The Algorithm to Extract Characteristic Chord Progression Extended the Sequential Pattern Mining

Σχετικά έγγραφα

Text Mining using Linguistic Information

A Vocabulary-Free Infinity-Gram Model for Chord Progression Analysis

MIDI [8] MIDI. [9] Hsu [1], [2] [10] Salamon [11] [5] Song [6] Sony, Minato, Tokyo , Japan a) b)

Schedulability Analysis Algorithm for Timing Constraint Workflow Models

IPSJ SIG Technical Report Vol.2014-CE-127 No /12/6 CS Activity 1,a) CS Computer Science Activity Activity Actvity Activity Dining Eight-He

An Automatic Modulation Classifier using a Frequency Discriminator for Intelligent Software Defined Radio

SocialDict. A reading support tool with prediction capability and its extension to readability measurement

Buried Markov Model Pairwise

Maxima SCORM. Algebraic Manipulations and Visualizing Graphs in SCORM contents by Maxima and Mashup Approach. Jia Yunpeng, 1 Takayuki Nagai, 2, 1

: Monte Carlo EM 313, Louis (1982) EM, EM Newton-Raphson, /. EM, 2 Monte Carlo EM Newton-Raphson, Monte Carlo EM, Monte Carlo EM, /. 3, Monte Carlo EM

Επιβλέπουσα Καθηγήτρια: ΣΟΦΙΑ ΑΡΑΒΟΥ ΠΑΠΑΔΑΤΟΥ

ΔΙΕΡΕΥΝΗΣΗ ΤΗΣ ΣΕΞΟΥΑΛΙΚΗΣ ΔΡΑΣΤΗΡΙΟΤΗΤΑΣ ΤΩΝ ΓΥΝΑΙΚΩΝ ΚΑΤΑ ΤΗ ΔΙΑΡΚΕΙΑ ΤΗΣ ΕΓΚΥΜΟΣΥΝΗΣ ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ

Study of In-vehicle Sound Field Creation by Simultaneous Equation Method

Development of the Nursing Program for Rehabilitation of Woman Diagnosed with Breast Cancer

Feasible Regions Defined by Stability Constraints Based on the Argument Principle

HIV HIV HIV HIV AIDS 3 :.1 /-,**1 +332

Automatic extraction of bibliography with machine learning

Query by Phrase (QBP) (Music Information Retrieval, MIR) QBH QBP / [1, 2] [3, 4] Query-by-Humming (QBH) QBP MIDI [5, 6] [8 10] [7]

GPGPU. Grover. On Large Scale Simulation of Grover s Algorithm by Using GPGPU

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΜΣ «ΠΡΟΗΓΜΕΝΑ ΣΥΣΤΗΜΑΤΑ ΠΛΗΡΟΦΟΡΙΚΗΣ» ΚΑΤΕΥΘΥΝΣΗ «ΕΥΦΥΕΙΣ ΤΕΧΝΟΛΟΓΙΕΣ ΕΠΙΚΟΙΝΩΝΙΑΣ ΑΝΘΡΩΠΟΥ - ΥΠΟΛΟΓΙΣΤΗ»

Simplex Crossover for Real-coded Genetic Algolithms

Stabilization of stock price prediction by cross entropy optimization

Ερευνητική+Ομάδα+Τεχνολογιών+ Διαδικτύου+

Splice site recognition between different organisms

Homomorphism in Intuitionistic Fuzzy Automata

Research of Han Character Internal Codes Recognition Algorithm in the Multi2lingual Environment

Study of urban housing development projects: The general planning of Alexandria City

Detection and Recognition of Traffic Signal Using Machine Learning

Re-Pair n. Re-Pair. Re-Pair. Re-Pair. Re-Pair. (Re-Merge) Re-Merge. Sekine [4, 5, 8] (highly repetitive text) [2] Re-Pair. Blocked-Repair-VF [7]

[4] 1.2 [5] Bayesian Approach min-max min-max [6] UCB(Upper Confidence Bound ) UCT [7] [1] ( ) Amazons[8] Lines of Action(LOA)[4] Winands [4] 1

Durbin-Levinson recursive method

Numerical Analysis FMN011

{takasu, Conditional Random Field

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ. Πτυχιακή διατριβή Ο ΡΟΛΟΣ ΤΟΥ ΜΗΤΡΙΚΟΥ ΚΑΠΝΙΣΜΑΤΟΣ ΣΤΗΝ ΑΝΑΠΤΥΞΗ ΠΑΙΔΙΚΟΥ ΑΣΘΜΑΤΟΣ

υγεία των νοσηλευτών που συστηματικά εμπλέκονται στην παρασκευή και χορήγηση τους.

Mining Syntactic Structures from Text Database

3: A convolution-pooling layer in PS-CNN 1: Partially Shared Deep Neural Network 2.2 Partially Shared Convolutional Neural Network 2: A hidden layer o

GPU. CUDA GPU GeForce GTX 580 GPU 2.67GHz Intel Core 2 Duo CPU E7300 CUDA. Parallelizing the Number Partitioning Problem for GPUs

Reaction of a Platinum Electrode for the Measurement of Redox Potential of Paddy Soil

Security and Privacy: From Empiricism to Interdisciplinarity. Dimitris Gritzalis

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΑΚΑΔΗΜΑΪΚΟΥ ΕΤΟΥΣ

«ΑΝΑΠΣΤΞΖ ΓΠ ΚΑΗ ΥΩΡΗΚΖ ΑΝΑΛΤΖ ΜΔΣΔΩΡΟΛΟΓΗΚΩΝ ΓΔΓΟΜΔΝΩΝ ΣΟΝ ΔΛΛΑΓΗΚΟ ΥΩΡΟ»

2016 IEEE/ACM International Conference on Mobile Software Engineering and Systems

Ψηφιακό Μουσείο Ελληνικής Προφορικής Ιστορίας: πώς ένας βιωματικός θησαυρός γίνεται ερευνητικό και εκπαιδευτικό εργαλείο στα χέρια μαθητών

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

Quick algorithm f or computing core attribute

Εκπαιδευτική Ρομποτική

Applying Markov Decision Processes to Role-playing Game

Πτυχιακή Εργασία Η ΠΟΙΟΤΗΤΑ ΖΩΗΣ ΤΩΝ ΑΣΘΕΝΩΝ ΜΕ ΣΤΗΘΑΓΧΗ

Vol. 31,No JOURNAL OF CHINA UNIVERSITY OF SCIENCE AND TECHNOLOGY Feb

Πανεπιστήµιο Πειραιώς Τµήµα Πληροφορικής

þÿ Ç»¹º ³µÃ ± : Ãż²» Ä Â

Στοιχεία εισηγητή Ημερομηνία: 10/10/2017

ΜΗΤΡΙΚΟΣ ΘΗΛΑΣΜΟΣ ΚΑΙ ΓΝΩΣΤΙΚΗ ΑΝΑΠΤΥΞΗ ΜΕΧΡΙ ΚΑΙ 10 ΧΡΟΝΩΝ

Test Data Management in Practice

Οι απόψεις και τα συμπεράσματα που περιέχονται σε αυτό το έγγραφο, εκφράζουν τον συγγραφέα και δεν πρέπει να ερμηνευτεί ότι αντιπροσωπεύουν τις

Probabilistic Approach to Robust Optimization

EM Baum-Welch. Step by Step the Baum-Welch Algorithm and its Application 2. HMM Baum-Welch. Baum-Welch. Baum-Welch Baum-Welch.

Παλεπηζηήκην Πεηξαηώο Τκήκα Πιεξνθνξηθήο Πξόγξακκα Μεηαπηπρηαθώλ Σπνπδώλ «Πξνεγκέλα Σπζηήκαηα Πιεξνθνξηθήο»

Approximation of distance between locations on earth given by latitude and longitude

HOSVD. Higher Order Data Classification Method with Autocorrelation Matrix Correcting on HOSVD. Junichi MORIGAKI and Kaoru KATAYAMA

ΜΕΛΕΤΗ ΤΗΣ ΗΛΕΚΤΡΟΝΙΚΗΣ ΣΥΝΤΑΓΟΓΡΑΦΗΣΗΣ ΚΑΙ Η ΔΙΕΡΕΥΝΗΣΗ ΤΗΣ ΕΦΑΡΜΟΓΗΣ ΤΗΣ ΣΤΗΝ ΕΛΛΑΔΑ: Ο.Α.Ε.Ε. ΠΕΡΙΦΕΡΕΙΑ ΠΕΛΟΠΟΝΝΗΣΟΥ ΚΑΣΚΑΦΕΤΟΥ ΣΩΤΗΡΙΑ

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

Η ΠΡΟΣΩΠΙΚΗ ΟΡΙΟΘΕΤΗΣΗ ΤΟΥ ΧΩΡΟΥ Η ΠΕΡΙΠΤΩΣΗ ΤΩΝ CHAT ROOMS

Ανάκτηση Εικόνας βάσει Υφής με χρήση Eye Tracker

ΓΕΩΠΟΝΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΤΡΟΦΙΜΩΝ ΚΑΙ ΔΙΑΤΡΟΦΗΣ ΤΟΥ ΑΝΘΡΩΠΟΥ

ΕΘΝΙΚΗ ΣΧΟΛΗ ΗΜΟΣΙΑΣ ΙΟΙΚΗΣΗΣ

Newman Modularity Newman [4], [5] Newman Q Q Q greedy algorithm[6] Newman Newman Q 1 Tabu Search[7] Newman Newman Newman Q Newman 1 2 Newman 3

-,,.. Fosnot. Tobbins Tippins -, -.,, -,., -., -,, -,.

Η αλληλεπίδραση ανάμεσα στην καθημερινή γλώσσα και την επιστημονική ορολογία: παράδειγμα από το πεδίο της Κοσμολογίας

Bayesian Discriminant Feature Selection

TMA4115 Matematikk 3

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

Finite Field Problems: Solutions

Elements of Information Theory

Congruence Classes of Invertible Matrices of Order 3 over F 2

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΕΠΑΝΑΣΧΕΔΙΑΣΜΟΣ ΓΡΑΜΜΗΣ ΣΥΝΑΡΜΟΛΟΓΗΣΗΣ ΜΕ ΧΡΗΣΗ ΕΡΓΑΛΕΙΩΝ ΛΙΤΗΣ ΠΑΡΑΓΩΓΗΣ REDESIGNING AN ASSEMBLY LINE WITH LEAN PRODUCTION TOOLS

Identification of Fish Species using DNA Method

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΠΑΤΗΣΙΩΝ ΑΘΗΝΑ Ε - ΜΑΙL : mkap@aueb.gr ΤΗΛ: , ΚΑΠΕΤΗΣ ΧΡΥΣΟΣΤΟΜΟΣ. Βιογραφικό Σημείωμα

Διπλωματική Εργασία. του φοιτητή του Τμήματος Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών της Πολυτεχνικής Σχολής του Πανεπιστημίου Πατρών

Wiki. Wiki. Analysis of user activity of closed Wiki used by small groups

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ


Δήµου Δράµας Παιδαγωγικό Τµήµα Νηπιαγωγών Τµήµα Επιστηµών Προσχολικής Αγωγής και Εκπαίδευσης Τµήµα Δηµοτικής Εκπαίδευσης του Πανεπιστηµίου Frederick

Development of a Seismic Data Analysis System for a Short-term Training for Researchers from Developing Countries

Assalamu `alaikum wr. wb.

Διπλωματική Εργασία του φοιτητή του Τμήματος Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών της Πολυτεχνικής Σχολής του Πανεπιστημίου Πατρών

Speeding up the Detection of Scale-Space Extrema in SIFT Based on the Complex First Order System

Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1

CSJ. Speaker clustering based on non-negative matrix factorization using i-vector-based speaker similarity

Area Location and Recognition of Video Text Based on Depth Learning Method

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ

No. 7 Modular Machine Tool & Automatic Manufacturing Technique. Jul TH166 TG659 A

The Simply Typed Lambda Calculus

ΕΥΡΕΣΗ ΤΟΥ ΔΙΑΝΥΣΜΑΤΟΣ ΘΕΣΗΣ ΚΙΝΟΥΜΕΝΟΥ ΡΟΜΠΟΤ ΜΕ ΜΟΝΟΦΘΑΛΜΟ ΣΥΣΤΗΜΑ ΟΡΑΣΗΣ

Διπλωματική Εργασία. Μελέτη των μηχανικών ιδιοτήτων των stents που χρησιμοποιούνται στην Ιατρική. Αντωνίου Φάνης

Retrieval of Seismic Data Recorded on Open-reel-type Magnetic Tapes (MT) by Using Existing Devices

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ. «Προστασία ηλεκτροδίων γείωσης από τη διάβρωση»

«ΕΡΕΥΝΑ ΓΙΑ ΤΗΝ ΗΛΕΚΤΡΟΝΙΚΗ ΠΡΟΩΘΗΣΗ ΜΟΥΣΙΚΟΥ ΥΛΙΚΟΥ ΑΝΕΞΑΡΤΗΤΩΝ ΚΑΛΛΙΤΕΧΝΩΝ»

Transcript:

1,a) 1,b) J-POP 100 The Algorithm to Extract Characteristic Chord Progression Extended the Sequential Pattern Mining Shinohara Toru 1,a) Numao Masayuki 1,b) Abstract: Chord is an important element of music because it supports melody and harmony of whole music. However, it is difficult to compose the chord progression using the music theory efficiently for the beginner of music composer. In addition, it is conceivable that professional composers often regard specific chord progression as important, such as cadenza pattern, and they imitate the chord progression used by the other composers. In this paper, we suggest the pattern mining method specified for music information processing by extending the sequential pattern mining, one of the frequent pattern mining so that it can scan the data in opposite order and it can process pseudo items using independent threshold. We report that chord progressions representing character of composers and cadenza patterns are extracted after we apply the method from 100 musics including J-pop, rock and European music. Keywords: Sequential Pattern Mining, Music Information Retrieval, Computer-aided Composition 1. DeskTop Music DTM 1 Graduate School of Informatics and Engineering, The Uniersity of Electro-Communication a) toru.shinohara@uec.ac.jp b) numao@cs.uec.ac.jp c 2014 Information Processing Society of Japan 1

2 [1] [2] Jiménez MusicXML motifs [3] Ogihara N-gram [4] Pérez N-gram [5] N-gram [6] [7] 2. 2.1 [8] 1995 Agrawal Σ = {i 1, i 2,..., i m } i j S S = {< a 1, a 2,..., a r > a i Σ} T = {S 1, S 2,..., S n } α β α β α β T α α support support(α) = {α α S} (1) α β α =< a 1,..., a l >, β =< a 1,..., a l, a > α β α β confidence confidence(α β) = support(β) support(α) (2) support, minimum support ζ support(α) ζ α α 2.2 2001 Pei PrefixSpan[9] prefix projection S =< a 1, a 2,, a l > a a 1 a, a 2, a,, a j 1 a, a j = a j(1 < j < l) < a 1,, a j > S a prefix prefix(s, a) < a j+1,, a m > S a postfix postfix(s, a) T a projected database T a T a = {S (S T ) (S = postfix(s, a)) (S ϵ)}(3) PrefixSpan ( 1 ) T 1 support c 2014 Information Processing Society of Japan 2

( 2 ) support 2 ( 3 ) support support PrefixSpan [10][11] 3. 3.1 i j c j S M T D D P m m P support support(p ) P ζ M P t t C, Am I VII support support support 3.2 P =< c 1,..., c m > c 1 c m c m c 1 c j = I < V, I > < IV, I > confidence α =< a l,..., a 1 >, β =< a, a l,..., a 1 > α β confidence confidence confidence confidence confidence 3.3 1 Σ M M N = {pseudo 1,..., pseudo N } D M =< c 1,..., c m > M =< pseudo 1,..., pseudo N, c 1,..., c m > M =< c 1,..., c m, pseudo N,..., pseudo 1 > D i j pseudo k M pseudo k (c 1 c m ) 0 pseudo k 1 1 c j support support pseudo k support ζ c 2014 Information Processing Society of Japan 3

support ζ pseudok ζ pseudok ζ pseudo k ζ ζ pseudok pseudo k comp k 3.4 < V, I, IV, I, IV, I, IV, I, IV > (4) p ϵ, q ϵ P 0 + 1 P =< q pp+ > (5) P =< V, I, IV, I, IV, I, IV, I, IV > p =< I, IV >, q =< V > < V, I, IV, I > a < a, a > 3.5 support ζ support ζ pseudok 2 0 4. 4.1 4.1.1 confidence confidence < i 1,..., i m > i 5 χ 2 support ζ = 2, ζ compk = 1 P 1 =< I > P 2 =< comp k, I > c j support I confidence support confidence 1.00 χ 2 YAMAHA MIDI XF J-POP 100 XF 4.1.2 < I > 1 s = support(< comp j >) 1 confidence 1 < I > confidence confidence 1.00 2 s = support(< comp j >) c 2014 Information Processing Society of Japan 4

1 < I > confidence comp j s χ 2 3 177.62 1.68 10 10 < I, V/VII > 0.21154 0.61111 3 178.40 1.33 10 10 < I, V/VII > 0.31818 1.00000 Utada Hikaru 3 262.49 6.59 10 23 < I, VI m > 0.52941 0.50000 3 303.47 1.47 10 29 < I, III/ VI > 0.39394 0.61905 2 212.74 2.38 10 15 < I, V > 0.31081 0.47917 2 222.21 9.79 10 17 < I, VI m > 0.61538 0.60377 2 467.75 1.64 10 58 < I, V 7sus4 /II > 0.18519 0.55556 2 502.91 3.59 10 66 < I, I M9 /III > 0.44444 0.88889 - - - - < I, V/VII > 0.14491 0.71141 2 confidence 1.00 comp j P s χ 2 < I 7, IV M7 > 3 6.60 4.72 10 1 < V 6, IV > 3 10.18 1.71 10 2 Utada Hikaru < VII aug, VII 6 > 3 0.00 1.00 < VI m7, VI m7 /V > 3 96.70 3.35 10 6 < I add9 /III, IV M9 > 2 9.91 2.71 10 1 < III/ VI, VI m > 2 16.36 9.55 10 4 < II 7, II m7 > 2 35.94 3.31 10 4 < I M9 /III, IV > 2 0.00 1.00 χ 2 = 0 D D s = 2 s = 3 4.2 4.2.1 4.1 P 1 =< I > P 2 =< I, comp k > c j support 4.1 < V, I > 4.2.2 3 s = support(< comp j >) confidence 3 confidence < V, I > confidence 5. c 2014 Information Processing Society of Japan 5

3 < I > confidence comp j s χ 2 3 115.39 6.80 10 7 < V, I > 0.50000 0.28846 3 218.85 1.13 10 22 < IV, I > 0.48148 0.29545 Utada Hikaru 3 429.03 3.32 10 61 < II m7, I > 1.00000 0.52941 3 62.76 1.25 10 1 < V, I > 0.50000 0.63636 2 150.36 9.83 10 12 < IV, I > 0.84375 0.36486 2 50.53 4.92 10 1 < V, I > 0.60938 0.75000 2 346.42 1.57 10 45 < V 7sus4, I > 0.80769 0.38889 2 231.29 8.61 10 25 < II m7 /V, I > 0.50000 0.44444 - - - - < V, I > 0.36371 0.31100 I I M7 I M9 I (1995). [9] Pei, J., Han, J., Mortazavi-Asl, B., Pinto, H., Chen, Q., Dayal, U. and Hsu, M.: PrefixSpan: Mining Sequential Patterns Efficiently by Prefix-Projected Pattern Growth, ICDE 2001, April, pp. 215 24 (2001). [10] Kitakami, H., Kanbara, T., Mori, Y., Kuroki, S. and Yamazaki, Y.: Modified PrefixSpan method for motif discovery in sequence databases, PRICAI 2002: Trends in Artificial Intelligence, Springer, pp. 482 491 (2002). [11] Antunes, C. and Oliveira, A. L.: Generalization of pattern-growth methods for sequential pattern mining with gap constraints, Machine Learning and Data Mining in Pattern Recognition, Springer, pp. 239 251 (2003). [1] Cambouropoulos, E., Crawford, T. and Iliopoulos, C.: Pattern processing in melodic sequences: Challenges, caveats and prospects, Computers and the Humanities, Vol. 35, No. 1, pp. 9 21 (2001). [2] DEIM Forum 2012 F6-4 (2012). [3] Jiménez, A., Molina-Solana, M., Berzal, F. and Fajardo, W.: Mining transposed motifs in music, Journal of Intelligent Information Systems, Vol. 36, No. 1, pp. 99 115 (2011). [4] Ogihara, M. and Li, T.: N-gram chord profiles for composer style representation, Proceedings of the International Conference on Music Information Retrieval (IS- MIR) 2008-Session 5d-MIR Methods (2008). [5] Pérez-Sancho, C., Rizo, D. and Inesta, J. M.: Genre classification using chords and stochastic language models, Connection science, Vol. 21, No. 2-3, pp. 145 159 (2009). [6] Scholz, R., Vincent, E. and Bimbot, F.: Robust modeling of musical chord sequences using probabilistic N-grams, Acoustics, Speech and Signal Processing, 2009. ICASSP 2009. IEEE International Conference on, IEEE, pp. 53 56 (2009). [7] 75 pp. 2 285 2 286 (2013). [8] Agrawal, R. and Srikant, R.: Mining Sequential Patterns, Data Engineering, 1995. Proceedings of the Eleventh International Conference on, IEEE, pp. 3 14 c 2014 Information Processing Society of Japan 6