Zero-Mode Anomalies and Related Physics in Graphene

Σχετικά έγγραφα
Sachdev-Ye-Kitaev Model as Liouville Quantum Mechanics

Martti M. Salomaa (Helsinki Univ. of Tech.)

Lecture 21: Scattering and FGR

Low Frequency Plasma Conductivity in the Average-Atom Approximation

Thermoelectrics: A theoretical approach to the search for better materials

Fundamental Physical Constants Extensive Listing Relative std. Quantity Symbol Value Unit uncert. u r

Three coupled amplitudes for the πη, K K and πη channels without data

Quantum Statistical Mechanics (equilibrium) solid state, magnetism black body radiation neutron stars molecules lasers, superuids, superconductors

UV fixed-point structure of the 3d Thirring model

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

6.4 Superposition of Linear Plane Progressive Waves

PHASE TRANSITIONS IN QED THROUGH THE SCHWINGER DYSON FORMALISM

Geodesic paths for quantum many-body systems

Fundamental Physical Constants Extensive Listing Relative std. Quantity Symbol Value Unit uncert. u r

Chapter 9 Ginzburg-Landau theory

Quantum shot noise: From Schottky to Bell

Fundamental Physical Constants Complete Listing Relative std. Quantity Symbol Value Unit uncert. u r

Large β 0 corrections to the energy levels and wave function at N 3 LO

The Standard Model. Antonio Pich. IFIC, CSIC Univ. Valencia

Kinetic Space Plasma Turbulence

General 2 2 PT -Symmetric Matrices and Jordan Blocks 1

of the methanol-dimethylamine complex

4.4 Superposition of Linear Plane Progressive Waves

Probability and Random Processes (Part II)

Adachi-Tamura [4] [5] Gérard- Laba Adachi [1] 1

CT Correlation (2B) Young Won Lim 8/15/14

An experimental and theoretical study of the gas phase kinetics of atomic chlorine reactions with CH 3 NH 2, (CH 3 ) 2 NH, and (CH 3 ) 3 N

Oscillatory Gap Damping

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint

Biostatistics for Health Sciences Review Sheet

([28] Bao-Feng Feng (UTP-TX), ( ), [20], [16], [24]. 1 ([3], [17]) p t = 1 2 κ2 T + κ s N -259-

LEPTONS. Mass m = ( ± ) 10 6 u Mass m = ± MeV me + m e

Solutions - Chapter 4

1. 3. ([12], Matsumura[13], Kikuchi[10] ) [12], [13], [10] ( [12], [13], [10]


Non-Gaussianity from Lifshitz Scalar

Supporting Information

100x W=0.1 W=

Eects of Gas-Surface Interaction Model in Hypersonic Rareed Gas Flow

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Spherical Coordinates

ELECTRONIC SUPPORTING INFORMATION

Dr. D. Dinev, Department of Structural Mechanics, UACEG

Dynamics of cold molecules in external electromagnetic fields. Roman Krems University of British Columbia

Homework 8 Model Solution Section


Markov chains model reduction

The mass and anisotropy profiles of nearby galaxy clusters from the projected phase-space density

Κβαντικούς Υπολογιστές

Graded Refractive-Index

Table of Contents 1 Supplementary Data MCD

Hartree-Fock Theory. Solving electronic structure problem on computers

Fused Bis-Benzothiadiazoles as Electron Acceptors

[1] P Q. Fig. 3.1

1 (a) The kinetic energy of the rolling cylinder is. a(θ φ)

LP N to BD* C-C = BD C-C to BD* O-H = LP* C to LP* B =5.

Coupling of a Jet-Slot Oscillator With the Flow-Supply Duct: Flow-Acoustic Interaction Modeling


Ηλεκτρονικοί Υπολογιστές IV

Supporting Information To. Microhydration of caesium compounds: Journal of Molecular Modeling

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Electronic Supplementary Information

Approximation of dynamic boundary condition: The Allen Cahn equation

What happens when two or more waves overlap in a certain region of space at the same time?

ΔΗΜΟΣΙΕΥΣΕΙΣ σε περιοδικά με κριτές

Higher spin gauge theories and their CFT duals

Manuscript submitted to the Journal of the American Society for Mass Spectrometry, September 2011.

Discontinuous Hermite Collocation and Diagonally Implicit RK3 for a Brain Tumour Invasion Model

Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical

Photo-Induced Self-Assembly of Pt(II)-Linked Rings and Cages via the Photolabilization of a Pt(II) Pyridine Bond

Dong Liu State Key Laboratory of Particle Detection and Electronics University of Science and Technology of China

Computer No.53 (1992) IBM 650. Bacon TSS JRR-2.[1] free inductin decay IBM 7044 FACOM

Optical Feedback Cooling in Optomechanical Systems

for fracture orientation and fracture density on physical model data

Exercises in Electromagnetic Field

Monolithic Crystal Filters (M.C.F.)

wave energy Superposition of linear plane progressive waves Marine Hydrodynamics Lecture Oblique Plane Waves:


Gaussian related distributions

PETROSKILLS COPYRIGHT

Enhancing σ/π-type Copper(I) thiophene Interactions by Metal Doping (Metal = Li, Na, K, Ca, Sc)

J. of Math. (PRC) 6 n (nt ) + n V = 0, (1.1) n t + div. div(n T ) = n τ (T L(x) T ), (1.2) n)xx (nt ) x + nv x = J 0, (1.4) n. 6 n

Quantum Electrodynamics

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

D-term Dynamical SUSY Breaking

ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ Ä664

Hydrogen Sorption Efficiency of Titanium Decorated Calix[4]pyrroles

The Spiral of Theodorus, Numerical Analysis, and Special Functions

Fundamentals of Signals, Systems and Filtering

X-Y COUPLING GENERATION WITH AC/PULSED SKEW QUADRUPOLE AND ITS APPLICATION

Evolution of Novel Studies on Thermofluid Dynamics with Combustion

Neutrino emissivities in quark matter

Cite as: Pol Antras, course materials for International Economics I, Spring MIT OpenCourseWare ( Massachusetts

2DEG under microwaves: Oscillatory photoresistivity and zero-resistance states. Alexander D. Mirlin

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C

Wilson ratio: universal nature of quantum fluids

CSR series. Thick Film Chip Resistor Current Sensing Type FEATURE PART NUMBERING SYSTEM ELECTRICAL CHARACTERISTICS

Table S1 Selected bond lengths [Å] and angles [ ] for complexes 1 8. Complex 1. Complex 2. Complex 3. Complex 4. Complex 5.

Temperature Correction Schemes

Θεωρητική Επιστήμη Υλικών

Transcript:

MODANETALK.OHP (September 9, ) Zero-Mode Anomalies and Related Physics in Graphene. Introduction Weyl s equation for neutrino Berry s phase and topological anomaly. Zero-mode anomalies Diamagnetic response Conductivity 3. Time reversal and symmetry crossover Special vs real time reversal Symmetry crossover 4. Bilayer and multi-layer graphene Interlayer interaction Hamiltonian decomposition 5. Summary Aussois, September (Tues) GDR 46, Physique Quantique Meśoscopique Centre Paul Langevin, Aussois, France September 3, [5:45 6:3 (35+)] Tsuneya ANDO Collaborators M. Koshino (TITech) M. Noro (TITech) H. Suzuura (Hokkaido Univ) Page

MODANETALK.OHP (September 9, ) Effective-Mass Description: Neutrino or Massless Dirac Electron Graphene (Triangular antidot lattice) η a=.46 Å Weyl s equation for neutrino (K) γ(σ ˆk)F (r)=εf(r) Energy (units of γ) 4 3 - - -3 K Γ M K γ(σ xˆkx +σ yˆky )F (r)=εf(r) ( )( ) ( ) γ(ˆk x iˆk y ) F A (r) F Wave Vector γ(ˆk x +iˆk y ) F B = ε A (r) (r) F B (r) ˆk = i Massless (Dirac) v F c/3 (γ 3eV) Velocity: v F =γ/ h Constant velocity ( light, cannot stop) K : σ σ Topological anomaly γ = 3γ a/ (γ : Hopping integral) Page M Γ K K E F ε(k)=±γ k x +k y ε n ± n B

MODANETALK.OHP (September 9, ) Topological Anomaly and Berry s Phase ( e iθ/ ) Weyl s equation : Neutrino Helicity (σ k) R(θ)= e iθ/ γ(σ ˆk) F sk (r) =ε s (k) F sk (r) F sk (r) = eiϕ k exp(ik r) L R [θ(sk)] ) s R(θ±π)= R(θ) R( π)= R(+π) ε s (k)=sγ k s=± ψ(t )=e iζ ψ() Pseudo spin Berry s phase ( ) T ζ = i dt sk(t) d s θ sk(t) = π e iθ ζ dt Landau levels at ε= [J.W. McClure, PR 4, ζ π 666 (956)] χ= g vg s γ ( e ) ( f(ε) ) δ(ε) dε 6π c h ε ε Absence of backscattering Metallic CN with scatterers Perfect conductor T. Ando & T. Nakanishi, JPSJ 67, 74 (998) Backscattering Page 3

MODANETALK.OHP (September 9, ) Band-Gap Effect [M. Koshino & T. Ando, PRB 8, 9543 ()] Susceptibility (units of -gvgse γ /6πc h Δ).7.6.5.4.3.. Susceptibility Density of States Δ=. -3 - - 3 Energy (units of Δ) Graphene with a gap ( ) Δ γˆk χ(ε)= g vg s e γ γˆk + Δ 6πc γ 3 Density of States (units of g v g s Δ/πγ ) δ(ε) n 4 3 3 4 θ(δ ε ) Δ K K n 4 3 3 4 Hamiltonian at band edge H= hˆk m ± e h m c B m = h Δ ( γ e h ) D(ε) χ P (ε) =+ Pauli m c χ L (ε) = ( e h ) D(ε) Landau 3 m c D(ε) = g sg v m π h Page 4

MODANETALK.OHP (September 9, ) Diamagnetic Susceptibility: Disorder Effects Singular diamagnetism J.W. McClure, Phys. Rev. 4, 666 (956) S.A. Safran & F.J. DiSalvo, PRB, 4889 (979) χ= g sg v γ ( e ) δ(εf ) 6π c h Constant broadening Γ H. Fukuyama, JPSJ 76, 437 (7) Γ δ(ε F ) π(ε F +Γ ) Self-consistent Born approximation M. Koshino and T. Ando, PRB 75, 35333 (7) Susceptibility [(gvgsγ /6πε)(e/ch) ] [ πε ( ε F <ɛ ) δ(ε F ) W ε F Cutoff energy: ε =Wε c e /W ].5..5 W -... W= ε c /ε = 5. χ(ε) D(ε). -. -.5..5. Energy (units of ε ) Sharp peak and long tail 5 4 3 ε F Page 5 Density of States [gvgsε/πγ ]

Density of states: D(ε) = Zero-Mode Anomaly in Conductivity Boltzmann conductivity σ(ε F )=e D D(ε F )= e π h 4W Einstein relation D =vf τ = γ h τ W = n iu 4πγ τ = π h n iu D(ε F ) πw ε F / h τ D(ε F ) u Impurity strength n i Impurity density Independent of ε F (Metal!) σ() for D()= ( e /π h) MODANETALK.OHP (September 9, ) ε Zero-gap semiconductor πγ W (n s,ε F ) ε Singularity at the Dirac point (ε F =) Fermi energy scaling ) ( hωb σ xx (B) =σ xx hω e ε F ( hω ) B = γ/l (ω =) ) σ(ω) =σ = π hw ( hωb ε σ xy (B) =σ F xy e ε ( hω/ε F ) F Dynamical conductivity 4 h Magnetoconductivity Page 6

Density of States (units of gvgsε/πγ )..5 MODANETALK.OHP (September 9, ) Self-Consistent Born Approximation [N.H. Shon and T. Ando, J. Phys. Soc. Jpn. 67, 4 (998)] W = n iu 4πγ W - 5... Density of states ε ε c /ε =5. SCBA Boltzmann ε =Wε c e /W. - - Energy (units of ε ) Conductivity (units of g v g s e /π h) ε : Arbitrary energy ε c : Cutoff energy (width of π band) 35 3 5 5 5 Conductivity Long-Range Scatterers W - 5... σ = g vg s e π h (ε F =) - - Energy (units of ε ) ε c /ε =5. SCBA Boltzmann Page 7

Density of States (units of g s g v ε c /πγ ) Conductivity (units of g s g v e /π h).5..5..5. 5 5 Density of states Conductivity dk c5 W=.5 dk c5 W=.5 SCBA Ideal SCBA..5..5. Energy (units of ε c ) Boltzmann MODANETALK.OHP (September 9, ) Scatterers with Gaussian Potential (Self-Consistent Born Approx.) [M. Noro, M. Koshino & T. Ando JPSJ 79, 9473 ()] Conductivity (units of gsgve /π h) 3..5..5..5 Conductivity at Dirac point dk c. 5.... k c π a v i (r)= u πd exp ( r d )...5..5. W σ = g sg v e π h W = n iu 4πγ Page 8

MODANETALK.OHP (September 9, ) Charged Impurities (Self-Consistent Born Approximation) [M. Noro, M. Koshino & T. Ando, J. Phys. Soc. Jpn. 79, 9473 ()] Density of States (units of g s g v ε c /πγ ).5..5..5 Density of states Thomas-Fermi screening n i...5 σ = g sg v e π h SCBA Ideal...5..5..5 Energy (units of ε c ) Conductivity (units of g s g v e /π h) 5 4 3 σ min > σ n i...5 Conductivity vs n s n c = ε c 4πγ SCBA Boltzmann..5..5. Electron Concentration (units of n c ) Page 9

MODANETALK.OHP (September 9, ) Special Time Reversal Symmetry and Universality Class Real time reversal (K K ): T FK T = σ zfk F K T = σ z FK T = Special time reversal (within K and K ): S ( ) F S = KF K = iσ y = K = Time reversal of P S = P S =K t PK (Fα S,P S Fβ S)=(F β,pf α ) Time reversal Symmetry Matrix α Real T =+Orthogonal Real α Special S = Symplectic Quaternion β None Unitary Complex β Reflection coefficient: r βα =(F β,tf α )=(Fβ S,TF α) rᾱβ Tmatrix: T = V +V E H +i V +V E H +i V E H +i V + Real : rᾱβ =(Fα T,TF β )=(Fβ T,T(F α T ) T )=+(Fβ T,TF α)=+ r βα Special: rᾱβ =(Fα S,TF β )=(Fβ S,T(F α S ) S )= (Fβ S,TF α)= r βα Absence of backward scattering: rᾱα = ( Berry s phase) Presence of perfect channel (Odd channel numbers) Page

MODANETALK.OHP (September 9, ) Metallic Nanotubes: Perfect Channel without Backscattering T. Ando and H. Suzuura, J. Phys. Soc. Jpn. 7, 753 () Time reversal processes: Reflection matrix det(r)= Perfect channel β Δθ β α π Δθ α ε πγ πγ πγ α β β ᾱ r βα = rᾱβ Conductance (units of e /πh) 5. 4. 3... Mean Free Path εl/πγ..5.9]..5.9 W - =. u/γl =.. 5 5 Odd channel number n c = Absence of backscattering Length (units of L) ] 3 5 Channel number n c W = n iu 4πγ Page

MODANETALK.OHP (September 9, ) Symmetry Breaking Effects: Symplectic Unitary [H. Ajiki & T. Ando, JPSJ 65, 55 (996)] Trigonal warping (S) H =α γa ( 4 (ˆk x +iˆk y ) 3 (ˆk x iˆk y ) ) [H. Suzuura & T. Ando, aky/π..5. Lattice distortion PRB 65, 354 ()] H = g (u xx +u yy ) -.5 +g [(u xx u yy )σ x u xy σ y ] -. Deformation potential : g 6 ev Bond-length (b) change: g βγ /4 -.5 β = d ln γ d ln b, γ= 3γ a 3a, b = u xx = u x x + u z R u yy = u y y u xy = ( ux φ Curvature: = a [( φ 4 γ (CN) 3R γ Optical phonon: H = βγ b σ [u A u B ] α < β < 4 ak /π.5...5. -.5 -. -.5..5. y + u y x )e 3iη + γ 8γ e 3iη] ak x /π ) η: Chiral angle R: Radius 3 γ = V ppa π 3 γ = (V pp V σ pp)a π [T. Ando, JPSJ 69, 757 ()] [K. Ishikawa & T. Ando, JPSJ 75, 8473 (6)] K Page

MODANETALK.OHP (September 9, ) Symmetry Breaking Effects: Symplectic Orthogonal Intervalley: K K Short-range scatterers (d/a<) Zone-boundary phonon H. Suzuura and T. Ando JPSJ 77, 4473 (8) Metallic nanotubes Absence of backscattering: Robust Perfect channel : Fragile Quantum corrections H. Suzuura & T. Ando, JPSJ75, 473 (6) Numerical study Localization length Fluctuations (UCF) ε επγ Inverse Localization Length (units of WL - ) - - W - =. u/γl =. φ -3 - - ε(πγ/l) -.5.5.5 3.5 Magnetic Flux (units of φ ) T. Ando, JPSJ 73, 73 (4) Figure T. Ando and K. Akimoto, JPSJ 73, 895 (4) K. Akimoto and T. Ando, JPSJ 73, 94 (4) T. Ando, JPSJ 75, 547 (6) Page 3

MODANETALK.OHP (September 9, ) Quantum Correction, Localization, and Conductance Fluctuations Symmetry Quantum correction Magnetoresistance UCF(α) Orthogonal Δσ< (weak localization) Negative Symplectic Δσ> (anti localization) Positive / Unitary Δσ = No / ΔG αe /h Theory H. Suzuura & T. Ando, PRL 8, 6663 () (6) D.V. Khveshchenko, PRL 97, 368 E. McCann et al., PRL 97, 4685 (6) Experiments S.V. Morozov et al., PRL 97, 68 (6) X.-S. Wu et al., PRL 98, 368 (7) F.V. Tikhonenko et al., PRL, 568 (8) D.-K. Kietal., PRB78, 549 (8) F.V. Tikhonenko et al., PRL 3, 68 (9) Page 4

Bilayer Graphene MODANETALK.OHP (September 9, ) Quantum Hall effect in bilayer graphene K.S. Novoselov et al., Nature 438, 97 (5) K.S. Novoselov et al., Nat. Phys., 77 (6) ARPES [T. Ohta et al., PRL 98, 68 (7)] Effective Hamiltonian in bilayer graphene A B A B γˆk γˆk + Δ H= Δ γˆk γˆk + ( ) H h ˆk m ˆk + m = h Δ γ ˆk ± = ˆk x ±iˆk y Δ=γ.4eV γ γ γ γ γ E. McCann and V.I. Falko, PRL 96, 8685 (6) M. Koshino and T. Ando, PRB 73, 4543 (6) ε ε Tight-binding models S. Latil and L. Henrard, ε n =± hω c n(n+) (n=,,...) PRL 97, 3683 (6) ε F. Guinea et al., Two Landau levels at ε= Susceptibility χ(ε)= g vg s e γ 4π c h ln Δ PRB 73, 4546 (6), [S.A. Safran, PRB 3, 4 (984)] ε Page 5

MODANETALK.OHP (September 9, ) Energy Dispersion and Density of States of Bilayer Graphene T. Ando, J. Phys. Soc. Jpn. 76, 47 (7) Energy (units of Δ) - Δ Δ Monolayer Density of States (units of gvgsδ/πγ ) 4 3 Density of States Electron Density Δ.4eV hω.ev n s = g vg s Δ πγ (.5 3 cm ) 4 3 Electron Density (units of g v g s Δ /πγ ) - - - Wave Vector (units of Δ/γ) Energy (units of Δ) Page 6

MODANETALK.OHP (September 9, ) Multi-Layer Graphene [M. Koshino & T. Ando, PRB 76, 8545 (7)] Exact decomposition of effective Hamiltonian M + Layers = Monolayer + M Bilayers M Layers = Monolayer + M Bilayers Three parameters: γ,γ, γ 3 (trigonal warping) Diamagnetic susceptibility Page 7

MODANETALK.OHP (September 9, ) Dynamical Conductivity of Multi-Layer Graphene (Average ) M. Koshino and T. Ando, Phys. Rev. B 77, 533 (8).9.8 Δ B / γ =. (B ~.T) Re σ xx (units of g v g s e /h).6.7.8 (units of g v g s e /h) Re σ xx.7.6.5.9.8.7.6.5.9.8.7.6.5 Δ B / γ =. (B ~ 4.5T) Δ B / γ =.3 (B ~ T) Γ / Δ.. hω / Δ Δ B / Δ Δ B / Δ.4..4. κ = (L, L) κ = π/ κ = π/3 (L, H) κ = π/4 (L, H) κ = (L, H) hω / Δ Page 8 5 5 B(T) B(T)

Δ B / Δ.4. DOS difference (units of g v g s γ /πh v ) - 5 B(T) MODANETALK.OHP (September 9, ) Local Density of States of Multi-Layer Graphene (Average ) M. Koshino and T. Ando, Phys. Rev. B 77, 533 (8) Δ B / Δ Δ B / Δ.4..4...4.6.8 ε / Δ LDOS difference (units of g v g s γ /πh v ) -.. κ = π/ κ = π/3 κ =..4.6.8 ε / Δ 5 5 DOS (units of g v g s γ /πh v ) B(T) B(T) LDOS (units of g v g s γ /πh v ) 5.5 (κ = ) 5L+ 4L+ 3L+ L+ L+ + DOS + 3+ LDOS (Top layer) (κ = π/). 4+ Γ / Δ. Δ B / Δ =.3 (B ~ T)..4.6.8 ε / Δ Page 9

MODANETALK.OHP (September 9, ) Summary: Zero-Mode Anomalies and Related Physics in Graphene. Introduction Weyl s equation for neutrino Berry s phase and topological anomaly. Zero-mode anomalies Diamagnetic response Conductivity 3. Time reversal and symmetry crossover Special vs real time reversal Symmetry crossover 4. Bilayer and multi-layer graphene Interlayer interaction Hamiltonian decomposition 5. Summary Aussois, September (Tues) GDR 46, Physique Quantique Meśoscopique Centre Paul Langevin, Aussois, France September 3, [5:45 6:3 (35+)] Tsuneya ANDO Collaborators M. Koshino (TITech) M. Noro (TITech) H. Suzuura (Hokkaido Univ) Page