SPONTANEOUS GENERATION OF GEOMETRY IN 4D

Σχετικά έγγραφα
6.1. Dirac Equation. Hamiltonian. Dirac Eq.

Space-Time Symmetries

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Higher Derivative Gravity Theories

Finite Field Problems: Solutions

Matrices and Determinants

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

Homework 8 Model Solution Section

Section 8.3 Trigonometric Equations

Symmetric Stress-Energy Tensor

Every set of first-order formulas is equivalent to an independent set

4.6 Autoregressive Moving Average Model ARMA(1,1)

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

The Simply Typed Lambda Calculus

EE512: Error Control Coding

Bounding Nonsplitting Enumeration Degrees

Approximation of distance between locations on earth given by latitude and longitude

derivation of the Laplacian from rectangular to spherical coordinates

Inverse trigonometric functions & General Solution of Trigonometric Equations

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)

Reminders: linear functions

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

= {{D α, D α }, D α }. = [D α, 4iσ µ α α D α µ ] = 4iσ µ α α [Dα, D α ] µ.

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Solutions to the Schrodinger equation atomic orbitals. Ψ 1 s Ψ 2 s Ψ 2 px Ψ 2 py Ψ 2 pz

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

Other Test Constructions: Likelihood Ratio & Bayes Tests

Concrete Mathematics Exercises from 30 September 2016

Example Sheet 3 Solutions

Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Partial Differential Equations in Biology The boundary element method. March 26, 2013

C.S. 430 Assignment 6, Sample Solutions

Second Order Partial Differential Equations

Derivation of Optical-Bloch Equations

General 2 2 PT -Symmetric Matrices and Jordan Blocks 1

12. Radon-Nikodym Theorem

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

UV fixed-point structure of the 3d Thirring model

The challenges of non-stable predicates

Srednicki Chapter 55

Partial Trace and Partial Transpose

Fractional Colorings and Zykov Products of graphs

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

Section 9.2 Polar Equations and Graphs

Dr. D. Dinev, Department of Structural Mechanics, UACEG

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

( y) Partial Differential Equations

Calculating the propagation delay of coaxial cable

Forced Pendulum Numerical approach

Nonminimal derivative coupling scalar-tensor theories: odd-parity perturbations and black hole stability

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Homework 3 Solutions

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation

Exercise 1.1. Verify that if we apply GS to the coordinate basis Gauss form ds 2 = E(u, v)du 2 + 2F (u, v)dudv + G(u, v)dv 2

Geodesic Equations for the Wormhole Metric

ST5224: Advanced Statistical Theory II

Tridiagonal matrices. Gérard MEURANT. October, 2008

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

6.3 Forecasting ARMA processes

An Inventory of Continuous Distributions

On a four-dimensional hyperbolic manifold with finite volume

Homework 3 Solutions

Section 7.6 Double and Half Angle Formulas

Solutions to Exercise Sheet 5

Η αλληλεπίδραση ανάμεσα στην καθημερινή γλώσσα και την επιστημονική ορολογία: παράδειγμα από το πεδίο της Κοσμολογίας

Commutative Monoids in Intuitionistic Fuzzy Sets

Non-Gaussianity from Lifshitz Scalar

Congruence Classes of Invertible Matrices of Order 3 over F 2

5. Choice under Uncertainty

상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님

Differential equations

The Probabilistic Method - Probabilistic Techniques. Lecture 7: The Janson Inequality

On the Galois Group of Linear Difference-Differential Equations

D Alembert s Solution to the Wave Equation

2 Composition. Invertible Mappings

From the finite to the transfinite: Λµ-terms and streams

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

TMA4115 Matematikk 3

Solution Series 9. i=1 x i and i=1 x i.

The Standard Model. Antonio Pich. IFIC, CSIC Univ. Valencia

Math 6 SL Probability Distributions Practice Test Mark Scheme

Revisiting the S-matrix approach to the open superstring low energy eective lagrangian

Μηχανική Μάθηση Hypothesis Testing

PARTIAL NOTES for 6.1 Trigonometric Identities

A Hierarchy of Theta Bodies for Polynomial Systems

Tutorial problem set 6,

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006

( ) 2 and compare to M.

Right Rear Door. Let's now finish the door hinge saga with the right rear door

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

α & β spatial orbitals in

Uniform Convergence of Fourier Series Michael Taylor

Transcript:

SPONTANEOUS GENERATION OF GEOMETRY IN 4D Dani Puigdomènch Dual year Russia-Spain: Particle Physics, Nuclear Physics and Astroparticle Physics 10/11/11 Based on arxiv: 1004.3664 and wor on progress. by J. Alfaro, D. Espriu, D.P.

Outline Motivation The model: - Structure - Equations of motion - Possible counterterms Perturbative calculation Effective action and universal constants Conclusions

Motivation The chiral lagrangian L = f πtr µ U µ U + α 1 Tr µ U µ U ν U ν U + α Tr µ U ν U µ U ν U +... U exp i π/f π, π π a τ a / L = O(p )+O(p 4 )+O(p 6 )+... L QCD = i ψ Dψ = i ψ L Dψ L + i ψ R Dψ R SU() L SU() R SU() V

What does gravity have to do with chiral theory? L = M P gr + Lmatter L = M P gr + α1 gr + α g(rµν ) + α 3 g(rµναβ ) +... - It is a non-renormalizable theory - Most relevant operator has two derivatives (ignoring the cosmological constant) - It has a dimensionfull constant ( M P ) - It is non linear - It describes massless quanta - Which is the equivalent of here? L QCD - This question was addressed in D in arxiv: 1004.3664

The Model Structure - No a priori notion of metric should exist, only an affine connection defining parallel transport of tangent vectors manifold. - The lagrangian should be manifestly independent of the field g µν (x). - The spontaneous breaing of a suitable global symmetry should be triggered by a fermion condensate. - The graviton field should appear as the Goldstone boson of that broen global symmetry. - Is the Weinberg-Witten theorem an obstruction? No. v a on a

- Symmetry pattern and Lagrangian: SO(D) GL(D) (Global) L = i ψ a γ a µ χ µ + i χ µ γ a µ ψ a µ χ µ = µ χ µ + ω ab µ σ ab χ µ L = i ψ a γ a µ χ µ + i χ µ γ a µ ψ a + ib a µ( ψ a χ µ + χ µ ψ a )+c det(b a µ) if < ψ a χ µ + χ µ ψ a >= 0 SO(D) GL(D) SO(D)

Equations of motion L = i ψ a γ a µ χ µ + i χ µ γ a µ ψ a + ib a µ( ψ a χ µ + χ µ ψ a )+c det(b a µ) - Varying w.r.t B a µ < ψ a χ µ + χ µ ψ a >= ic 1 (D 1)! aa...a D µµ...µ D B a µ...b a D µd =0 Bµ a = 0 - Vacuum of the theory (gap equation for wµ ab =0) V eff = c det(b a µ) d D c D D! aa...a D µµ...µ D B a µ...b a D µd iδ µ a tr (π) D tr(log(γa µ + ib a µ)) If there is spontaneous breaing. B a µ = Me a µ; M = 0 d D (π) D (γa µ + ib a µ) 1 =0 e a µ can be interpreted as the vierbein geometry is generated!

- All vacua are equivalent: Bµ a = Mδµ a - In 4D: cδ a µ M 3 + 8 d D M M δµ a (π) D + M =0 cδ a µ M 3 M 3 π δµ a log M 4πµ γ +1 =0 M = µ e π c(µ) ; µ dc dµ = 1 π - Propagator in the broen phase: 1 () i j = i δ i M j γi ( im) j + M

General perturbation w ab µ = 0 B a µ = Me σ 1 (x) 0 0 0 0 Me σ (x) 0 0 0 0 Me σ 3 (x) 0 0 0 0 Me σ 4 (x) Possible counterterms and their e.o.m. S D = 1 B a 4! µbνb b ρb c σ d abcd µνρσ d 4 x S R = 1 R [µν]ab B a ρbσ b µνρσ d 4 x where R [µν]ab =[ µac, νcb ]. There is a third possible counterterm, the Gauss-Bonet term, but in 4D it is topological and we do not expect to see it in the perturbative calculation.

Conformally flat vierbein: B a µ = Me a µ = Mδ a µe σ ; gµν = e σ 0 0 0 0 e σ 0 0 0 0 e σ 0 0 0 0 e σ 1 R [µν]abb a ρb b σ µνρσ = 1 ( µw µν ν ν w µν µ + w µc µ w cν w βγ α S D (on shell) =M 4 S R (on shell) =M ν w ν µc w cν µ )e σ M = 1 ( β σδ γ α γ σδ β α) w ab µ = e a ν µ E νb + e a νe ρb Γ ν µρ =M d 4 x g = M 4 d 4 xe σ d 4 x gr = M d 4 x 3 σ 1 µσ µ σ d 4 x 3 (σ)(1 σ + σ σ3 6 +...) e σ

S D (on shell) =M 4 S R (on shell) =M d 4 x g = M 4 d 4 xe i σ i d 4 x gr = M d 4 x 3σ 4 + σ 4 + 1σ 4 + 4σ 3 + σ 3 + 1σ 3 + 4σ + 3σ + 1σ + 4σ 1 + 3σ 1 + σ 1 1 ( 3σ 1 3 σ + 4 σ 1 4 σ + σ 1 σ 3 + 4 σ 1 4 σ 3 + σ 1 σ 4 + 3 σ 1 3 σ 4 + 1 σ 1 σ 3 + 4 σ 4 σ 3 + 1 σ 1 σ 4 + 3 σ 3 σ 4 + 1 σ 3 1 σ 4 + σ 3 σ 4 ) +O(σ 3 )

The Weinberg-Witten theorem Let p and p be one-particle, spin- massless states with the same helicity ±. If p T ab p are Lorentz covariant, then T µ ν lim p p p T ab p =0 = i ψ µ γ a ν ψ a + i ψ a γ a ν ψ µ δ µ ν L Our stress-energy tensor has no tangent indices. It is not a ran- Lorentz covariant tensor. In the broen phase, a vierbein is generated and the two indices can be related. Then one is in the same situation of General Relativity.

The model in a nutshell L =i ψ a γ a µ χ µ + i χ µ γ a µ ψ a + ib a µ( ψ a χ µ + χ µ ψ a )+c det(b a µ)+a 1 R [µν]abb a ρb b σ µνρσ a) < ψ a χ µ + χ µ ψ a > B a µ b) w ab µ =0 B a µ = Mδ a µ c) w ab µ = 0 B a µ = Me a µ = Me σ 1 (x) 0 0 0 0 Me σ (x) 0 0 0 0 Me σ 3 (x) 0 0 0 0 Me σ 4 (x) d) w µab = 1 (δ µb a σ µ δ µa b σ µ ) w ab µ = e a ν µ E νb + e a νe ρb Γ ν µρ

Perturbative Calculation Feynman rules σ i i 1 Mδi µ σ i i 1 8 Mδi µ σ i σ i σ i i 1 48 Mδi µ σ i w bc µ iγ a σ bc = γa 4 [γ b, γ c ]

+ p + p σ l + σ l = = 4 j=1 4 j=1 4 l=1 4 l =1 l = j σ l!! Tr σ l M 4 16π + σ l (p j + p l )M 48π 4 + j=1 + M 4 3π + M p 3π d D (π) D imδl µ 1 () µ j imδj ν 1 ( + p) ν l M log 4πµ M log 4πµ M p j 3π γ + 3 γ 1 σ l p M + O(p 4 ). 48π M log 4πµ γ 1 3 Correspond to gr expanded to second order in the fields

+ + + + + + +

The divergent parts M 4 e 8π i σ i log M µ For the conformally flat metric the previous diagrams add up to the closed expression (including the finite contributions): M 4 e σ 8π log M e σ 4πµ γ + 3

+ p + p w µ + w µ = 0; w µ + w µ = 0 + p + p w µ w ν + w µ w ν =! d D Tr! (π) D iγa σ bc 1 () µ d iγd σ ef 1 ( + p) ν a M = log 4πµ γ + 1 M 4 4π D µνbcef + M 16π E µνbcef + 1 F µνbcef (p )+O(p ) D µνbcef wµ bc wν ef =4wµ νb w ν µb w be µ w be µ ; E µνbcef w bc µ w ef ν =0 D µνbcef w bc µ w ef ν (on shell) = 0; F µνbcef w bc µ w ef ν (on shell) =0

Effective action for a conformally flat metric S eff = d 4 x c M 4 e σ + M 4 e σ 8π log M e σ µ + A σe σ M + σe σ M 3π log M e σ µ Both for a conformally flat and a general diagonal perturbation: S eff = d 4 x M P 3π = Λ M P 3π = c (µ)+ 1 M 8π log µ M 4 g + A (µ)+ 1 c (µ)+ 1 8π log M 48π log µ M µ M 4 M Expansion parameter of the effective theory: A (µ)+ 1 M 48π log µ M gr µ da dµ = 1 48π µ dc dµ = 1 8π p M p M if perturbative breadown +...

Conclusions It is possible to construct a 4D model where a spontaneous symmetry breaing generates the metric degrees of freedom. No WW theorem obstruction. The number of local and covariant counterterms before the breaing is very limited. This constrains the amount of divergences from the quantum corrections. When the e.o.m are used: - The low energy effective theory obtained corresponds to GR with a Cosmological term plus higher order operators. - It is renormalizable. There are two free parameters one can adjust to fit the physical values of the parameters of nature.

THANK YOU