Asymptotic behavior of solutions of mixed type impulsive neutral differential equations

Σχετικά έγγραφα
( ) ( t) ( 0) ( ) dw w. = = β. Then the solution of (1.1) is easily found to. wt = t+ t. We generalize this to the following nonlinear differential

Global Attractor for a Class of Nonlinear Generalized Kirchhoff-Boussinesq Model

Approximation of the Lerch zeta-function

= e 6t. = t 1 = t. 5 t 8L 1[ 1 = 3L 1 [ 1. L 1 [ π. = 3 π. = L 1 3s = L. = 3L 1 s t. = 3 cos(5t) sin(5t).

I.I. Guseinov. Department of Physics, Faculty of Arts and Sciences, Onsekiz Mart University, Çanakkale, Turkey

Necessary and sufficient conditions for oscillation of first order nonlinear neutral differential equations

Xiaoquan (Michael) Zhang

J. of Math. (PRC) u(t k ) = I k (u(t k )), k = 1, 2,, (1.6) , [3, 4] (1.1), (1.2), (1.3), [6 8]

Oscillation Criteria for Nonlinear Damped Dynamic Equations on Time Scales

Fractional Calculus. Student: Manal AL-Ali Dr. Abdalla Obeidat

Vol. 40 No Journal of Jiangxi Normal University Natural Science Jul. 2016

Research Article Existence of Positive Solutions for Fourth-Order Three-Point Boundary Value Problems

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Congruence Classes of Invertible Matrices of Order 3 over F 2

Appendix A. Stability of the logistic semi-discrete model.

GENERAL FRACTIONAL CALCULUS OPERATORS CONTAINING THE GENERALIZED MITTAG-LEFFLER FUNCTIONS APPLIED TO ANOMALOUS RELAXATION

Matrices and Determinants

Example Sheet 3 Solutions

Every set of first-order formulas is equivalent to an independent set

Oscillation criteria for two-dimensional system of non-linear ordinary differential equations

EXISTENCE AND UNIQUENESS THEOREM FOR FRACTIONAL DIFFERENTIAL EQUATION WITH INTEGRAL BOUNDARY CONDITION

α ]0,1[ of Trigonometric Fourier Series and its Conjugate

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Vidyalankar. Vidyalankar S.E. Sem. III [BIOM] Applied Mathematics - III Prelim Question Paper Solution. 1 e = 1 1. f(t) =

2 Composition. Invertible Mappings

Nonlinear Analysis: Modelling and Control, 2013, Vol. 18, No. 4,

Section 8.3 Trigonometric Equations

EE512: Error Control Coding

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

On the Galois Group of Linear Difference-Differential Equations

Uniform Convergence of Fourier Series Michael Taylor

C.S. 430 Assignment 6, Sample Solutions

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

Αλγόριθμοι και πολυπλοκότητα Maximum Flow

Second Order Partial Differential Equations

ST5224: Advanced Statistical Theory II

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

Fractional Colorings and Zykov Products of graphs

Statistical Inference I Locally most powerful tests

Bounding Nonsplitting Enumeration Degrees

Homework 3 Solutions

Managing Production-Inventory Systems with Scarce Resources

( ) ( ) ( ) Fourier series. ; m is an integer. r(t) is periodic (T>0), r(t+t) = r(t), t Fundamental period T 0 = smallest T. Fundamental frequency ω

r t te 2t i t Find the derivative of the vector function. 19. r t e t cos t i e t sin t j ln t k Evaluate the integral.

RG Tutorial xlc3.doc 1/10. To apply the R-G method, the differential equation must be represented in the form:

Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α

ω = radians per sec, t = 3 sec

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Deterministic Policy Gradient Algorithms: Supplementary Material

Appendix. The solution begins with Eq. (2.15) from the text, which we repeat here for 1, (A.1)

Positive solutions for a multi-point eigenvalue. problem involving the one dimensional

Linear singular perturbations of hyperbolic-parabolic type

Math221: HW# 1 solutions

Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

The Euler Equations! λ 1. λ 2. λ 3. ρ ρu. E = e + u 2 /2. E + p ρ. = de /dt. = dh / dt; h = h( T ); c p. / c v. ; γ = c p. p = ( γ 1)ρe. c v.

Reminders: linear functions

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

Finite Field Problems: Solutions

d dt S = (t)si d dt R = (t)i d dt I = (t)si (t)i

The challenges of non-stable predicates

D Alembert s Solution to the Wave Equation

4.6 Autoregressive Moving Average Model ARMA(1,1)

Problem Set 3: Solutions

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Notes on the Open Economy

University of Washington Department of Chemistry Chemistry 553 Spring Quarter 2010 Homework Assignment 3 Due 04/26/10

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

On Strong Product of Two Fuzzy Graphs

Reservoir modeling. Reservoir modelling Linear reservoirs. The linear reservoir, no input. Starting up reservoir modeling

MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS

Galatia SIL Keyboard Information

A Note on Intuitionistic Fuzzy. Equivalence Relation

ECE145a / 218a Tuned Amplifier Design -basic gain relationships

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006

Trigonometric Formula Sheet

Lecture 12 Modulation and Sampling

Commutative Monoids in Intuitionistic Fuzzy Sets

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Math 6 SL Probability Distributions Practice Test Mark Scheme

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Arithmetical applications of lagrangian interpolation. Tanguy Rivoal. Institut Fourier CNRS and Université de Grenoble 1

Homework 8 Model Solution Section

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

Riemann Hypothesis: a GGC representation

Space-Time Symmetries

Econ Spring 2004 Instructor: Prof. Kiefer Solution to Problem set # 5. γ (0)

SOME PROPERTIES OF FUZZY REAL NUMBERS

Lecture 2. Soundness and completeness of propositional logic

6.3 Forecasting ARMA processes

The Nottingham eprints service makes this work by researchers of the University of Nottingham available open access under the following conditions.

5. Choice under Uncertainty

Parametrized Surfaces

J. of Math. (PRC) Banach, , X = N(T ) R(T + ), Y = R(T ) N(T + ). Vol. 37 ( 2017 ) No. 5

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

Empirical best prediction under area-level Poisson mixed models

Mellin transforms and asymptotics: Harmonic sums

Transcript:

Tariboon e al. Advance in Difference Equaion 2014, 2014:327 hp://www.advanceindifferenceequaion.com/conen/2014/1/327 R E S E A R C H Open Acce Aympoic behavior of oluion of mixed ype impulive neural differenial equaion Jeada Tariboon 1*, Soiri K Nouya 2,3 Chahai Thaiprayoon 1 * Correpondence: jeada@kmunb.ac.h 1 Nonlinear Dynamic Analyi Reearch Cener, Deparmen of Mahemaic, Faculy of Applied Science, King Mongku Univeriy of Technology Norh Bangkok, Bangkok, 10800, Thail Full li of auhor informaion i available a he end of he aricle Abrac Thi paper inveigae he aympoic behavior of oluion of he mixed ype neural differenial equaion wih impulive perurbaion x+cx τ Dxα + Pfx δ + Q x=0,0< 0, k, x k =b k x k +1b k k k δ P + δfx d + k Q/β k x d, k =1,2,3,...Sufficien condiion are obained o guaranee ha every oluion end o a conan a. Example illuraing he abrac reul are alo preened. MSC: 34K25; 34K45 Keyword: aympoic behavior; nonlinear neural delay differenial equaion; impule; Lyapunov funcional 1 Inroducion The main purpoe of hi paper i o inveigae he aympoic behavior of oluion of he following mixed ype neural differenial equaion wih impulive perurbaion: x+cx τdxα + Pf x δ + Q x=0, 0< 0, k, x k =b k x k +1b k k k δ P + δf x d + k Q/β k x d, k =1,2,3,..., 1.1 where τ, δ >0,0<α, β <1,C, D PC 0,, R, P, Q PC 0,, R + 0, f CR, R, 0 < k < k+1 wih lim k k = b k, k =1,2,3,..., are given conan. For J R, PCJ, R denoe he e of all funcion h : J R uch ha h i coninuou for k < k+1 lim k h=h k exi for all k =1,2,... The heory of impulive differenial equaion appear a a naural decripion of everal real procee ubjec o cerain perurbaion whoe duraion i negligible in comparion wih he duraion of he proce. Differenial equaion involving impule effec occur in many applicaion: phyic, populaion dynamic, ecology, biological yem, bioechnology, indurial roboic, pharmacokineic, opimal conrol, ec. The reader may refer, for inance, o he monograph by Bainov Simeonov 1, Lakhmikanham e al. 2, Samoilenko Pereyuk 3, Benchohra e al. 4. In recen year, here ha been increaing inere in he ocillaion, aympoic behavior, abiliy heory of impulive delay differenial equaion many reul have been obained ee 520he reference cied herein. 2014 Tariboon e al.; licenee Springer. Thi i an Open Acce aricle diribued under he erm of he Creaive Common Aribuion Licene hp://creaivecommon.org/licene/by/2.0, which permi unrericed ue, diribuion, reproducion in any medium, provided he original work i properly cied.

Tariboon e al. Advance in Difference Equaion 2014, 2014:327 Page 2 of 16 hp://www.advanceindifferenceequaion.com/conen/2014/1/327 Le u menion ome paper from which are moivaion for our work. By he conrucion of Lyapunov funcional, he auhor in 8 udied he aympoic behavior of oluion of he nonlinear neural delay differenial equaion under impulive perurbaion, x+cx τ + Pf x δ = 0, 0 < 0, k, x k =b k x k +1b k k k δ P + δf x d, k =1,2,3,... 1.2 A imilar mehod wa ued in 21 by conidering an impulive Euler ype neural delay differenial equaion wih imilar impulive perurbaion xdxα + Q x=0, 0< 0, k, x k =b k x k +1b k k Q/β k x d, k =1,2,3,... 1.3 In hi paper we combine he wo paper 8, 21 we udy he mixed ype impulive neural differenial equaion problem 1.1. By uing a imilar mehod wih he help of four Lyapunov funcional, ufficien condiion are obained o guaranee ha every oluion of 1.1endoaconana.Wenoehaproblem1.21.3canbederived from he problem 1.1apecialcae,i.e.,ifD 0Q 0, hen 1.1reduceo 1.2whileifC 0P 0, hen 1.1reduceo1.3. Therefore, he mixed ype of nonlinear delay wih an Euler form of impulive neural differenial equaion give more general reul han he previou one. Seing η 1 = maxτ, δ}, η 2 = minα, β},η = min 0 η 1, η 2 0 }, we define an iniial funcion a x=ϕ, η, 0, 1.4 where ϕ PCη, 0, R =ϕ :η, 0 R ϕ i coninuou everywhere excep a a finie number of poin,ϕ ϕ + =lim + ϕexiwihϕ + =ϕ}. Afuncionx i aid o be a oluionof 1.1 aifying he iniial condiion 1.4 if i x=ϕ for η 0, x i coninuou for 0 k, k =1,2,3,...; ii x+cx τdxα i coninuouly differeniable for > 0, k, k =1,2,3,..., aifie he fir equaion of yem 1.1; iii x k + x k exi wih x+ k =x k aifyheecondequaionofyem 1.1. Aoluionof1.1 i aid o be nonocillaory if i i evenually poiive or evenually negaive. Oherwie, i i aid o be ocillaory. 2 Main reul We are now in a poiion o eablih our main reul. Theorem 2.1 Aume ha: H 1 There exi a conan M >0uch ha x f x M x, x R, xf x>0, for x 0. 2.1

Tariboon e al. Advance in Difference Equaion 2014, 2014:327 Page 3 of 16 hp://www.advanceindifferenceequaion.com/conen/2014/1/327 H 2 The funcion C, D aify lim C = μ <1, lim D = γ <1 wih μ + γ < 1, 2.2 C k =b k C k, Dk =b k D k. 2.3 H 3 k τ α k arenoimpulivepoin, 0<b k 1, k =1,2,..., k=1 1 b k<. H 4 The funcion P, Q aify lim up +δ P + δ d + +δ Q/β d + μ1 + P+τ+δ +γ1 + P/α+δ < 2 P+δ αp+δ M 2.4 lim up /β P + δ d + /β Q/β d + μ1 + Q+τ/β +τq/β +γ 1 + Q/αβ Q/β < 2. 2.5 Then every oluion of 1.1 end o a conan a. Proof Le x be any oluion of yem 1.1. We will prove ha he lim xexi i finie. Indeed, he yem 1.1can be wrien a x +Cx τ Dxα P + δf x d Q/β x d + P + δf x + Q/β x=0, 0, k, 2.6 x k =b k x k k +1bk P + δf x d k δ k Q/β + x d, k =1,2,... 2.7 k From H 2 H 4, we chooe conan ε, λ, υ, ρ >0ufficienlymalluchhaμ + ε <1 γ + λ <1T > 0 ufficienly large, for T, +δ /β +δ P + δ d + Q/β +γ + λ 1+ P/α+δ αp + δ /β Q/β P + δ d + +γ + λ, for T, 1+ Q/αβ Q/β d +μ + ε 1+ P + τ + δ P + δ 2 υ, 2.8 M d +μ + ε 1+ Q + τ/β + τq/β 2ρ, 2.9 C μ + ε, D γ + λ. 2.10

Tariboon e al. Advance in Difference Equaion 2014, 2014:327 Page 4 of 16 hp://www.advanceindifferenceequaion.com/conen/2014/1/327 From 2.1, 2.10, we have C μ + ε 1 f 2 x τ, x 2 τ D γ + λ 1 f 2 xα, T, x 2 α which lead o C x 2 τ μ + εf 2 x τ, D x 2 α γ + λf 2 xα, T. 2.11 In he following, for convenience, he expreion of funcional equaliie inequaliie will be wrien wihou i domain. Thi mean ha he relaion hold for all ufficienly large. Le V =V 1 +V 2 +V 3 +V 4, where V 1 = x +Cx τ Dxα P + δf x d V 2 = V 3 = + + P +2δ P + βδ/β β Q + δ/β + δ Q/β 2 V 4 =μ + ε +γ + λ τ Pu + δf 2 xu du d Qu/β x 2 u du d, u Pu + δf 2 xu du d Qu/β x 2 u du d, u P + τ + δf 2 x d +μ + ε α Q/αβ x 2 d + γ + λ α α τ Q + τ/β x 2 d + τ P /α+δ f 2 x d. Q/β 2 x d, Compuing dv 1 /d along he oluion of 1.1 uing he inequaliy 2ab a 2 + b 2,we have dv 1 d =2 x +Cx τ Dxα P + δf x Q/β d x d P + δf x + Q/β x P + δ 2xf x C x 2 τ C f 2 x D x 2 α D f 2 x P + δf 2 x d f 2 x P + δ d

Tariboon e al. Advance in Difference Equaion 2014, 2014:327 Page 5 of 16 hp://www.advanceindifferenceequaion.com/conen/2014/1/327 Q/β d Q/β x 2 d f 2 x Q/β 2x 2 C x 2 C x 2 τ D x 2 D x 2 α Q/β x 2 d x 2 P + δf 2 x d x 2 Q/β d. Calculaing direcly for dv i /d, i =2,3,4, k,wehave dv 2 d dv 3 d = P + δf 2 x + Q/β x 2 P +2δ d P + δ P + βδ/β d P + δ = P + δf 2 x Q + δ/β d Q/β + δ + Q/β x 2 Q/β 2 d Q/β P + δ d P + δf 2 x d Q/β x 2 d, P + δf 2 x d Q/β x 2 d, dv 4 d =μ + εp + τ + δf 2 x μ + εp + δf 2 x τ + μ + ε + τ Q + τ/β x 2 +γ + λ Q/αβ + μ + ε Q/βx 2 τ x 2 γ + λ Q/β x 2 α γ + λ P /α+δ f 2 x γ + λp + δf 2 xα. α Summing for dv i /d, i =1,2,3,weobain dv 1 + dv 2 + dv 3 d d d P + δ 2xf x C x 2 τ C f 2 x D x 2 α D f 2 x f 2 x P + δ d f 2 x Q/β d f 2 x P +2δ d f 2 x Q + δ/β d + δ Q/β 2x 2 C x 2 C x 2 τ D x 2 D x 2 αx 2 x2 β P + βδ/β d x 2 P + δ d x 2 Q/β Q/β 2 d. d

Tariboon e al. Advance in Difference Equaion 2014, 2014:327 Page 6 of 16 hp://www.advanceindifferenceequaion.com/conen/2014/1/327 Since P +2δ d = Q + δ/β + δ +δ d = P + δ d, +δ Q/β d, Q/β 2 1 β /β Q/β d = P + βδ/β d = d, /β P + δ d, i follow ha dv 1 + dv 2 + dv 3 d d d P + δ 2xf x C x 2 τ C f 2 x D x 2 α D f 2 x f 2 x +δ P + δ d f 2 x +δ Q/β 2x 2 C x 2 C x 2 τ D x 2 D x 2 αx 2 /β Q/β /β P + δ d x 2 Q/β d. Adding he above inequaliy wih dv 4 /d uing condiion 2.11, we have d dv 1 + dv 2 + dv 3 + dv 4 d d d d P + δ 2xf x C f 2 x D f 2 x f 2 x +δ P + δ d f 2 x +δ Q/β x 2 /β 2x 2 C x 2 D x 2 Q/β /β P + δ d x 2 Q/β d +μ + εp + τ + δf 2 x + +γ + λ Q/αβ x 2 + Applying 2.8, 2.9, 2.10, i follow ha d μ + ε + τ Q + τ/β x 2 γ + λ P /α+δ f 2 x. α dv d = dv 1 d + dv 2 d + dv 3 d + dv 4 d P + δf 2 x 2x f x C D +δ Q/β P + τ + δ d μ + ε P + δ Q/β x 2 2 C D /β +δ γ + λ α P + δ d P + δ d P/α+δ P + δ

Tariboon e al. Advance in Difference Equaion 2014, 2014:327 Page 7 of 16 hp://www.advanceindifferenceequaion.com/conen/2014/1/327 /β Q/β μ + ε Q + τ/β d + τ Q/β Q/β μ + ε +δ P + δf 2 x 2 M P + τ + δ μ + ε 1+ P + δ /β x 2 2 For = k,wehave 1+ + τ P + δ d γ + λ /β P + δ d Q + τ/β Q/β γ + λ Q/αβ Q/β +δ Q/β d 1+ P/α+δ αp + δ γ + λ Q/β d 1+ Q/αβ Q/β P + δf 2 x υ Q/β x 2 ρ. 2.12 V 1 k = x k +C k x k τd k xα k k P + δf x k d k δ Q/β k 2 x d = b k x k + bk C k x k τ b k D k x α k b k k k δ = b 2 k V 1 k. P + δf x k d + Q/β k 2 x d I i eay o ee ha V 2 k =V 2 k, V 3 k =V 3 k, V 4 k =V 4 k. Therefore, V k =V 1 k +V 2 k +V 3 k +V 4 k = b 2 k V 1 k + V2 k + V3 k + V4 k V 1 k + V2 k + V3 k + V4 k = V k. 2.13 From 2.12 2.13, we conclude ha V i decreaing. In view of he fac ha V 0, we have lim V =ψ exi ψ 0. By uing 2.8, 2.9, 2.12, 2.13, we have υ T which yield P + δf 2 x d + ρ T P + δf 2 x, Q/β x 2 L 1 0,. Q/β x 2 d V T,

Tariboon e al. Advance in Difference Equaion 2014, 2014:327 Page 8 of 16 hp://www.advanceindifferenceequaion.com/conen/2014/1/327 Hence, for any φ >0ξ 0, 1, we ge lim P + δf 2 x d =0, φ lim ξ Q/β x 2 d =0. Thu, i follow from 2.42.5ha P +2δ P + βδ/β + β +δ + 2 M /β + 2 M Pu + δf 2 xu du d Qu/β x 2 u du d u P + δ d Pu + δf 2 xu du P + δ d Q + δ/β + δ + Pu + δf 2 xu du d Qu/β x 2 u du u Qu/β x 2 u du 0, u Q/β 2 +δ Q/β + 2 M +2 /β d Q/β Pu + δf 2 xu du d d Qu/β x 2 u du d u Pu + δf 2 xu du Qu/β x 2 u du 0, u a, Pu + δf 2 xu du Qu/β x 2 u du u a, μ + ε P + τ + δf 2 x d +μ + ε τ τ +γ + λ =μ + ε +μ + ε +γ + λ α τ τ α Q/αβ x 2 d + γ + λ α P + τ + δ P + δf 2 x d P + δ α Q + τ/β Q/β + τ Q/β x 2 d Q/αβ Q/β Q/β x 2 d Q + τ/β x 2 d + τ P /α+δ f 2 x d

Tariboon e al. Advance in Difference Equaion 2014, 2014:327 Page 9 of 16 hp://www.advanceindifferenceequaion.com/conen/2014/1/327 + γ + λ α 2 M +2 τ α α P/α+δ P + δf 2 x d P + δ P + δf 2 x d +2 Q/β x 2 d + 2 M α τ Q/β x 2 d P + δf 2 x d 0, a. Therefore, from he above eimaion, we have lim V 2 =0,lim V 3 =0, lim V 4 =0,repecively. Thu, lim V 1 =lim V =ψ,hai, lim x+cx τ Dxα P + δf x d Q/β 2 x d = ψ. 2.14 Now, we will prove ha he limi lim x+cx τ Dxα P + δf x d Q/β x d 2.15 exi i finie. Seing y =x+cx τ Dxα P + δf x d uing 1.1 condiion H 3, we have y k =x k +C k x k τd k xα k k k δ P + δf x d k Q/β x d, 2.16 Q/β k = b k x k + C k x k τ D k x α k k P + δf x k d k δ Q/β k x d x d = b k y k. 2.17 In view of 2.14, i follow ha lim y2 =ψ. In addiion, from 2.16 2.17, yem 2.6-2.7 can be wrien a y +P + δf x + Q/β x=0, 0< 0, k, y k =b k y k, k =1,2,3,... 2.18

Tariboon e al. Advance in Difference Equaion 2014, 2014:327 Page 10 of 16 hp://www.advanceindifferenceequaion.com/conen/2014/1/327 If ψ =0,henlim y =0.Ifψ > 0, hen here exi a ufficienly large T uch ha y 0forany > T.Oherwie,hereiaequencea k } wih lim k a k = uch ha ya k =0,oy 2 a k 0ak. Thi conradic ψ > 0. Therefore, for any k > T, k, k+1, we have y>0ory<0fromheconinuiyofy on k, k+1. Wihou lo of generaliy, we aume ha y>0on k, k+1. I follow from H 3 ha y k+1 =b k y k+1 >0,huy>0on k+1, k+2. By uing mahemaical inducion, we deduce ha y>0on k,. Therefore, from 2.14, we have lim y= lim x+cx τ Dxα P + δf x d Q/β x d = κ, 2.19 where κ = ψ i finie. In view of 2.18, for ufficien large,wehave P + δf x Q/β d + x d β = y δy yk y k β β< k < = y δy β< k < 1 b k y k. Taking uing H 3, we have lim P + δf x d + β β Q/β x d =0, which lead o lim P + δf x d =0 lim Q/β x d =0. Thi implie ha lim x+cx τdxα = κ. 2.20 Nex, we hall prove ha lim xexiifinie. 2.21 Furher, we fir how ha x i bounded. Acually, if x i unbounded, hen here exi a equence z n } uch ha z n, xz n,an x z n = up x, 2.22 0 z n

Tariboon e al. Advance in Difference Equaion 2014, 2014:327 Page 11 of 16 hp://www.advanceindifferenceequaion.com/conen/2014/1/327 where, if z n i no an impulive poin, hen xz n =xz n. Thu, we have x z n + C z n x z n τ D z n x αz n x z n C z n x z n τ D z n x αz n x z n 1 μ ε γ λ, a n, which conradic 2.20. Therefore, x i bounded. If μ =0γ =0,henlim x=κ, which implie ha 2.21hold.If0<μ <1 0<γ <1,henwededucehaCD are evenually poiive or evenually negaive. Oherwie, here are wo equence w k } w j } wih lim k w k = lim j w j = uch ha Cw k =0Dw j = 0. Therefore, Cw k 0Dw j 0ak, j. I i a conradicion o μ >0γ >0. Now, we will how ha 2.21 hold. By condiion H 2, we can find a ufficienly large T 1 uch ha for > T 1, C + D <1.Se ω = lim inf x, θ = lim up x. Then we can chooe wo equence u n } v n } uch ha u n, v n a n, lim n xu n=ω, lim xv n=θ. n For > T 1, we conider he following eigh poible cae. Cae 1. When lim C=01<D<0for > T 1,wehave κ = lim xun Du n xαu n ω + γθ, n κ = lim xvn Dv n xαv n θ + γω. n Thu, we obain ω + γθ θ + γω, ha i, ω1 γ θ1 γ. Since 0 < γ <1θ ω, i follow ha θ = ω.by2.20, we obain θ = ω = κ 1γ, which how ha 2.21hold.

Tariboon e al. Advance in Difference Equaion 2014, 2014:327 Page 12 of 16 hp://www.advanceindifferenceequaion.com/conen/2014/1/327 Cae 2. When lim D=01<C<0for > T 1,wege κ = lim xun +Cu n xu n τ ω μω n κ = lim xvn +Cv n xv n τ θ μθ, n which lead o ω1 μ θ1 μ. Since 0 < μ <1θ ω,weconcludeha θ = ω = κ 1μ, which implie ha 2.21hold. Cae 3. lim C =0,0<D <1for > T 1. The mehod of proof i imilar o he above wo cae. Therefore, we omi i. Cae 4. lim D =0,0<C <1for > T 1. The mehod of proof i imilar o he above wo fir cae. Therefore, we omi i. Cae 5. When 1 < D<00<C<1for > T 1,wehave κ = lim xun +Cu n xu n τdu n xαu n ω + μθ + γθ n κ = lim xvn +Cv n xv n τdv n xαv n θ + μω + γω, n which yield ω1 μ γ θ1 μ γ. Since 0 < μ + γ <1θ ω,wehaveθ = ω.thu θ = ω = κ 1μ γ, o 2.21hold. Uing imilar argumen, we can prove ha 2.21 alo hold for he following cae: Cae 6. 1 < C<0,0<D<1. Cae 7. 1 < C<0,1<D<0. Cae 8. 0 < C<1,0<D<1. Summarizing he above inveigaion, we conclude ha 2.21 hold o he proof i compleed. Theorem 2.2 Le condiion H 1 -H 4 of Theorem 2.1 hold. Then every ocillaory oluion of 1.1 end o zero a.

Tariboon e al. Advance in Difference Equaion 2014, 2014:327 Page 13 of 16 hp://www.advanceindifferenceequaion.com/conen/2014/1/327 Corollary 2.1 Aume ha H 3 hold +δ +δ Q/β lim up P + δ d + d <2 2.23 /β /β Q/β lim up P + δ d + d < 2. 2.24 Then every oluion of he equaion x +Px δ+ Q x=0, 0< 0, k, x k =b k x k +1b k k k δ P + δx d + k Q/β k x d, k =1,2,3,..., 2.25 end o a conan a. Corollary 2.2 The condiion 2.23 2.24 imply ha every oluion of he equaion x +Px δ+ Q x=0, 0< 0, 2.26 end o a conan a. Theorem 2.3 The condiion H 1 -H 4 of Theorem 2.1 ogeher wih 0 P + δ d =, 0 Q/β d =, 2.27 imply ha every oluion of 1.1 end o zero a. Proof From Theorem 2.2, we only have oprove haevery nonocillaoryoluion of 1.1 end o zero a. Wihou lo of generaliy, we aume ha x i an evenually poiive oluion of 1.1. A in he proof of Theorem 2.1,1.1canbewrienainheform 2.18. Inegraing from 0 o boh ide of he fir equaion of 2.18, one ha 0 P + δf x d + 0 Q/β x d = y 0 y 1 b k y k. 0 < k < Applying 2.19H 3, we have 0 P + δf x d < 0 Q/β x d <. Thi, ogeher wih 2.27, implie ha lim inf f x = 0 lim inf x =0.By Theorem 2.1, lim x=0.thicompleeheproof.

Tariboon e al. Advance in Difference Equaion 2014, 2014:327 Page 14 of 16 hp://www.advanceindifferenceequaion.com/conen/2014/1/327 Corollary 2.3 Aume ha 2.1, 2.2, 2.4, 2.5, 2.27 hold. Then every oluion of he equaion Q x+cx τdxα + Pf x δ + x=0, 2.28 0< 0, end o zero a. 3 Example In hi ecion, we preen wo example o illurae our reul. Example 3.1 Conider he following mixed ype neural differenial equaion wih impulive perurbaion: x+ k+3 x 1 3k+9 3k 2 +3k6 2 x 8k 2 +8k16 e 1 + 1 5 2 4 co2 x πx π+ + 2+ xk= k2 +6k+8 k+3 2 xk +1 k2 +6k+8 k+3 2 k k π 1 + 1 4 co2 xx d + k k e 2 1 ln +2 x 2++π 5+π 2 1 lne 2 +2 e 2 =0, 1, x d, k =2,3,4,... 3.1 Here C =k +3 /3k 2 +3k 6,D = 3k +9 /8k 2 +8k 16,P =2+ /5 2, Q = 1/ln +2, k 1,k, b k =k 2 +6k + 8/k +3 2, 0 =1,k =2,3,4,..., f x=x1 + 1/4co 2 x, τ = 1/2, δ = π, α =1/e,β =1/e 2. We can find ha i x 1 + 1 4 co2 xx 5 4 x, x R, 1 + 1 4 co2 xx 2 >0for x 0; ii lim C = 1 3 = μ <1, lim D = 3 17 = γ <1wih μ + γ = 8 24 <1, Ck= k2 +6k+8 Ck, Dk= k2 +6k+8 Dk ; k+3 2 k+3 2 iii k 1/2 1/e k are no impulive poin, 0<k 2 +6k + 8/k +3 2 1 for k =1,2,..., k=1 1 k2 +6k +8 k +3 2 = k=1 1 k +3 2 < ; iv lim up +δ P + δ d + +δ Q/β d + μ1 + P+τ+δ +γ1 + P/α+δ = 17 P+δ αp+δ 12 < 8 5 lim up /β P + δ d + /β Q/β d + μ1 + Q+τ/β +τq/β +γ 1 + Q/αβ Q/β = 109 60 <2. Hence, by i-iv all aumpion of Theorem 2.1 are aified. Therefore, we conclude ha every oluion of 3.1endoaconana.

Tariboon e al. Advance in Difference Equaion 2014, 2014:327 Page 15 of 16 hp://www.advanceindifferenceequaion.com/conen/2014/1/327 Example 3.2 Conider he following mixed ype neural differenial equaion wih impulive perurbaion x+ 12k+16 12k+16 42k 2 +21k21 x 2e 3 x 2 54k 2 +27k27 3 + 2+1 1 + 2 4+3 2 5 in2 x π 2 x π 2 + 4 2 ln +3 x 3e xk= 6k2 +17k+7 6k 2 +17k+12 xk +1 6k2 +17k+7 6k 2 +17k+12 k 1 + 2 5 in2 xx d + k k 3e k π 2 4 2 ln3e+3 2+1+π 4+3+2π 2 =0, 1, x d, k =2,3,4,... 3.2 Here C = 12k +16 /54k 2 +27k 27,D = 12k +16 /42k 2 +21k 21, P =2 + 1/4 +3 2, Q =4/2ln +3, k 1,k, b k =6k 2 +17k + 7/6k 2 + 17k +12, 0 =1,k =2,3,4,...,f x=x1 + 2/5 in 2 x, τ = 2/3, δ = π/2, α = 1/2e 3, β = 1/3e. We can how ha i x 1 + 2 5 in2 xx 7 5 x, x R, 1 + 2 5 in2 xx 2 >0for x 0; ii lim C = 2 9 = μ <1, lim D = 2 32 = γ <1wih μ + γ = 7 63 <1, Ck= 6k2 +17k+7 6k 2 +17k+12 Ck, Dk= 6k2 +17k+7 6k 2 +17k+12 Dk ; iii k 2/3 1/2e 3 k are no impulive poin, iv v 0<6k 2 +17k + 7/6k 2 +17k +12 1 for k =1,2,..., k=1 1 6k2 +17k +7 6k 2 +17k +12 = k=1 5 6k 2 +17k +12 < ; lim up +δ P + δ d + +δ Q/β d + μ1 + P+τ+δ +γ1 + P/α+δ = 64 P+δ αp+δ 63 < 10 7 lim up /β P + δ d + /β Q/β d 1 1 + μ1 + Q+τ/β +τq/β +γ 1 + Q/αβ Q/β = 1.2781996 < 2; 2 +1+π P + δ d = 1 4 +3+2π d = 2 Q/β 4 d = d =. 1 2 ln3e+3 Hence, all aumpion of Theorem 2.3 are aified herefore every oluion of 3.2 end o zero a. Compeing inere The auhor declare ha hey have no compeing inere.

Tariboon e al. Advance in Difference Equaion 2014, 2014:327 Page 16 of 16 hp://www.advanceindifferenceequaion.com/conen/2014/1/327 Auhor conribuion All auhor conribued equally in hi aricle. They read approved he final manucrip. Auhor deail 1 Nonlinear Dynamic Analyi Reearch Cener, Deparmen of Mahemaic, Faculy of Applied Science, King Mongku Univeriy of Technology Norh Bangkok, Bangkok, 10800, Thail. 2 Deparmen of Mahemaic, Univeriy of Ioannina, Ioannina, 451 10, Greece. 3 Nonlinear Analyi Applied Mahemaic NAAM-Reearch Group, Deparmen of Mahemaic, Faculy of Science, King Abdulaziz Univeriy, P.O. Box 80203, Jeddah, 21589, Saudi Arabia. Acknowledgemen We would like o hank he reviewer for heir valuable commen uggeion on he manucrip. Thi reearch wa funded by King Mongku Univeriy of Technology Norh Bangkok. Conrac no. KMUTNB-GOV-57-08. Received: 29 Augu 2014 Acceped: 9 December 2014 Publihed: 22 Dec 2014 Reference 1. Bainov, DD, Simeonov, PS: Syem wih Impule Effec. Elli Horwood, Chicheer 1989 2. Lakhmikanham, V, Bainov, DD, Simeonov, PS: Theory of Impulive Differenial Equaion. World Scienific, Singapore 1989 3. Samoilenko, AM, Pereyuk, NA: Impulive Differenial Equaion. World Scienific, Singapore 1995 4. Benchohra, M, Henderon, J, Nouya, SK: Impulive Differenial Equaion Incluion, vol. 2. Hindawi Publihing Corporaion, New York 2006 5. Bainov, DD, Dinirova, MB, Dihliev, AB: Ocillaion of he oluion of impulive differenial equaion inequaliie wih a rearded argumen. Rocky M. J. Mah. 28, 25-40 1998 6. Luo, Z, Shen, J: Sabiliy boundedne for impulive differenial equaion wih infinie delay. Nonlinear Anal. 46, 475-493 2001 7. Liu, X, Shen, J: Aympoic behavior of oluion of impulive neural differenial equaion. Appl. Mah. Le. 12, 51-58 1999 8. Shen, J, Liu, Y, Li, J: Aympoic behavior of oluion of nonlinear neural differenial equaion wih impule. J. Mah. Anal. Appl. 332, 179-189 2007 9. Shen, J, Liu, Y: Aympoic behavior of oluion for nonlinear delay differenial equaion wih impule. J. Appl. Mah. Compu. 213, 449-454 2009 10. Wei, G, Shen, J: Aympoic behavior of oluion of nonlinear impulive delay differenial equaion wih poiive negaive coefficien. Mah. Compu. Model. 44, 1089-1096 2006 11. Luo, J, Debnah, L: Aympoic behavior of oluion of forced nonlinear neural delay differenial equaion wih impule. J. Appl. Mah. Compu. 12, 39-47 2003 12. Jiang, F, Sun, J: Aympoic behavior of neural delay differenial equaion of Euler form wih conan impulive jump. Appl. Mah. Compu. 219, 9906-9913 2013 13. Pian, S, Balachran, Y: Aympoic behavior reul for nonlinear impulive neural differenial equaion wih poiive negaive coefficien. Bonfring In. J. Daa Min. 2, 13-21 2012 14. Wang, QR: Ocillaion crieria for fir-order neural differenial equaion. Appl. Mah. Le. 8, 1025-1033 2002 15. Tariboon, J, Thiramanu, P: Ocillaion of a cla of econd-order linear impulive differenial equaion. Adv. Differ. Equ. 2012, 205 2012 16. Jiang, F, Shen, J: Aympoic behavior of oluion for a nonlinear differenial equaion wih conan impulive jump. Aca Mah. Hung. 138, 1-14 2013 17. Jiang, F, Shen, J: Aympoic behavior of nonlinear neural impulive delay differenial equaion wih forced erm. Kodai Mah. J. 35, 126-137 2012 18. Gunaekar, T, Samuel, FP, Arjunan, MM: Exience reul for impulive neural funcional inegrodifferenial equaion wih infinie delay. J. Nonlinear Sci. Appl. 6, 234-243 2013 19. Kumar, P, Pey, DN, Bahuguna, D: On a new cla of abrac impulive funcional differenial equaion of fracional order. J. Nonlinear Sci. Appl. 7, 102-114 2014 20. Samuel, FP, Balachran, K: Exience of oluion for quai-linear impulive funcional inegrodifferenial equaion in Banach pace. J. Nonlinear Sci. Appl. 7, 115-125 2014 21. Guan, K, Shen, J: Aympoic behavior of oluion of a fir-order impulive neural differenial equaion in Euler form. Appl. Mah. Le. 24, 1218-1224 2011 10.1186/1687-1847-2014-327 Cie hi aricle a: Tariboon e al.: Aympoic behavior of oluion of mixed ype impulive neural differenial equaion. Advance in Difference Equaion 2014, 2014:327