5-1. Industrial Vision. Machine Vision Systems : Image Acquisition Image processing Analysis/Exploitation

Σχετικά έγγραφα
Topic 4 Image Segmentation

ECE 468: Digital Image Processing. Lecture 8

ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΕΙΚΟΝΑΣ

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

Spring 2010: Lecture 3. Ashutosh Saxena. Ashutosh Saxena

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 24/3/2007

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

Areas and Lengths in Polar Coordinates

Section 9.2 Polar Equations and Graphs

Reminders: linear functions

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint

PARTIAL NOTES for 6.1 Trigonometric Identities

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Trigonometric Formula Sheet

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET

MathCity.org Merging man and maths

4.6 Autoregressive Moving Average Model ARMA(1,1)

Section 8.3 Trigonometric Equations

Approximation of distance between locations on earth given by latitude and longitude

Homework 8 Model Solution Section

ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

Areas and Lengths in Polar Coordinates

Math 6 SL Probability Distributions Practice Test Mark Scheme

ΑΝΤΩΝΙΟΣ ΛΥΡΩΝΗΣ ΧΑΝΙΑ Σκοπός Εργασίας Εντοπισμός πλίνθων σε σειρά ορθοφωτογραφιών και εξαγωγή δισδιάστατης αποτύπωσης των τειχών.

Section 8.2 Graphs of Polar Equations

Πρόβλημα 1: Αναζήτηση Ελάχιστης/Μέγιστης Τιμής

Review Test 3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Digital Image Processing

CRASH COURSE IN PRECALCULUS

Spherical Coordinates

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

Other Test Constructions: Likelihood Ratio & Bayes Tests

Second Order RLC Filters

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

Numerical Analysis FMN011

Rectangular Polar Parametric

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation

Ψηφιακή Επεξεργασία Εικόνας

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

Homework 3 Solutions

Matrices and Determinants

Detection and Recognition of Traffic Signal Using Machine Learning

Section 7.6 Double and Half Angle Formulas

If we restrict the domain of y = sin x to [ π 2, π 2

D Alembert s Solution to the Wave Equation

CORDIC Background (2A)

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006

Answer sheet: Third Midterm for Math 2339

Variational Wavefunction for the Helium Atom

The challenges of non-stable predicates

Statistical Inference I Locally most powerful tests

MATHEMATICS. 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

References. Chapter 10 The Hough and Distance Transforms

No. 7 Modular Machine Tool & Automatic Manufacturing Technique. Jul TH166 TG659 A

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is

Ψηφιακή Επεξεργασία Εικόνας

ΚΥΠΡΙΑΚΟΣ ΣΥΝΔΕΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY 21 ος ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ Δεύτερος Γύρος - 30 Μαρτίου 2011

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

ΑΥΤΟΜΑΤΟΠΟΙΗΣΗ ΜΟΝΑΔΑΣ ΘΡΑΥΣΤΗΡΑ ΜΕ ΧΡΗΣΗ P.L.C. AUTOMATION OF A CRUSHER MODULE USING P.L.C.

CORDIC Background (4A)

Partial Trace and Partial Transpose

Written Examination. Antennas and Propagation (AA ) April 26, 2017.

Appendix A. Curvilinear coordinates. A.1 Lamé coefficients. Consider set of equations. ξ i = ξ i (x 1,x 2,x 3 ), i = 1,2,3

Inverse trigonometric functions & General Solution of Trigonometric Equations

1. If log x 2 y 2 = a, then dy / dx = x 2 + y 2 1] xy 2] y / x. 3] x / y 4] none of these

Differential equations

Integrals in cylindrical, spherical coordinates (Sect. 15.7)

Radiation Stress Concerned with the force (or momentum flux) exerted on the right hand side of a plane by water on the left hand side of the plane.

Example Sheet 3 Solutions

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΓΙΚΟ ΙΔΡΥΜΑ ΠΕΙΡΑΙΑ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ. Τμήμα Αυτοματισμού. Σχεδίαση και κατασκευή συστήματος. ,, μηχανικης ορασης

2 Composition. Invertible Mappings

EE512: Error Control Coding

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

derivation of the Laplacian from rectangular to spherical coordinates

Parametrized Surfaces

w o = R 1 p. (1) R = p =. = 1

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 1 ΑΠΕΙΚΟΝΙΣΤΙΚΗ ΜΙΚΡΟΣΚΟΠΙΑ

Statistics 104: Quantitative Methods for Economics Formula and Theorem Review

Math221: HW# 1 solutions

ΙΑΤΡΙΚΗ ΑΠΕΙΚΟΝΙΣΗ & ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΙΑΤΡΙΚΗΣ ΕΙΚΟΝΑΣ

Second Order Partial Differential Equations

Instruction Execution Times

Μικροηλεκτρονική - VLSI

11.4 Graphing in Polar Coordinates Polar Symmetries

New bounds for spherical two-distance sets and equiangular lines

Τελική Εξέταση =1 = 0. a b c. Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών. HMY 626 Επεξεργασία Εικόνας

ADVANCES IN DIGITAL AND COMPUTER VISION

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems

5. Choice under Uncertainty

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

Supplementary Materials for Evolutionary Multiobjective Optimization Based Multimodal Optimization: Fitness Landscape Approximation and Peak Detection

ADVANCES IN DIGITAL AND COMPUTER VISION

Gaussian related distributions

Ψηφιακή Επεξεργασία Εικόνας

BandPass (4A) Young Won Lim 1/11/14

Transcript:

5 Industrial Vision Machine Vision Systems : Image Acquisition Image processing Analysis/Exploitation

5- Image processing Y (colomns) 35 3 38 3 5 35 69 8 3 38 3 3 69 79 39 3 3 33 9 37 6 77 X (rows) 7 38 3 39 3 8 56 53 58 9 5 55 88 3 8 8 65 73 55 5 5

5-3 Image processing Neighborhood and connexity y (x,y) (x,y) 38 63 7 55 f(x,y) 63 7 7 6 (x+,y) x 8-neighbors (x,y+) -neighbors

5- Image processing INPUT 3 3 5 5 5 5 5 5 5 5 5 5 5 5 Preprocessing (image enhancement) 5 5 5 5 5 5 5 5 5 5 Parameters extractioin 5 5 5 5 Segmentation 5 5 5 5 5 5 5 5 5 5

5-5 Image processing Image processing : Preprocessing (basic) Linear Filtering Non Linear Filtering

5-6 Basic Transformation Géométrical Vertical symetry Horizontal symetry Rotation - 9

5-7 Basic Transformation Arithmetic Input Image : E(x,y) Output Image : S(x,y) Input + Input -

5-8 Basic Transformation Arithmetic Input Image : E(x,y) Ouput Image : S(x,y) Input X,5 Input X,6

5-9 Basic Transformation Histogram modification H()= (,) y x 3 3 Histogram

5 Basic Transformation Histogram modification H()= (,) y x 3 3 Histogram

5 Basic Transformation Histogram modification H()= (,) y x 3 3 Histogram

5 Basic Transformation Histogram modification H()=3 (,) y x 3 3 Histogram

53 Basic Transformation Histogram modification H()= (,) y x 3 3 Histogram

5 Basic Transformation Histogram modification H()=5 (,) y x 3 3 Histogram

55 Basic Transformation Histogram modification H()=6 (,) y x 3 3 Histogram

56 Basic Transformation Histogram modification h() = 6 h() = 3 (,) x 3 3 Histogram h() = h(3) = h() = y PDF

57 Basic Transformation : Dynamic expansion 5 5 35 3 5 9 8 9 8 76 76 6 8 96 8 6 8 3 6 5 5 Niveau de Gris 8 6 Niveau de Gris 6 8 96 8 6 8 3 6 h(i) S(x,y) : [Smin, Smax] h(i) E(x,y) : [Emin, Emax] Histogram

58 Basic Transformation Histogram : Equalisation Flatten the histogram, «equiprobability of all level»

59 Basic Transformation Inversion Input Image : E(x,y) Output Image : S(x,y) S x, y =55 E x, y

5- Basic Transformation Thresholding Input Image : E(x,y) [, 55] Output Image : S(x,y) If E x, y T S x,y Else S x,y S(x,y) : [, ] T = 8

5- Basic Transformation Logical Operators A A A NOT A B B A AND B A OR B

5- Linear Filtering Convolution = Weighted sum over the Neighboring pixels n Ps x, y = m k i, j Pe x i, y j j= n i= m Kernel k : [ 3 x 3 ] Ps x, y = k(,) k(,) k(,) k(,) k(,) k(,) k(,) k(,) k i, j Pe x i, y j j= i= k(,) 5 Pe(x,y) Pe(x,y) Pe(x+,y) Pe(x,y) Pe(x,y) Pe(x+,y) Pe(x,y+) Pe(x,y+) Pe(x+,y+) 85 8 8

5-3 Linear Filtering Kernal k : [ 3 x 3 ] Ps x, y = k i, j Pe x i, y j j= i= Switch the kernel coefficient around Center k(,) k(,) k(,) k(,) k(,) k(,) k(,) k(,) k(,) k(,) 5 Pe(x,y) Pe(x,y) Pe(x+,y) Pe(x,y) Pe(x,y) Pe(x+,y) Pe(x,y+) Pe(x,y+) Pe(x+,y+) 85 8 Ps(x,y) = k(,) Pe(x+,y+) + k(,) Pe(x+,y) + k(,) Pe(x+,y+) +... 8

5- Linear Filtering Noyau k : [ 3 x 3 ] Ps x, y = k i, j Pe x i, y j j= i= k(,) k(,) k(,) k(,) k(,) k(,) k(,) k(,) k(,) 5 Pe(x,y) Pe(x,y) Pe(x+,y) Pe(x,y) Pe(x,y) Pe(x+,y) Pe(x,y+) Pe(x,y+) Pe(x+,y+) 85 8 Ps(x,y) = k(,) Pe(x+,y+) + k(,) Pe(x+,y) + k(,) Pe(x+,y) k(,) Pe(x,y+) +... + k(,) Pe(x,y) + k(,) Pe(x,y) 8

5-5 Linear Filtering Noyau k : [ 3 x 3 ] Ps x, y = k i, j Pe x i, y j j= i= k(,) k(,) k(,) k(,) k(,) k(,) k(,) k(,) k(,) 5 Pe(x,y) Pe(x,y) Pe(x+,y) Pe(x,y) Pe(x,y) Pe(x+,y) Pe(x,y+) Pe(x,y+) Pe(x+,y+) 85 8 Ps(x,y) = k(,) Pe(x+,y+) + k(,) Pe(x+,y) + k(,) Pe(x+,y) k(,) Pe(x,y+) k(,) Pe(x,y+) + k(,) Pe(x,y) + k(,) Pe(x,y) + k(,) Pe(x,y) + k(,) Pe(x,y) 8

5-6 Linear Filtering Example : Symetric Kernel around Center k(,) Ps(x,y) = x 5 7 68 63 - - 69 6 55 58 5 5 - x 55 x 63 x 5 + x 6 x 68 x 58 - x 69 x 7 Ps(x,y) = 5

5-7 Linear Filtering Example : Laplacien [3 x 3] (edge detector) 9 8 =

5-8 Non Linear Filtering Order Filter, Median Filter = Order the neighboring pixels and take the median one [3x3] 3 3 5 8 7 5 5 7 36 3 8 8 57 8 8 5 5 3 36 8 57

5-9 Non Linear Filtering Median Filter, efficient for impulse noise

5-3 Non Linear Filtering Mathématical Morphology Non linear calculation on the neighborhood Can be used on binary or Gray level images Binary image application

5-3 Non Linear Filtering Erosion A B

5-3 Translation of A by x : x A = { a = (a, a ) / a, a Z } ( A) x = { c = a + x / a A} Complement of A : A = { x / x A} c

5-33 Returning of A (/from an origine): A = { a = (a, a ) / a, a Z } Aˆ = { c = a / a A}

5-3 Difference between A and B : A = { a = (a, a ) / a, a Z } A B = { b = (b, b ) / b, b Z } A B = { x Z / x A et x B} B

5-35 Erosion of A by B : A B = { x Z /( B ) x A} A B

5-36 Dilation of A by B : { A B = x Z /( Bˆ ) x A φ A B } B the structuring element

5-37 Opening of A by B : A B = ( A B) B A B

5-38 Closing of A by B : A B = ( A B) B A B

5-39 Dilation B = square x 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 Erosion 5 5

5- Opening B = square x 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 Closing 5 5

5- Non Linear Filtering Erosion Erosion [7x7]

5- Non Linear Filtering Dilation

5-3 Non Linear Filtering Opening Erosion then Dilation Erosion [ 5 x 5 ] Dilation [ 5 x 5 ] Opening [ 5 x 5 ]

5- Non Linear Filtering Closing Dilation then Erosion Dilation [ 7 x 7 ] Erosion [ 7 x 7 ] closing [ 7 x 7 ]

5-5 borders Detection of Isolated points Detection on line Detection of contours (edges) «border» (edges) detection

5-6 Detection of Isolated points R = w i f i = w f + w f +... + w n f n (Image,Kernel) and test R > S Convolution Image 5 5 5 5 5 5 3 3 35 35 5 5 3 5 6 3 8 5 6

5-7 Line detection (horizontal) 9 (vertical) 5-5

5-8 5 5 5 (horizontal) 5 5 5 5 5 5 5 9 (vertical) 5 5 5 5 5 5 5 5

5-9 Edge detection First derivative Profil Seconde derivative

5-5 f = G + G x Gradients Operator f G x x f = = f G y y y Module(s) f = G x + G y G y Argument arg( f ) = tan G x Example (image) 58 5 7 3-8 +7-3 -

5-5 R = wi f i = f5 f9 R = wi f i = f 6 f8 Simplest operator f = f 5 f 8 + f 5 f 6 Roberts Operator f = f 5 f 9 + f 6 f 8

5-5 Prewitt Operator horizontal vertical R = w i f i = ( f 7 f ) + ( f 8 f ) + ( f 9 f 3 ) R = w i f i = ( f 3 f ) + ( f 6 f ) + ( f 9 f 7 )

5-53 Sobel Operator - - horizontal R = w i f i = ( f 7 f ) + ( f 8 f ) + ( f 9 f 3 ) vertical

5-5 - - - - - - - - - - - - -76-73 -7 - - - +3 +6 +3 9 9 3 9 9 3 86 9 5 5 5 5 3 3 3 3 Sobel operator - -33-69 -68-9

5-55 Laplacien Operator (seconde derivative) f f f = + x y f ( x, y ) = xy + sin( x ) 3 /x f = sin( x ) + 6 xy /y f = [ y 3 + cos( x ) 3 xy ] /x /y /x sin( x ) 3 y = Hf 3y 6 xy /y

5-56 Laplacien operator Noise sensitive Double ligne generation R = wi f i = f5 ( f + f + f 6 + f8 ) crossing

Liverpool RGB 5-57 Sobel 5 5 5 Liverpool 56 gris 5 5 5 5 5 5 5 Laplacien 5 5 5 5 5

5-58 Border detection Lines, contours, points Borders Local method Hough Transform

5-59 Border detection local Method f ( x, y ) f ( x ', y ' ) < S Module a ( x, y ) a ( x ', y ' ) < S Angle

5-6 Border detection Hough Transform Image Plane Parameters plane y = ax + b b = xa + y y b a x a and b fixed x and y fixed

5-6 b a

5-6 ALGORITHM case (u,v) => accumulator bmin amin b a) Choose a [a min a max ] b) Calculate b = xa + y c) Calculate cell (u,v) d) A(u,v)= A(u,v)+ amax bmax a ) For each cell (u,v), if A(u,v)>T, this cell represents a line

5-63 Problem b = xa + y y = ax + b y b a= a= x a= a= a= a= a x and y fixed Impossible for all a values

5-6 x cos(θ ) + y sin(θ ) = ρ y = ax + b ρmin y ρ θ x π/ π/ ρmax ρ Parameter space θ

5-65 x cos(θ ) + y sin(θ ) = ρ y ρ θ θ x ρ Image space Parameter space

5-66 5 5 5 3 35 5 5 5 3 5 5 5 5 3 35 5 5 5 3 5 5 3 35 5 5 5 3

5-67 Regions Finding Threshold Pixels merging Split and Merge

5-68 Formulation Image = Region R n R = Ri i = Ri is connexe Ri R j = φ for i j P ( Ri ) = True P ( Ri R j ) = False for i j

5-69 Threshold if g ( x, y ) = if f ( x, y) T f ( x, y ) > T with T = T [ ( x, y ), p( x, y ), f ] Image Pixel local property

5-7 Global Threshold T = T[ f ] Local Threshold T = T [ ( x, y ), p( x, y ), f ] T = T [ p( x, y ), f ]

5-7 5 Global Threshold 5 T = 6 5 3 35 5 5 55 5 3 5 6 7 5 5 5 T = 7 5 3 5 35 3 35 5 5 55 5 3 5 6 7 5 55 3 5 6 7 5 5 5 T = 8 3 35 5 5 55 3 5 6 7

5-7 6 5 Use the histogram 3 5 5 5 5 5 T = 5 5 3 35 5 5 5 5 55 3 5 6 7 5 3 35 5 5 55 3 5 6 7

5-73 Local Threshold T = T [ p( x, y ), f ( x, y )] T is the mean value of 5x5 window Centered on pixel (x,y) 5 5 5 5 5 5 3 3 35 35 5 5 5 5 55 55 3 5 6 7 3 5 6 7

5-7 Pixel growing Choice for a «seed» Growing if neighbooring Pixels veriy the property

5-75 Split and Merge Quadtree I Split : Split until the property is true In the sub-image Merge : Merge adjacent regions For which «grouping» verifyes the property

5-76 Property : Same gray level