Vol. 60 Fasc. 2 2003 Nova Série A NEW CLASS OF SEMI-PARAMETRIC ESTIMATORS OF THE SECOND ORDER PARAMETER * M.I. Fraga Alves M. Ivette Gomes ad Laures de Haa Abstract: The mai goal

Διαβάστε περισσότερα

A study on generalized absolute summability factors for a triangular matrix

A study on generalized absolute summability factors for a triangular matrix Proceedigs of the Estoia Acadey of Scieces, 20, 60, 2, 5 20 doi: 0.376/proc.20.2.06 Available olie at www.eap.ee/proceedigs A study o geeralized absolute suability factors for a triagular atrix Ere Savaş

Διαβάστε περισσότερα

: Monte Carlo EM 313, Louis (1982) EM, EM Newton-Raphson, /. EM, 2 Monte Carlo EM Newton-Raphson, Monte Carlo EM, Monte Carlo EM, /. 3, Monte Carlo EM

: Monte Carlo EM 313, Louis (1982) EM, EM Newton-Raphson, /. EM, 2 Monte Carlo EM Newton-Raphson, Monte Carlo EM, Monte Carlo EM, /. 3, Monte Carlo EM 2008 6 Chinese Journal of Applied Probability and Statistics Vol.24 No.3 Jun. 2008 Monte Carlo EM 1,2 ( 1,, 200241; 2,, 310018) EM, E,,. Monte Carlo EM, EM E Monte Carlo,. EM, Monte Carlo EM,,,,. Newton-Raphson.

Διαβάστε περισσότερα

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

6.1. Dirac Equation. Hamiltonian. Dirac Eq. 6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2

Διαβάστε περισσότερα

Στα επόμενα θεωρούμε ότι όλα συμβαίνουν σε ένα χώρο πιθανότητας ( Ω,,P) Modes of convergence: Οι τρόποι σύγκλισης μιας ακολουθίας τ.μ.

Στα επόμενα θεωρούμε ότι όλα συμβαίνουν σε ένα χώρο πιθανότητας ( Ω,,P) Modes of convergence: Οι τρόποι σύγκλισης μιας ακολουθίας τ.μ. Στα πόμνα θωρούμ ότι όλα συμβαίνουν σ ένα χώρο πιθανότητας ( Ω,,). Modes of covergece: Οι τρόποι σύγκλισης μιας ακολουθίας τ.μ. { } ίναι οι ξής: σ μια τ.μ.. Ισχυρή σύγκλιση strog covergece { } lim = =.

Διαβάστε περισσότερα

Online Appendix for Measuring the Dark Matter in Asset Pricing Models

Online Appendix for Measuring the Dark Matter in Asset Pricing Models Olie Appedix for Measurig the Dark Matter i Asset Pricig Models Hui Che Wisto Wei Dou Leoid Koga April 15, 017 Cotets 1 Iformatio-Theoretic Iterpretatio for Model Fragility 1.1 Bayesia Aalysis with Limited-Iformatio

Διαβάστε περισσότερα

Concrete Mathematics Exercises from 30 September 2016

Concrete Mathematics Exercises from 30 September 2016 Concrete Mathematics Exercises from 30 September 2016 Silvio Capobianco Exercise 1.7 Let H(n) = J(n + 1) J(n). Equation (1.8) tells us that H(2n) = 2, and H(2n+1) = J(2n+2) J(2n+1) = (2J(n+1) 1) (2J(n)+1)

Διαβάστε περισσότερα

Higher Order Properties of Bootstrap and Jackknife Bias Corrected Maximum Likelihood Estimators

Higher Order Properties of Bootstrap and Jackknife Bias Corrected Maximum Likelihood Estimators Higer Order Properties of Bootstrap ad Jackkife Bias Corrected Maximum Likeliood Estimators Jiyog Ha Brow Uiversity Guido Kuersteier MIT Marc 5, 2002 Witey Newey MIT Abstract Pfazagl ad Wefelmeyer (978)

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required) Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο

Διαβάστε περισσότερα

Congruence Classes of Invertible Matrices of Order 3 over F 2

Congruence Classes of Invertible Matrices of Order 3 over F 2 International Journal of Algebra, Vol. 8, 24, no. 5, 239-246 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.2988/ija.24.422 Congruence Classes of Invertible Matrices of Order 3 over F 2 Ligong An and

Διαβάστε περισσότερα

Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science.

Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science. Bayesian statistics DS GA 1002 Probability and Statistics for Data Science http://www.cims.nyu.edu/~cfgranda/pages/dsga1002_fall17 Carlos Fernandez-Granda Frequentist vs Bayesian statistics In frequentist

Διαβάστε περισσότερα

Probability theory STATISTICAL MODELING OF MULTIVARIATE EXTREMES, FMSN15/MASM23 TABLE OF FORMULÆ. Basic probability theory

Probability theory STATISTICAL MODELING OF MULTIVARIATE EXTREMES, FMSN15/MASM23 TABLE OF FORMULÆ. Basic probability theory Lud Istitute of Techology Cetre for Mathematical Scieces Mathematical Statistics STATISTICAL MODELING OF MULTIVARIATE EXTREMES, FMSN5/MASM3 Probability theory Basic probability theory TABLE OF FORMULÆ

Διαβάστε περισσότερα

INTEGRATION OF THE NORMAL DISTRIBUTION CURVE

INTEGRATION OF THE NORMAL DISTRIBUTION CURVE INTEGRATION OF THE NORMAL DISTRIBUTION CURVE By Tom Irvie Email: tomirvie@aol.com March 3, 999 Itroductio May processes have a ormal probability distributio. Broadbad radom vibratio is a example. The purpose

Διαβάστε περισσότερα

Fractional Colorings and Zykov Products of graphs

Fractional Colorings and Zykov Products of graphs Fractional Colorings and Zykov Products of graphs Who? Nichole Schimanski When? July 27, 2011 Graphs A graph, G, consists of a vertex set, V (G), and an edge set, E(G). V (G) is any finite set E(G) is

Διαβάστε περισσότερα

Lecture 34 Bootstrap confidence intervals

Lecture 34 Bootstrap confidence intervals Lecture 34 Bootstrap confidence intervals Confidence Intervals θ: an unknown parameter of interest We want to find limits θ and θ such that Gt = P nˆθ θ t If G 1 1 α is known, then P θ θ = P θ θ = 1 α

Διαβάστε περισσότερα

(6,5 μονάδες) Θέμα 1 ο. Τμήμα Πολιτικών Μηχανικών Σχολή Τεχνολογικών Εφαρμογών Διεθνές Πανεπιστήμιο Ελλάδος ΟΝΟΜΑΤΕΠΩΝΥΜΟ

(6,5 μονάδες) Θέμα 1 ο. Τμήμα Πολιτικών Μηχανικών Σχολή Τεχνολογικών Εφαρμογών Διεθνές Πανεπιστήμιο Ελλάδος ΟΝΟΜΑΤΕΠΩΝΥΜΟ Τμήμα Πολιτικών Μηχανικών Σχολή Τεχνολογικών Εφαρμογών Διεθνές Πανεπιστήμιο Ελλάδος ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ ΕΡΓΑΣΤΗΡΙΟΥ ΑΡΙΘΜΗΤΙΚΗΣ ΑΝΑΛΥΣΗΣ ΕΑΡΙΝΟ ΕΞΑΜΗΝΟ ΑΚΑΔ. ΕΤΟΣ 08-09 ΔΙΔΑΣΚΩΝ : Χ. Βοζίκης ΟΝΟΜΑΤΕΠΩΝΥΜΟ Αριθμός

Διαβάστε περισσότερα

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8  questions or comments to Dan Fetter 1 Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test

Διαβάστε περισσότερα

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr (T t N n) Pr (max (X 1,..., X N ) t N n) Pr (max

Διαβάστε περισσότερα

Μηχανική Μάθηση Hypothesis Testing

Μηχανική Μάθηση Hypothesis Testing ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Μηχανική Μάθηση Hypothesis Testing Γιώργος Μπορμπουδάκης Τμήμα Επιστήμης Υπολογιστών Procedure 1. Form the null (H 0 ) and alternative (H 1 ) hypothesis 2. Consider

Διαβάστε περισσότερα

α β

α β 6. Eerg, Mometum coefficiets for differet velocit distributios Rehbock obtaied ) For Liear Velocit Distributio α + ε Vmax { } Vmax ε β +, i which ε v V o Give: α + ε > ε ( α ) Liear velocit distributio

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Ολοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα είναι μικρότεροι το 1000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Διάρκεια: 3,5 ώρες Καλή

Διαβάστε περισσότερα

FORMULAS FOR STATISTICS 1

FORMULAS FOR STATISTICS 1 FORMULAS FOR STATISTICS 1 X = 1 n Sample statistics X i or x = 1 n x i (sample mean) S 2 = 1 n 1 s 2 = 1 n 1 (X i X) 2 = 1 n 1 (x i x) 2 = 1 n 1 Xi 2 n n 1 X 2 x 2 i n n 1 x 2 or (sample variance) E(X)

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

F19MC2 Solutions 9 Complex Analysis

F19MC2 Solutions 9 Complex Analysis F9MC Solutions 9 Complex Analysis. (i) Let f(z) = eaz +z. Then f is ifferentiable except at z = ±i an so by Cauchy s Resiue Theorem e az z = πi[res(f,i)+res(f, i)]. +z C(,) Since + has zeros of orer at

Διαβάστε περισσότερα

derivation of the Laplacian from rectangular to spherical coordinates

derivation of the Laplacian from rectangular to spherical coordinates derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used

Διαβάστε περισσότερα

Every set of first-order formulas is equivalent to an independent set

Every set of first-order formulas is equivalent to an independent set Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent

Διαβάστε περισσότερα

DERIVATION OF MILES EQUATION Revision D

DERIVATION OF MILES EQUATION Revision D By Tom Irvie Email: tomirvie@aol.com July, DERIVATION OF MILES EQUATION Revisio D Itroductio The obective is to derive Miles equatio. This equatio gives the overall respose of a sigle-degree-of-freedom

Διαβάστε περισσότερα

Biorthogonal Wavelets and Filter Banks via PFFS. Multiresolution Analysis (MRA) subspaces V j, and wavelet subspaces W j. f X n f, τ n φ τ n φ.

Biorthogonal Wavelets and Filter Banks via PFFS. Multiresolution Analysis (MRA) subspaces V j, and wavelet subspaces W j. f X n f, τ n φ τ n φ. Chapter 3. Biorthogoal Wavelets ad Filter Baks via PFFS 3.0 PFFS applied to shift-ivariat subspaces Defiitio: X is a shift-ivariat subspace if h X h( ) τ h X. Ex: Multiresolutio Aalysis (MRA) subspaces

Διαβάστε περισσότερα

TMA4115 Matematikk 3

TMA4115 Matematikk 3 TMA4115 Matematikk 3 Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet Trondheim Spring 2010 Lecture 12: Mathematics Marvellous Matrices Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet

Διαβάστε περισσότερα

J. of Math. (PRC) Shannon-McMillan, , McMillan [2] Breiman [3] , Algoet Cover [10] AEP. P (X n m = x n m) = p m,n (x n m) > 0, x i X, 0 m i n. (1.

J. of Math. (PRC) Shannon-McMillan, , McMillan [2] Breiman [3] , Algoet Cover [10] AEP. P (X n m = x n m) = p m,n (x n m) > 0, x i X, 0 m i n. (1. Vol. 35 ( 205 ) No. 4 J. of Math. (PRC), (, 243002) : a.s. Marov Borel-Catelli. : Marov ; Borel-Catelli ; ; ; MR(200) : 60F5 : O2.4; O236 : A : 0255-7797(205)04-0969-08 Shao-McMilla,. Shao 948 [],, McMilla

Διαβάστε περισσότερα

Bessel function for complex variable

Bessel function for complex variable Besse fuctio for compex variabe Kauhito Miuyama May 4, 7 Besse fuctio The Besse fuctio Z ν () is the fuctio wich satisfies + ) ( + ν Z ν () =. () Three kids of the soutios of this equatio are give by {

Διαβάστε περισσότερα