References. Chapter 10 The Hough and Distance Transforms
|
|
- Ανδώνης Ζάππας
- 6 χρόνια πριν
- Προβολές:
Transcript
1 References Chapter 10 The Hough and Distance Transforms An Introduction to Digital Image Processing with MATLAB
2 Μετασχηματισμός HOUGH ΤΕΧΝΗΤΗ Kostas Marias ΟΡΑΣΗ Advances ΤΠ70Υ2 in Digital Imaging and Κώστας Computer Μαριάς, Αναπληρωτής Vision Καθηγητής Επεξεργασίας Εικόνας
3 Topics of today s lecture The idea of a transformation able to detect lines in images Example of Hough transform More advanced Hough Transform : explanation and example Matlab code for Hough transform Analytical example (find strongest line in cameraman image) Lab work with exercise
4 Η έννοια του μετασχηματισμού Όπως έχουμε ξανασυναντήσει και σε στην ΨΕΕ αλλά και σε άλλες ενότητες του μαθήματος ο μετασχηματισμός εικόνας είναι μια διαδικασία η οποία μεταβάλλει τις τιμές (ή/και τις θέσεις) των εικονοστοιχείων δημιουργώντας μια καινούρια εικόνα.
5 Μετασχηματισμός HOUGH Ο Μετασχηματισμός HOUGH χρησιμοποιείτε για να βρίσκουμε γραμμές στις εικόνες αλλά μπορεί να τροποποιηθεί με εύκολο τρόπο ώστε να μπορούμε να βρίσκουμε και άλλα σχήματα π.χ. κύκλους. Η ιδέα βασίζεται στα παρακάτω στάδια που θα εξηγήσουμε αναλυτικά.
6 Μετασχηματισμός HOUGH Ας ξεκινήσουμε για ευκολία με δυαδικές εικόνες (δηλαδή δύο μονο τιμές: 1 άσπρο, 0 μαύρο pixel). Αν σκεφτούμε μια γενική ευθεία που περνάει από τη θέση (x,y) της εικόνας θα μπορούσαμε να την περιγράψουμε ως y=ax+b. Αν συσσωρεύσουμε και παραστήσουμε γραφικά σε ένα πίνακα όλα τα ζεύγη (a,b) που ικανοποιούν αυτήν την εξίσωση, ο πίνακας (z,b) θα είναι πίνακας μετασχηματισμού HOUGH.
7 Μετασχηματισμός HOUGH Για παράδειγμα το εικονοστοιχείο (x,y)= (1,1) οδηγεί στην εξίσωση 1=a 1+b-> b=1-a. Στο χώρο του μετασχηματισμού (a,b) η ευθεία b=1-a αντιστοιχεί στα όλα τα σημεία που σχετίζονται με το (1,1). (x,y)= (1,1) b=1-a x=1;y=1; plot(x,y,'ro') hold on xlabel('x');ylabel('y') a=0:2;b=1-a; plot(a,b,'g-') hold on xlabel('a');ylabel('b')
8 Μετασχηματισμός HOUGH Με αυτόν τον τρόπο κάθε σημείο στην εικόνα μετασχηματίζεται σε μια ευθεία στο πεδίο του μετασχηματισμού (άξονες a,b). Η λογική λοιπόν του μετασχηματισμού είναι να μετατρέψουμε όλα τα σημεία της εικόνας στο πεδίο (a,b) και μετα τα σημεία που διασταυρώνονται πιο έντονα στο πεδίο (a,b) θα αντιστοιχούν στις «εντονότερες» ευθείες της αρχικής εικόνας! (x,y)= (1,1) b=1-a
9 Βρίσκοντας τα μέγιστα σημεία διαστάυρωσης ευθειών Αν για παράδειγμα έχουμε μια εικόνα που αποτελείται από τα σημεία (1,0), (1,1), (2,1), (4,1), (3,2) θα πρέπει να μετασχηματίσουμε στο πεδίο (a,b): b=-a x=1, y=0 y=ax+b b=-a+1 b=-2*a+1 b=-4*a+1 b=-3*a+2 Στις επόμενες διαφάνειες παραστούμε γραφικά αυτές τις ευθείες και βρίσκουμε με τον κέρσορα της matlab τα 2 σημεία μέγιστης τομής!
10 b a=-5:5; b1=-a; b2=-a+1; b3=-2*a+1; b4=-4*a+1; b5=-3*a+2; plot(a,b1,a,b2,a,b3,a,b4,a,b5) (a,b)= (1,-1) a
11 b (a,b)= (0,1) a
12 Επιστρέφοντας στην εικόνα για να βρούμε τις ευθείες Όπως είδαμε τα μέγιστα σημεία διασταύρωσηε είναι το (a,b)= (0,1) -> απ' όπου θέτοντας y=ax+b-> y= 1 (a,b)=(1,-1) -> απ' όπου θέτοντας y=ax+b-> y=x-1 Στην επόμενη διαφάνεια βλέπουμε ότι όντως βρήκαμε τις ευθείες που «περνάνε» από τα δεδομένα μας με επιτυχία! Κώδικας Matlab z=[1,1,2,4,3]; w=[0,1,1,1,2]; plot(z,w,'ro'), axis ([ ]) hold on x=-2:5 y1=[ ];y2=x-1; plot(x,y1,'g',x,y2,'b')
13 Επιστρέφοντας στην εικόνα για να βρούμε τις ευθείες y y (3,2) (1,1) (2,1) (4,1) y= 1 (1,0) x x
14 Επιστρέφοντας στην εικόνα για να βρούμε τις ευθείες Παρατηρούμε ότι πραγματικά βρήκαμε με τον μετασχηματισμό Hough τις ευθείες που περνούν από τα δεδομένα της εικόνας μας!
15 Προβλήματα με τον Μετασχηματισμό Hough Επειδή μετασχηματίζει τα εικονοστοιχεία σε ευθείες είναι αδύνατο να εντοπίσει κάθετες ευθείες μιας και αυτές θα είχαν άπειρη κλίση! Δηλαδή στην ευθεία y=ax+b, το a που αντιπροσωπεύει την κλίση θα έπρεπε να είναι άπειρο! Όποτε πρέπει να βρεθεί ένας πιο κατάλληλος μετασχηματισμός και αυτός γίνεται εισάγοντας την ελάχιστη απόσταση της ευθείας από την αρχή των αξόνων r, και την γωνία που σχηματίζεται ανάμεσα στο r και τον άξονα x.
16 Προβλήματα με τον Μετασχηματισμό Hough H ελάχιστη απόσταση της ευθείας που ψάχνουμε από την αρχή των αξόνων r, και η γωνία θ που σχηματίζεται ανάμεσα στο r και τον άξονα x. (x,y) Για κάθε εικονοστοιχείο της εικόνας πρέπει τώρα να υπολογίσουμε τον μετασχηματισμό: r = xcosθ + ysinθ Προφανώς θα πρέπει να διακριτοποιήσουμε τις γωνίες για να μπορέσουμε να βρούμε τα r για κάθε pixel της εικόνας. Αναλυτικά ο αλγόριθμος στην επόμενη διαφάνεια.
17 Αλγόριθμος δεύτερου Hough μετασχηματισμού Αποφασίζουμε τα όρια τιμών για r,θ που θα επιστρέψουμε στους υπολογισμούς. Για κάθε γωνία θ που επιλέξαμε θα υπολογίσουμε για κάθε pixel την τιμή: r = xcosθ + ysinθ Στη συνέχεια θα δημιουργήσουμε ένα συσσωρευτικό πίνακα r,θ και θα αποθηκεύσουμε όλα τα r που βρίσκουμε στο προηγούμενο βήμα.
18 Αλγόριθμος δεύτερου Hough μετασχηματισμού r = xcosθ + ysinθ Στο σχήμα από αριστερά προς τα δεξιά βλέπουμε το πρώτο βήμα για τον υπολογισμό του μετασχηματισμού Hough για 3 pixels και 6 επιλεγμένες γωνίες θ=0,30,60,90,120,150. (0,0) (0,0) (0,0) Σε κάθε σημείο φαίνονται οι ευθείες που περνάνε όλες από αυτό. Την ίδια στιγμή με διακεκομμένες φαίνονται οι κάθετες κάθε ευθείας που συναντούν την αρχή. Το μήκος και η γωνία των διακεκομμένων γραμμών είναι οι τιμές r,θ που ψάχνουμε από τη σχέση r = xcosθ + ysinθ
19 Αλγόριθμος δεύτερου Hough μετασχηματισμού Σε κάθε σημείο φαίνονται οι ευθείες που περνάνε όλες από αυτό. Την ίδια στιγμή με διακεκομμένες φαίνονται οι κάθετες κάθε ευθείας που συναντούν την αρχή. Το μήκος και η γωνία των διακεκομμένων γραμμών είναι οι τιμές r,θ που ψάχνουμε από τη σχέση r = xcosθ + ysinθ Επαναλαμβάνοντας αυτό για όλα τα σημεία της εικόνας παίρνουμε το λεγόμενο Hough Space γράφημα. Π.χ στις 30 μοίρες βλέπουμε τις τιμές του r = xcosθ + ysinθ σε όλα τα pixel (x,y). Το σημείο τομής (x) δείχνει την ευθεία που περνάει από τα σημεία μας (περίπου 60 μοίρες και r=81). (0,0) (0,0) (0,0)
20 Παραδείγματα με κώδικα Matlab An Introduction to Digital Image Processing with Matlab, Alasdair McAndrew function res=houghtr(image) % HOUGH(IMAGE) creates the Hough transform of the image IMAGE % edges=edge(image,'canny'); [x,y]=find(edges); angles=[-90:180]*pi/180; r=floor(x*cos(angles)+y*sin(angles)); rmax=max(r(find(r>0))); acc=zeros(rmax+1,270); for i=1:length(x), for j=1:270, if r(i,j)>=0 acc(r(i,j)+1,j)=acc(r(i,j)+1,j)+1; end; end; end; res=acc; function houghline(image,r,theta) %Draws a line at perpendicular distance R from the upper left corner of the current figure, with perpendicular angle THETA to the left vertical axis. % THETA is assumed to be in degrees. % [x,y]=size(image); angle=pi*(181-theta)/180; X=[1:x]; if sin(angle)==0 line([r r],[0,y],'color','black') else line([0,y],[r/sin(angle),(r-y*cos(angle))/sin(angle)],'color','black') end;
21 c=imread('cameraman.tif'); hc=houghtr(c); imshow(mat2gray(hc)*1.5) [r,theta]=find(hc==max(hc(:))) figure, imshow(c) hold on houghline(c,r,theta) c=imread('cameraman.tif'); hc=houghtr(c); imshow(mat2gray(hc)*1.5) [r,theta]=find(hc>80) figure, imshow(c) hold on houghline(c,r(1),theta(1))
22 c=imread('cameraman.tif'); hc=houghtr(c); imshow(mat2gray(hc)*1.5) [r,theta]=find(hc>100) lines=size(r,1); figure, imshow(c) hold on for i=1:lines houghline(c,r(i),theta(i)) hold on end
23 Άσκηση Να βρεθεί η γωνία του ψαλιδιού με τη χρήση Hough Transform
24 image=imread('scissors.png'); c=image(:,:,1); hc=houghtr(c); imshow(mat2gray(hc)*1.5) [r,theta]=find(hc==max(hc(:))) figure, imshow(c) hold on houghline(c,r,theta) r = 158 theta = 121
25 Πως θα βρούμε τις 2 μεγαλύτερες τιμές του πίνακα hc και κυρίως που βρίσκονται? A = [sortedx, sortedinds] = sort(a(:),'descend') sortedx = sortedinds = top2 = sortedinds(1:2) 7 to p 2 = 6 6 top2 = 6 7 to p 2 = 7 [i,j]=ind2sub(size(a),top2) to p 2 = 6 7 i = j =
26 image=imread('scissors.png'); c=image(:,:,1); hc=houghtr(c); [sortedx, sortedinds] = sort(hc(:),'descend'); top2 = sortedinds(1:2); [r, theta] = ind2sub(size(hc), top2); lines=max(size(r)); figure, imshow(c) hold on for i=1:lines houghline(c,r(i),theta(i)) hold on end theta(1) ans = 121 theta(2) ans = 61 theta =
Advances in Digital Imaging and Computer Vision
Advances in Digital Imaging and Computer Vision Διάλεξη 5 Κώστας Μαριάς kmarias@staff.teicrete.gr 24/4/2017 1 Αναφορές An Introduction to Digital Image Processing with Matlab, Alasdair McAndrew N. Papamarkos,
Διαβάστε περισσότερα7 ο Εργαστήριο Θόρυβος 2Δ, Μετακίνηση, Περιστροφή
7 ο Εργαστήριο Θόρυβος 2Δ, Μετακίνηση, Περιστροφή O θόρυβος 2Δ μας δίνει τη δυνατότητα να δημιουργίας υφής 2Δ. Στο παρακάτω παράδειγμα, γίνεται σχεδίαση γραμμών σε πλέγμα 300x300 με μεταβαλόμενη τιμή αδιαφάνειας
Διαβάστε περισσότεραAdvances in Digital Imaging and Computer Vision. Image Registration and Transformation
Advances in Digital Imaging and Computer Vision Image Registration and Transformation Γεωμετρικοί Μετασχηματισμοί Εικόνας και Ευθυγράμμιση Image Transformation and Registration Κώστας Μαριάς Αναπληρωτής
Διαβάστε περισσότεραAdvances in Digital Imaging and Computer Vision
Advances in Digital Imaging and Computer Vision Lecture and Lab XXX Introduction to Python Κώστας Μαριάς Αναπληρωτής Καθηγητής Επεξεργασίας Εικόνας 21/2/2017 1 Image Processing and Computer Vision with
Διαβάστε περισσότεραΕργαστήριο ADICV. Fourier transform, frequency domain filtering and image restoration. Κώστας Μαριάς 3/4/2017
Εργαστήριο ADICV Fourier transform, frequency domain filtering and image restoration Κώστας Μαριάς 3/4/2017 Fourier Filtering ADICV Kostas Marias TEI Crete 2017 2 Basic Matlab ΠΑΡΑΔΕΙΓΜΑΤΑ ΦΙΛΤΡΩΝ ΔΙΑΚΡΙΤΟΣ
Διαβάστε περισσότεραΟδηγίες για το Geogebra Μωυσιάδης Πολυχρόνης Δόρτσιος Κώστας
Οδηγίες για το Geogebra Μωυσιάδης Πολυχρόνης Δόρτσιος Κώστας Η πρώτη οθόνη μετά την εκτέλεση του προγράμματος διαφέρει κάπως από τα προηγούμενα λογισμικά, αν και έχει αρκετά κοινά στοιχεία. Αποτελείται
Διαβάστε περισσότεραΕ.Α.Υ. Υπολογιστική Όραση. Κατάτμηση Εικόνας
Ε.Α.Υ. Υπολογιστική Όραση Κατάτμηση Εικόνας Γεώργιος Παπαϊωάννου 2015 ΚΑΤΩΦΛΙΩΣΗ Κατωφλίωση - Γενικά Είναι η πιο απλή μέθοδος segmentation εικόνας Χωρίζουμε την εικόνα σε 2 (binary) ή περισσότερες στάθμες
Διαβάστε περισσότεραΓραφικά με Η/Υ Αλγόριθμοι σχεδίασης βασικών 22D D σχημάτων (ευθεία
Γραφικά με Η/Υ Αλγόριθμοι σχεδίασης βασικών 2D σχημάτων (ευθεία) Σχεδίαση ευθείας θί με σάρωση (παρουσίαση προβλήματος) σχεδίαση ευθείας AB, με σάρωση, όπου A=(0,1) και B=(5,4) ποιο είναι το επόμενο pixel
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 3 Ο 3.2 Η ΕΝΝΟΙΑ ΤΟΥ ΓΡΑΜΜΙΚΟΥ ΣΥΣΤΗΜΑΤΟΣ ΚΑΙ Η. (Σ) όπου α, β, α, β, είναι οι
ΚΕΦΑΛΑΙΟ 3 Ο ΣΥΣΤΗΜΑΤΑ ΓΡΑΜΜΙΚΩΝ ΕΞΙΣΩΣΕΩΝ 3. Η ΕΝΝΟΙΑ ΤΟΥ ΓΡΑΜΜΙΚΟΥ ΣΥΣΤΗΜΑΤΟΣ ΚΑΙ Η ΓΡΑΦΙΚΗ ΕΠΙΛΥΣΗ ΤΟΥ. Ποια είναι η μορφή ενός συστήματος δύο γραμμικών εξισώσεων, δύο αγνώστων; Να δοθεί παράδειγμα.
Διαβάστε περισσότεραΜάθημα: Μηχανική Όραση
Μάθημα: Μηχανική Όραση Εργασία 2: Advances in Digital Imaging and Computer Vision Ομάδα χρηστών 2 : Τσαγκαράκης Νίκος, Καραμήτρος Κώστας Εισαγωγή Σκοπός της άσκησης, είναι να εξοικειωθούμε με κάποιες βασικές
Διαβάστε περισσότεραΜεθοδολογία Παραβολής
Μεθοδολογία Παραβολής Παραβολή είναι ο γεωμετρικός τόπος των σημείων που ισαπέχουν από μια σταθερή ευθεία, την επονομαζόμενη διευθετούσα (δ), και από ένα σταθερό σημείο Ε που λέγεται εστία της παραβολής.
Διαβάστε περισσότεραAdvances in Digital Imaging and Computer Vision
Advances in Digital Imaging and Computer Vision Lecture and Lab 4 th part 12/3/2018 Κώστας Μαριάς Αναπληρωτής Καθηγητής Επεξεργασίας Εικόνας 21/2/2017 1 Βασικές έννοιες επεξεργασίας Φιλτράρισμα στο χωρικό
Διαβάστε περισσότεραΜάθημα 8 ο. Ανίχνευση Ακμών ΤΜΗΥΠ / ΕΕΣΤ 1
Μάθημα 8 ο Ανίχνευση Ακμών ΤΜΗΥΠ / ΕΕΣΤ 1 Εισαγωγή (1) Οι ακμές είναι βασικά χαρακτηριστικά της εικόνας. Ένας αποδεκτός ορισμός της ακμής είναι ο ακόλουθος: «Το σύνορο μεταξύ δύο ομοιογενών περιοχών με
Διαβάστε περισσότεραΜάθημα 8 ο. Ανίχνευση Ακμών ΤΜΗΥΠ / ΕΕΣΤ 1
Μάθημα 8 ο Ανίχνευση Ακμών ΤΜΗΥΠ / ΕΕΣΤ 1 Εισαγωγή (1) Οι ακμές είναι βασικά χαρακτηριστικά της εικόνας Προς το παρόν δεν υπάρχει ακόμα ένας ευρέως αποδεκτός ορισμός της ακμής. Εδώ θα θεωρούμε ως ακμή:
Διαβάστε περισσότεραAdvances in Digital Imaging and Computer Vision
Advances in Digital Imaging and Computer Vision Lecture and Lab 5 th lecture Κώστας Μαριάς Αναπληρωτής Καθηγητής Επεξεργασίας Εικόνας 1 Βασικές έννοιες Μετασχηματισμού Fourier Basic Concepts of Fourier
Διαβάστε περισσότεραΜΗΧΑΝΙΚΗ ΟΡΑΣΗ. 2η ΕΡΓΑΣΙΑ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΡΗΤΗΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΔΙΑΤΜΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΡΗΤΗΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΔΙΑΤΜΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΠΡΟΗΓΜΕΝΑ ΣΥΣΤΗΜΑΤΑ ΠΑΡΑΓΩΓΗΣ ΑΥΤΟΜΑΤΙΣΜΟΥ & ΡΟΜΠΟΤΙΚΗΣ ΜΗΧΑΝΙΚΗ ΟΡΑΣΗ 2η ΕΡΓΑΣΙΑ ΣΠΟΥΔΑΣΤΕΣ:
Διαβάστε περισσότεραΕνδεικτική πολυ-εργασία 1 - εφαρμογή στην υπολογιστική όραση
Ενδεικτική πολυ-εργασία 1 - εφαρμογή στην υπολογιστική όραση Εντοπισμός ενός σήματος STOP σε μια εικόνα. Περιγράψτε τη διαδικασία με την οποία μπορώ να εντοπίσω απλά σε μια εικόνα την ύπαρξη του παρακάτω
Διαβάστε περισσότερα1 ο Εργαστήριο Συντεταγμένες, Χρώματα, Σχήματα
1 ο Εργαστήριο Συντεταγμένες, Χρώματα, Σχήματα 1. Σύστημα Συντεταγμένων Το σύστημα συντεταγμένων που έχουμε συνηθίσει από το σχολείο τοποθετούσε το σημείο (0,0) στο σημείο τομής των δυο αξόνων Χ και Υ.
Διαβάστε περισσότεραΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007
Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο
Διαβάστε περισσότεραΕργαλεία Προγραμματισμού Ψηφιακής Επεξεργασίας Εικόνας: Το Matlab Image Processing Toolbox
ΚΕΣ 03 Αναγνώριση προτύπων και ανάλυση εικόνας Εργαλεία Προγραμματισμού Ψηφιακής Επεξεργασίας Εικόνας: Το Matlab Image Processing Toolbox Τμήμα Επιστήμης και Τεχνολογίας Τηλεπικοινωνιών Πανεπιστήμιο Πελοποννήσου
Διαβάστε περισσότεραΝα επιλύουμε και να διερευνούμε γραμμικά συστήματα. Να ορίζουμε την έννοια του συμβιβαστού και ομογενούς συστήματος.
Ενότητα 2 Γραμμικά Συστήματα Στην ενότητα αυτή θα μάθουμε: Να επιλύουμε και να διερευνούμε γραμμικά συστήματα. Να ορίζουμε την έννοια του συμβιβαστού και ομογενούς συστήματος. Να ερμηνεύουμε γραφικά τη
Διαβάστε περισσότεραStroke.
Το φυλλάδιο οδηγιών που κρατάτε στα χέρια σας βρίσκεται και σε ηλεκτρονική μορφή (αρχείο Acrobatpdf) στον φάκελο PDF του υπολογιστή (υπάρχει η σχετική συντόμευση την επιφάνεια εργασίας). Για την καλύτερη
Διαβάστε περισσότεραΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Α ΛΥΚΕΙΟΥ
ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Α ΛΥΚΕΙΟΥ Ευθύγραμμη Ομαλή Κίνηση Επιμέλεια: ΑΓΚΑΝΑΚΗΣ.ΠΑΝΑΓΙΩΤΗΣ, Φυσικός https://physicscorses.wordpress.com/ Βασικές Έννοιες Ένα σώμα καθώς κινείται περνάει από διάφορα σημεία.
Διαβάστε περισσότεραΠαράλληλοι Αλγόριθμοι: Ανάλυση Εικόνας και Υπολογιστική Γεωμετρία. Πέτρος Ποτίκας CoReLab 4/5/2006
Παράλληλοι Αλγόριθμοι: Ανάλυση Εικόνας και Υπολογιστική Γεωμετρία Πέτρος Ποτίκας CoReLab 4/5/2006 Επισκόπηση Ετικέτες σε συνιστώσες (Component labelling) Hough μετασχηματισμοί (transforms) Πλησιέστερος
Διαβάστε περισσότεραΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ
ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ Ξεφυλλίζοντας τα σχολικά βιβλία της Α και Β Λυκείου θα συναντήσουμε τις παρακάτω 10 "βασικές" συναρτήσεις των οποίων τη γραφική παράσταση πρέπει να γνωρίζουμε:
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ MATHEMATICS
ΜΑΘΗΜΑΤΙΚΑ MATHEMATICS LEVEL: 11 12 (B - Γ Λυκείου) 10:00 11:00, 20 March 2010 THALES FOUNDATION 1 3 βαθμοί 1. Από την εικόνα μπορούμε να δούμε ότι: 1 + 3 + 5 + 7 = 4 4. Ποια είναι η τιμή του: 1 + 3 +
Διαβάστε περισσότεραΨηφιακή Επεξεργασία Εικόνας
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Ψηφιακή Επεξεργασία Εικόνας Ενότητα 6 : Κωδικοποίηση & Συμπίεση εικόνας Ιωάννης Έλληνας Τμήμα Η/ΥΣ Άδειες Χρήσης Το παρόν εκπαιδευτικό
Διαβάστε περισσότεραδίου ορισμού, μέσου του τύπου εξαρτημένης μεταβλητής του πεδίου τιμών που λέγεται εικόνα της f για x α f α.
3.1 Η έννοια της συνάρτησης Ορισμοί Συνάρτηση f από ένα συνόλου Α σε ένα σύνολο Β είναι μια αντιστοιχία των στοιχείων του Α στα στοιχεία του Β, κατά την οποία κάθε στοιχείο του Α αντιστοιχεί σε ένα μόνο
Διαβάστε περισσότεραTO ΥΠΟΠΡΟΓΡΑΜΜΑ ΣΥΝΑΡΤΗΣΗ
Μάθημα 7 - Υποπρογράμματα Εργαστήριο 11 Ο TO ΥΠΟΠΡΟΓΡΑΜΜΑ ΣΥΝΑΡΤΗΣΗ Βασικές Έννοιες: Υποπρόγραμμα, Ανάλυση προβλήματος, top down σχεδίαση, Συνάρτηση, Διαδικασία, Παράμετρος, Κλήση συνάρτησης, Μετάβαση
Διαβάστε περισσότεραΗ μέθοδος PCA -Ανάλυση Κύριων Συνιστωσών
Η μέθοδος PCA -Ανάλυση Κύριων Συνιστωσών Γιώργος Παπαδουράκης Κώστας Μαριάς Technological Educational Institute Of Crete Department Of Applied Informatics and Multimedia Intelligent Systems Laboratory
Διαβάστε περισσότεραΦύλλο Εργασίας για την y=αx 2
Πρόβλημα Σε ένα τετραγωνικό περιβόλι πλευράς 10m πρόκειται να χτιστεί μια αποθήκη σχήματος ορθογωνίου, όπως φαίνεται στο διπλανό σχήμα. Α) Να βρεθούν οι διαστάσεις της αποθήκης συναρτήσει του x, αν γνωρίζετε
Διαβάστε περισσότερα5. Σε ορθογώνιο σύστημα αξόνων να σχεδιαστούν οι ευθείες που έχουν εξισώσεις τις: β. y = 4 δ. x = y
. Δύο φίλοι, ο Μάρκος και ο Βασίλης, έχουν άθροισμα ηλικιών 7 χρόνια, και ο Μάρκος είναι μεγαλύτερος από το Βασίλη. Μπορείτε να υπολογίσετε την ηλικία του καθενός; Να δικαιολογήσετε την απάντησή σας. β.
Διαβάστε περισσότεραΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Β ΛΥΚΕΙΟΥ ΑΛΓΕΒΡΑ
1 ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Β ΛΥΚΕΙΟΥ ΑΛΓΕΒΡΑ ΘΕΜΑ ο GI_V_ALG 16950 1.1 α) Να κατασκευάσετε ένα γραμμικό σύστημα δυο εξισώσεων με δυο αγνώστους με συντελεστές διάφορους του μηδενός, το οποίο να είναι αδύνατο. β)
Διαβάστε περισσότεραΜεθοδολογία Έλλειψης
Μεθοδολογία Έλλειψης Έλλειψη ονομάζεται ο γεωμετρικός τόπος των σημείων, των οποίων το άθροισμα των αποστάσεων από δύο σταθερά σημεία Ε και Ε είναι σταθερό και μεγαλύτερο από την απόσταση (ΕΕ ). Στη Φύση
Διαβάστε περισσότεραΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΜΕ ΕXCEL
ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΜΕ ΕXCEL 1. Εισαγωγή δεδομένων σε φύλλο εργασίας του Microsoft Excel Για να τοποθετήσουμε τις μετρήσεις μας σε ένα φύλλο Excel, κάνουμε κλικ στο κελί στο οποίο θέλουμε να τοποθετήσουμε
Διαβάστε περισσότεραΓραφικές παραστάσεις (2ο μέρος)
Γραφικές παραστάσεις (2ο μέρος) Σε αυτήν την ενότητα θα εξοικειωθείτε με τον τρόπο απεικόνισης γραφικών παραστάσεων στο MATLAB χρησιμοποιώντας την εντολή plot με πίνακες. Επίσης, θα δείτε επιπλέον εντολές
Διαβάστε περισσότεραΕισαγωγή στην Επιστήμη των Η/Υ ΙΙ. Παλινδρόμηση Δημιουργία Video Συναρτήσεις GUI Μάθημα 6
Εισαγωγή στην Επιστήμη των Η/Υ ΙΙ Παλινδρόμηση Δημιουργία Video Συναρτήσεις GUI Μάθημα 6 Σημειώσεις 1. Φορτώνουμε το αρχείο στη Matlab με την εντολή load και αποθηκεύουμε τα αποτελέσματα στην μεταβλητή
Διαβάστε περισσότεραΓραφικά με υπολογιστές
Γραφικά με Υπολογιστές Ενότητα # 3: Εισαγωγή Φοίβος Μυλωνάς Τμήμα Πληροφορικής Φοίβος Μυλωνάς Γραφικά με υπολογιστές 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
Διαβάστε περισσότεραΧαρακτηρίστε τις παρακάτω προτάσεις ως σωστό (Σ) ή λάθος (Λ)
ΕΡΩΤΗΣΕΙΣ ΑΝΤΙΚΕΙΜΕΝΙΚΟΥ ΤΥΠΟΥ ΕΥΘΕΙΑ Χαρακτηρίστε τις παρακάτω προτάσεις ως σωστό (Σ) ή λάθος (Λ) 1. Συντελεστής διεύθυνσης μιας ευθείας (ε) είναι η εφαπτομένη της γωνίας που σχηματίζει η ευθεία με τον
Διαβάστε περισσότεραΕργαστήριο ADICV2. Image filtering. Κώστας Μαριάς
Εργαστήριο ADICV2 Image filtering Κώστας Μαριάς Image Filtering ADICV Kostas Marias TEI Crete 2017 2 Matlab Σκοπός εργαστηρίου Θα φτιάξουμε ένα ΦΙΛΤΡΟ ΜΕΣΗΣ ΤΙΜΗΣ (mean FILTER) σε matlab Στη συνέχεια θα
Διαβάστε περισσότεραAdvances in Digital Imaging and Computer Vision
Advances in Digital Imaging and Computer Vision Lecture and Lab 4b 24/4/2017 Κώστας Μαριάς Αναπληρωτής Καθηγητής Επεξεργασίας Εικόνας 21/2/2017 1 Μετασχηματισμός Fourier Εφαρμογές 2 Περιοδικός Θόρυβος
Διαβάστε περισσότεραΜεθοδολογία Υπερβολής
Μεθοδολογία Υπερβολής Υπερβολή ονομάζεται ο γεωμετρικός τόπος των σημείων, των οποίων η απόλυτη τιμή της διαφοράς των αποστάσεων από δύο σταθερά σημεία Ε και Ε είναι σταθερή και μικρότερη από την απόσταση
Διαβάστε περισσότεραΕΦΑΠΤΟΜΕΝΗ ΤΗΣ ΓΡΑΦΙΚΗΣ ΠΑΡΑΣΤΑΣΗΣ ΜΙΑΣ ΣΥΝΑΡΤΗΣΗΣ
ΕΝΟΤΗΤΑ 1.4. 5 ο ΜΑΘΗΜΑ ΕΦΑΠΤΟΜΕΝΗ ΤΗΣ ΓΡΑΦΙΚΗΣ ΠΑΡΑΣΤΑΣΗΣ ΜΙΑΣ ΣΥΝΑΡΤΗΣΗΣ Σκοπός της ενότητας Σκοπός της ενότητας είναι ο ορισμός εφαπτομένης της γραφικής παράστασης μιας συνάρτησης σε κάποιο σημείο της,
Διαβάστε περισσότεραΜεταπτυχιακό Πρόγραμμα «Γεωχωρικές Τεχνολογίες» Ψηφιακή Επεξεργασία Εικόνας. Εισηγητής Αναστάσιος Κεσίδης
Μεταπτυχιακό Πρόγραμμα «Γεωχωρικές Τεχνολογίες» Ψηφιακή Επεξεργασία Εικόνας Εισηγητής Αναστάσιος Κεσίδης Ακμές και περιγράμματα Ακμές και περιγράμματα Γενικά Μεγάλο τμήμα της πληροφορίας που γίνεται αντιληπτή
Διαβάστε περισσότεραΣύγχρονη Φυσική 1, Διάλεξη 3, Τμήμα Φυσικής, Παν/μιο Ιωαννίνων Η θεωρία του αιθέρα καταρρίπτεται από το πείραμα των Michelson και Morley
1 Η θεωρία του αιθέρα καταρρίπτεται από το πείραμα των Mihelson και Morley 0.10.011 Σκοποί της τρίτης διάλεξης: Να κατανοηθεί η ιδιαιτερότητα των ηλεκτρομαγνητικών κυμάτων (π. χ. φως) σε σχέση με άλλα
Διαβάστε περισσότεραΣΥΣΤΗΜΑΤΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ. ΘΕΜΑ 2ο
ΣΥΣΤΗΜΑΤΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΘΕΜΑ ο _6950 α) Να κατασκευάσετε ένα γραμμικό σύστημα δυο εξισώσεων με δυο αγνώστους με συντελεστές διάφορους του μηδενός, το οποίο να είναι αδύνατο. β) Να παραστήσετε γραφικά
Διαβάστε περισσότερα5ο Μάθημα Αλγόριθμοι Σχεδίασης Βασικών Σχημάτων
5ο Μάθημα Αλγόριθμοι Σχεδίασης Βασικών Σχημάτων Γραφικα Τμήμα Πληροφορικής Πανεπιστήμιο Θεσσαλίας Ακ Έτος 2016-17 Εισαγωγή Ευθεία Κύκλος Έλλειψη Σύνοψη του σημερινού μαθήματος 1 Εισαγωγή 2 Ευθεία 3 Κύκλος
Διαβάστε περισσότεραΠαιδαγωγικό σενάριο : Μελέτη της συνάρτησης y=αx
Παιδαγωγικό σενάριο : Μελέτη της συνάρτησης y=αx Στόχος: Το παιδαγωγικό σενάριο αναφέρεται στη μελέτη της συνάρτησης y=αx και στη κατανόηση της κλίσης ευθείας. Λογισμικό: Για την εφαρμογή του σεναρίου
Διαβάστε περισσότεραΕρωτήσεις αντιστοίχισης
Ερωτήσεις αντιστοίχισης 1. ** Να αντιστοιχίσετε κάθε ευθεία που η εξίσωσή της βρίσκεται στη του πίνακα (Ι) µε τον συντελεστή της που βρίσκεται στη, συµπληρώνοντας τον πίνακα (ΙΙ) (α, β 0). 1. ε 1 : y =
Διαβάστε περισσότεραΓραφικά Υπολογιστών: Μέθοδοι Ανίχνευσης Επιφανειών (Surface Detection Methods)
1 ΤΕΙ Θεσσαλονίκης Τμήμα Πληροφορικής Γραφικά Υπολογιστών: Μέθοδοι Ανίχνευσης Επιφανειών (Surface Detection Methods) Πασχάλης Ράπτης http://aetos.it.teithe.gr/~praptis praptis@it.teithe.gr 2 Περιεχόμενα
Διαβάστε περισσότεραΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ
ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΥΣΤΗΜΑΤΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΘΕΜΑ ο _6950 α) Να κατασκευάσετε ένα γραμμικό σύστημα δυο εξισώσεων με δυο αγνώστους με συντελεστές διάφορους του
Διαβάστε περισσότεραΦεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤΗΝ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ. Θέμα 2 ο (42)
Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤΗΝ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ Θέμα ο (4) -- Τράπεζα θεμάτων Άλγεβρας Β Λυκείου - Φεργαδιώτης Αθανάσιος -3- Τράπεζα θεμάτων Άλγεβρας Β Λυκείου - Φεργαδιώτης Αθανάσιος ΚΕΦΑΛΑΙΟ
Διαβάστε περισσότεραΕφαρμοσμένα Μαθηματικά
Εφαρμοσμένα Μαθηματικά ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Ενότητα 6: Διπλά Ολοκληρώματα Δρ. Περικλής Παπαδόπουλος Τμήμα Ηλεκτρονικών Μηχανικών Τ.Ε Κάντε κλικ για
Διαβάστε περισσότεραOffset Link.
Offset Link Το φυλλάδιο οδηγιών που κρατάτε στα χέρια σας βρίσκεται και σε ηλεκτρονική μορφή (αρχείο Acrobatpdf) στον φάκελο PDF του υπολογιστή (υπάρχει η σχετική συντόμευση την επιφάνεια εργασίας). Για
Διαβάστε περισσότεραΕπεξεργασία Χαρτογραφικής Εικόνας
Επεξεργασία Χαρτογραφικής Εικόνας Διδάσκων: Αναγνωστόπουλος Χρήστος Κώδικες μετρήσεων αντικειμένων σε εικόνα Χρωματικά μοντέλα: Munsell, HSB/HSV, CIE-LAB Κώδικες μετρήσεων αντικειμένων σε εικόνες Η βασική
Διαβάστε περισσότεραΑσκήσεις Φροντιστηρίου «Υπολογιστική Νοημοσύνη Ι» 5 o Φροντιστήριο
Πρόβλημα ο Ασκήσεις Φροντιστηρίου 5 o Φροντιστήριο Δίνεται το παρακάτω σύνολο εκπαίδευσης: # Είσοδος Κατηγορία 0 0 0 Α 2 0 0 Α 0 Β 4 0 0 Α 5 0 Β 6 0 0 Α 7 0 Β 8 Β α) Στον παρακάτω κύβο τοποθετείστε τα
Διαβάστε περισσότεραΓραφικά Υπολογιστών: Βασικά Μαθηματικά
1 ΤΕΙ Θεσσαλονίκης Τμήμα Πληροφορικής Γραφικά Υπολογιστών: Βασικά Μαθηματικά Πασχάλης Ράπτης http://aetos.it.teithe.gr/~praptis praptis@it.teithe.gr 2 Εισαγωγή Ένα μεγάλο κομμάτι των γραφικών αφορά βασίζονται-
Διαβάστε περισσότεραΓραφικά Υπολογιστών: Σχεδίαση γραμμών (Bresenham), Σχεδίασης Κύκλων, Γέμισμα Πολυγώνων
1 ΤΕΙ Θεσσαλονίκης Τμήμα Πληροφορικής Γραφικά Υπολογιστών: Σχεδίαση γραμμών (Bresenham), Σχεδίασης Κύκλων, Γέμισμα Πολυγώνων Πασχάλης Ράπτης http://aetos.it.teithe.gr/~praptis praptis@it.teithe.gr 2 Περιγραφή
Διαβάστε περισσότεραΤεχνολογία Παιγνίων. Τεχνολογία Παιγνίων. Τεχνολογία Παιγνίων. Εισαγωγή στο Easy Java Simulations (EJS)
1. Σημεία και Γραμμές Ι.Παχουλάκης 1. Σημεία και Γραμμές Εισαγωγή στο Easy Java Simulations (EJS) Εγκατάσταση Εγκαταστήστε το πιο πρόσφατο JRE (Java Runtime Environment) από το σύνδεσμο https://www.oracle.com/technetwork/java/javase/downloads/jr
Διαβάστε περισσότεραΑσκήσεις Επανάληψης Τάξη Δ Εν. 1: Διανύσματα
Ασκήσεις Επανάληψης Τάξη Δ 016-017 Εν. 1: Διανύσματα 1. Να ονομάσετε τα στοιχεία ενός διανύσματος.. Δίνεται το παραλληλόγραμμο ΑΒΓΔ, όπως φαίνεται στο σχήμα. Να χαρακτηρίσετε ΣΩΣΤΟ ή ΛΑΘΟΣ τις πιο κάτω
Διαβάστε περισσότεραΣυνήθεις Διαφορικές Εξισώσεις Ι Ασκήσεις - 09/11/2017. Άσκηση 1. Να βρεθεί η γενική λύση της διαφορικής εξίσωσης. dy dx = 2y + x 2 y 2 2x
Συνήθεις Διαφορικές Εξισώσεις Ι Ασκήσεις - 09/11/017 Άσκηση 1. Να βρεθεί η γενική λύση της διαφορικής εξίσωσης dx y + x y. x Παρατηρούμε ότι η δ.ε. είναι ομογενής. Πράγματι, dx y x + 1 x y x y x + 1 (
Διαβάστε περισσότεραΜαθηματικά ΜΕΡΟΣ 3 ΣΥΣΤΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ
Μαθηματικά ΜΕΡΟΣ 3 ΣΥΣΤΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ Ι. Δημοτίκαλης, Επίκουρος Καθηγητής 1 ΤΕΙ ΚΡΗΤΗΣ-ΤΜΗΜΑ Λ&Χ: jdim@staff.teicrete.gr ΣΥΣΤΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ Αν έχουμε m εξισώσεις (ισότητες) που περιγράφουν μαθηματικά
Διαβάστε περισσότεραΕισαγωγή Αποκοπή ευθείας σε 2Δ Αποκοπή πολυγώνου σε 2Δ Αποκοπή σε 3Δ. 3ο Μάθημα Αποκοπή. Γραφικα. Ευάγγελος Σπύρου
Εισαγωγή Αποκοπή ευθείας σε 2Δ Αποκοπή πολυγώνου σε 2Δ Αποκοπή σε 3Δ Γραφικα Τμήμα Πληροφορικής Πανεπιστήμιο Θεσσαλίας Ακ Έτος 2016-17 Εισαγωγή Αποκοπή ευθείας σε 2Δ Αποκοπή πολυγώνου σε 2Δ Αποκοπή σε
Διαβάστε περισσότεραΔιατμηματικό Πρόγραμμα Μεταπτυχιακών Σπουδών. «Προηγμένα Συστήματα Παραγωγής, Αυτοματισμού και. Ρομποτικής» Assignment 2
Διατμηματικό Πρόγραμμα Μεταπτυχιακών Σπουδών «Προηγμένα Συστήματα Παραγωγής, Αυτοματισμού και Ρομποτικής» ΜΑΘΗΜΑ Μηχανική Όραση ΑΝΑΦΟΡΑ ΕΡΓΑΣΙΑΣ Assignment 2 ΣΠΟΥΔΑΣΤΕΣ Λεμωνιά Κατερίνα Πορφυράκης Μανώλης
Διαβάστε περισσότερα4. Εισαγωγή στο Matlab
ΠΠΜ 500: Εφαρμογές Μηχανικής με Ανάπτυξη Λογισμικού 4. Εισαγωγή στο Matlab Εαρινό εξάμηνο 2006 Πέτρος Κωμοδρόμος komodromos@ucy.ac.cy http://www. www.eng. eng.ucy.ac.cy/petros 1 Θέματα Εισαγωγή στο Matlab
Διαβάστε περισσότεραΕργαστήριο ADICV1. Image Boundary detection and filtering. Κώστας Μαριάς 13/3/2017
Εργαστήριο ADICV1 Image Boundary detection and filtering Κώστας Μαριάς 13/3/2017 Boundary Detection 2 Γείτονες και περίγραμμα εικόνας Ορίζουμε ως V το σύνολο των τιμών εντάσεων εικόνας για να ορίσουμε
Διαβάστε περισσότεραΑριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον
Τμήμα Μηχανικών Πληροφορικής Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον Δρ. Δημήτρης Βαρσάμης Επίκουρος Καθηγητής Οκτώβριος 2015 Δρ. Δημήτρης Βαρσάμης Οκτώβριος 2015 1 / 47 Αριθμητικές Μέθοδοι
Διαβάστε περισσότερα21. ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ 4 - ΔΗΜΙΟΥΡΓΩΝΤΑΣ ΜΕ ΤΟ BYOB BYOB. Αλγόριθμος Διαδικασία Παράμετροι
21. ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ 4 - ΔΗΜΙΟΥΡΓΩΝΤΑΣ ΜΕ ΤΟ BYOB BYOB Αλγόριθμος Διαδικασία Παράμετροι Τι είναι Αλγόριθμος; Οι οδηγίες που δίνουμε με λογική σειρά, ώστε να εκτελέσουμε μια διαδικασία ή να επιλύσουμε ένα
Διαβάστε περισσότεραΗ έννοια της γραμμικής εξίσωσης
Η έννοια της γραμμικής εξίσωσης Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd 1 Η ΕΝΝΟΙΑ ΤΗΣ ΓΡΑΜΜΙΚΗΣ ΕΞΙΣΩΣΗΣ Η εξίσωση αx+βy = γ Λύση της εξίσωσης α x + β y = γ ονομάζεται
Διαβάστε περισσότεραAdvances in Digital Imaging and Computer Vision
Advances in Digital Imaging and Computer Vision Lecture and Lab 8 th lecture Κώστας Μαριάς Αναπληρωτής Καθηγητής Επεξεργασίας Εικόνας 1 Τοπολογία Εικόνας Image Topology 2 Basic Βασικές σχέσεις ανάμεσα
Διαβάστε περισσότεραΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ Ι
ΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ Ι κ. ΠΕΤΑΛΙΔΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ MATHEMATICS
ΜΑΘΗΜΑΤΙΚΑ MATHEMATICS LEVEL: 9 10 (Γ Γυμνασίου Α Λυκείου) 10:00 11:00, 20 March 2010 THALES FOUNDATION 1 3 βαθμοί 1. Ποιο από τα ακόλουθα είναι το αποτέλεσμα της διαίρεσης του αριθμού 20102010 με τον
Διαβάστε περισσότεραΚεφάλαιο 4 ΜΕΤΑΒΟΛΗ ΚΕΝΤΡΟΥ ΑΝΤΩΣΗΣ ΚΑΙ ΜΕΤΑΚΕΝΤΡΟΥ ΛΟΓΩ ΕΓΚΑΡΣΙΑΣ ΚΛΙΣΗΣ
Κεφάλαιο 4 ΜΕΤΑΒΟΛΗ ΚΕΝΤΡΟΥ ΑΝΤΩΣΗΣ ΚΑΙ ΜΕΤΑΚΕΝΤΡΟΥ ΛΟΓΩ ΕΓΚΑΡΣΙΑΣ ΚΛΙΣΗΣ Σύνοψη Αυτό το κεφάλαιο έχει επίσης επαναληπτικό χαρακτήρα. Σε πρώτο στάδιο διερευνάται η μορφή της καμπύλης την οποία γράφει το
Διαβάστε περισσότερα11 ΣΥΝΗΘΕΙΣ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ
11 ΣΥΝΗΘΕΙΣ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ 11.1 Γενικά περί συνήθων διαφορικών εξισώσεων Μια συνήθης διαφορική εξίσωση (ΣΔΕ) 1 ης τάξης έχει τη μορφή dy d = f (, y()) όπου f(, y) γνωστή και y() άγνωστη συνάρτηση.
Διαβάστε περισσότεραΠρογραμματιστικές Ασκήσεις, Φυλλάδιο 1
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΣΕ C Προγραμματιστικές Ασκήσεις, Φυλλάδιο Εκφώνηση: 9/3/0 Παράδοση: 5/4/0,.59 Άσκηση 0 η : Το πρόβλημα της βελόνας του Buffon Θέμα της εργασίας
Διαβάστε περισσότεραΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β. 2x 1. είναι Τότε έχουμε: » τον χρησιμοποιούμε κυρίως σε θεωρητικές ασκήσεις.
ΚΕΦΑΛΑΙΟ ο: ΣΥΝΑΡΤΗΣΕΙΣ - ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ : ΣΥΝΑΡΤΗΣΗ - ΑΝΤΙΣΤΡΟΦΗ ΣΥΝΑΡΤΗΣΗ [Υποκεφάλαιο. Μονότονες συναρτήσεις Αντίστροφη συνάρτηση του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ Παράδειγμα.
Διαβάστε περισσότεραWell Seal.
Well Seal Το φυλλάδιο οδηγιών που κρατάτε στα χέρια σας βρίσκεται και σε ηλεκτρονική μορφή (αρχείο Acrobatpdf) στον φάκελο PDF του υπολογιστή (υπάρχει η σχετική συντόμευση την επιφάνεια εργασίας). Για
Διαβάστε περισσότεραΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ
ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ ΣΥΣΤΗΜΑΤΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΘΕΜΑ ο _6950 α) Να κατασκευάσετε ένα γραμμικό σύστημα δυο εξισώσεων με δυο αγνώστους με συντελεστές διάφορους του μηδενός, το οποίο να
Διαβάστε περισσότεραΕφαρμογές Πληροφορικής στην Τοπογραφία 7η Ενότητα Μονάδες, εντολές Text, List, μετρήσεις, μετασχηματισμοί και άσκηση χάραξης
Εφαρμογές Πληροφορικής στην Τοπογραφία 7η Ενότητα Μονάδες, εντολές Text, List, μετρήσεις, μετασχηματισμοί και άσκηση χάραξης Τσιούκας Βασίλειος, Αναπληρωτής Καθηγητής Τμήμα Αγρονόμων Τοπογράφων Μηχανικών
Διαβάστε περισσότεραΕπαναληπτικές Ασκήσεις
Β' Γυμν. - Επαναληπτικές Ασκήσεις 1 Άσκηση 1 Απλοποίησε τις αλγεβρικές παραστάσεις (α) 2y 2z 8ω 8ω 2y 2z (β) 1x 2y 3z 3 3 z 2z z 2 x y Επαναληπτικές Ασκήσεις Άλγεβρα - Γεωμετρία Άσκηση 2 Υπολόγισε την
Διαβάστε περισσότεραΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΜΗΜΑ. Μαθηματικά 2. Σταύρος Παπαϊωάννου
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΜΗΜΑ Μαθηματικά Σταύρος Παπαϊωάννου Ιούνιος 015 Τίτλος Μαθήματος Περιεχόμενα Χρηματοδότηση... Error! Bookmark not defined. Σκοποί Μαθήματος (Επικεφαλίδα
Διαβάστε περισσότεραΣειρά Προβλημάτων 4 Λύσεις
Άσκηση 1 Σειρά Προβλημάτων 4 Λύσεις (α) Να διατυπώσετε την τυπική περιγραφή μιας μηχανής Turing (αυθεντικός ορισμός) η οποία να διαγιγνώσκει τη γλώσσα { w w = (ab) 2m b m (ba) m, m 0 } (β) Να διατυπώσετε
Διαβάστε περισσότερα«ΠΥΘΑΓΟΡΑΣ II: ΕΝΙΣΧΥΣΗ ΕΡΕΥΝΗΤΙΚΩΝ ΟΜΑΔΩΝ ΣΤΑ ΠΑΝΕΠΙΣΤΗΜΙΑ»
«ΠΥΘΑΓΟΡΑΣ II: ΕΝΙΣΧΥΣΗ ΕΡΕΥΝΗΤΙΚΩΝ ΟΜΑΔΩΝ ΣΤΑ ΠΑΝΕΠΙΣΤΗΜΙΑ» ΣΧΟΛΗ: ΑΓΡΟΝΟΜΩΝ ΚΑΙ ΤΟΠΟΓΡΑΦΩΝ ΜΗΧΑΝΙΚΩΝ (ΣΑΤΜ) Ε.Μ.Π. ΕΠΙΣΤΗΜΟΝΙΚΟΣ ΥΠΕΥΘΥΝΟΣ: ΑΡΓΙΑΛΑΣ ΔΗΜΗΤΡΗΣ ΤΙΤΛΟΣ ΥΠΟΕΡΓΟΥ: ΑΝΑΠΤΥΞΗ ΠΡΟΗΓΜΕΝΩΝ ΤΕΧΝΙΚΩΝ
Διαβάστε περισσότεραΘΕΜΑ 2 α) Να κατασκευάσετε ένα γραμμικό σύστημα δυο εξισώσεων με δυο αγνώστους με συντελεστές διάφορους του μηδενός, το οποίο να είναι αδύνατο.
α) Να κατασκευάσετε ένα γραμμικό σύστημα δυο εξισώσεων με δυο αγνώστους με συντελεστές διάφορους του μηδενός, το οποίο να είναι αδύνατο. (Μονάδες 10) β) Να παραστήσετε γραφικά στο επίπεδο τις δυο εξισώσεις
Διαβάστε περισσότεραμε παραμέτρους α, β, γ R α) Να επιλέξετε τιμές για τις παραμέτρους α, β, γ, ώστε το σύστημα αυτό να έχει μοναδική λύση το ζεύγος (1,-4).
Δίνεται το σύστημα: x 2y= 9 ax+ βy= γ με παραμέτρους α, β, γ R α) Να επιλέξετε τιμές για τις παραμέτρους α, β, γ, ώστε το σύστημα αυτό να έχει μοναδική λύση το ζεύγος (1,-4). (Μονάδες 13) β) Να επιλέξετε
Διαβάστε περισσότεραΤράπεζα Θεμάτων Διαβαθμισμένης Δυσκολίας- Άλγεβρα Β ΓΕ.Λ.-Σχολικό έτος 2014-2015 ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΔΙΑΒΑΘΜΙΣΜΕΝΗΣ ΔΥΣΚΟΛΙΑΣ. Σχολικό έτος: 2014-2015
ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΔΙΑΒΑΘΜΙΣΜΕΝΗΣ ΔΥΣΚΟΛΙΑΣ Α Λ Γ Ε Β Ρ Α Β Λ Υ Κ Ε Ι Ο Υ Σχολικό έτος: 014-015 Τα θέματα εμπλουτίζονται με την δημοσιοποίηση και των νέων θεμάτων από το Ι.Ε.Π. Γ ε ν ι κ ή Ε π ι μ έ λ ε ι
Διαβάστε περισσότεραΑσκήσεις Άλγεβρας. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. B ΓΥΜΝΑΣΙΟΥ Άλγεβρα 265 ασκήσεις και τεχνικές σε 24 σελίδες. εκδόσεις. Καλό πήξιμο
Ασκήσεις Άλγεβρας Κώστας Γλυκός B ΓΥΜΝΑΣΙΟΥ Άλγεβρα 65 ασκήσεις και τεχνικές σε 4 σελίδες ΙΙ Ι δδ ιι ι αα ίί ί ττ εε ρρ αα μμ αα θθ ήή μμ αα ττ αα 6 9 7. 3 0 0. 8 8. 8 8 Kgllykos..gr 1 3 / 1 0 / 0 1 6
Διαβάστε περισσότεραΜΕΘΟΔΟΣ ΕΛΑΧΙΣΤΩΝ ΤΕΤΡΑΓΩΝΩΝ
ΜΕΘΟΔΟΣ ΕΛΑΧΙΣΤΩΝ ΤΕΤΡΑΓΩΝΩΝ ΧΑΡΑΞΗ ΓΡΑΦΙΚΗΣ ΠΑΡΑΣΤΑΣΗΣ Δημήτρης Στεφανάκης Η Μέθοδος των Ελαχίστων Τετραγώνων (ΜΕΤ) χρησιμοποιείται για την κατασκευή της γραφικής παράστασης που περιγράφει ένα φαινόμενο,
Διαβάστε περισσότεραΓραφική επίλυση γραμμικού συστήματος με δύο αγνώστους.
ΜΕΡΟΣ Α 3. Η ΕΝΝΟΙΑ ΤΟΥ ΓΡΑΜΜΙΚΟΥ ΣΥΣΤΗΜΑΤΟΣ ΚΑΙ Η ΓΡΑΦΙΚΗ ΕΠΙΛΥΣΗ ΤΟΥ 71 3. Η ΕΝΝΟΙΑ ΤΟΥ ΓΡΑΜΜΙΚΟΥ ΣΥΣΤΗΜΑΤΟΣ ΚΑΙ Η ΓΡΑΦΙΚΗ ΕΠΙΛΥΣΗ ΤΟΥ Αν έχουμε δύο γραμμικές εξισώσεις με δύο αγνώστους,, π.χ. α + β
Διαβάστε περισσότερα7.5 Ενδιάμεσο επίπεδο επεξεργασίας εικόνας
7.5 Ενδιάμεσο επίπεδο επεξεργασίας εικόνας 7.5.1 Εισαγωγή Kάθε σύστημα επεξεργασίας εικόνας έχει ένα συγκεκριμένο σκοπό λειτουργίας. Παραδείγματος χάριν, διαφορετικές απαιτήσεις θα έχει μια βιομηχανία
Διαβάστε περισσότεραΒ Γραφικές παραστάσεις - Πρώτο γράφημα Σχεδιάζοντας το μήκος της σανίδας συναρτήσει των φάσεων της σελήνης μπορείτε να δείτε αν υπάρχει κάποιος συσχετισμός μεταξύ των μεγεθών. Ο συνήθης τρόπος γραφικής
Διαβάστε περισσότεραΖΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΡΗΤΗΣ ΔΠΜΣ Προηγμένα Συστήματα Παραγωγής, Αυτοματισμού και Ρομποτικής
ΖΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΡΗΤΗΣ ΔΠΜΣ Προηγμένα Συστήματα Παραγωγής, Αυτοματισμού και Ρομποτικής ΜΗΧΑΝΙΚΗ ΟΡΑΣΗ ΕΡΓΑΣΙΑ 1 ΣΠΟΥΔΑΣΤΕΣ: ΥΠΕΥΘΗΝΟΣ ΚΑΘΗΓΗΤΗΣ : ΒΛΑΧΑΚΗΣ ΜΙΧΑΛΗΣ(Α.Μ:ΜΗ81) ΓΛΑΜΠΕΔΑΚΗΣ
Διαβάστε περισσότεραΚΑΤΑΣΚΕΥΗ ΠΑΡΑΛΛΗΛΟΓΡΑΜΜΩΝ ΜΕ ΧΡΗΣΗ LOGO
1 ΚΑΤΑΣΚΕΥΗ ΠΑΡΑΛΛΗΛΟΓΡΑΜΜΩΝ ΜΕ ΧΡΗΣΗ LOGO ΦΥΛΛΑ ΕΡΓΑΣΙΑΣ ΜΑΘΗΤΗ ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ 1 1. Τοποθέτησε μια χελώνα στην επιφάνεια εργασίας. 2. Με ποια εντολή γράφει η χελώνα μας;.. 3. Γράψε την εντολή για να πάει
Διαβάστε περισσότεραΟ ΗΓΙΕΣ ΧΡΗΣΗΣ ΤΟΥ MATLAB
Ο ΗΓΙΕΣ ΧΡΗΣΗΣ ΤΟΥ MATLAB (το παρόν αποτελεί τροποποιηµένη έκδοση του οµόνυµου εγχειριδίου του κ. Ν. Μαργαρη) 1 ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ 1.1 ΠΡΑΞΕΙΣ ΜΕ ΠΡΑΓΜΑΤΙΚΟΥΣ ΑΡΙΘΜΟΥΣ 1.1.1 ΠΡΟΣΘΕΣΗ» 3+5 8 % Το σύµβολο
Διαβάστε περισσότερα) = Απόσταση σημείου από ευθεία. Υπολογισμός Εμβαδού Τριγώνου. και A
[Επιλογή Ιαν.. Εμβαδόν Τριγώνου ΣΤΟΧΟΙ: Ο µαθητής ϖρέϖει: να είναι ικανός να υϖολογίζει την αϖόσταση σηµείου αϖό ευθεία να είναι ικανός να υϖολογίζει το εµβαδό ενός τριγώνου αϖό τις συντεταγµένες των κορυφών
Διαβάστε περισσότεραTee.
Το φυλλάδιο οδηγιών που κρατάτε στα χέρια σας βρίσκεται και σε ηλεκτρονική μορφή (αρχείο Acrobatpdf) στον φάκελο PDF του υπολογιστή (υπάρχει η σχετική συντόμευση την επιφάνεια εργασίας). Για την καλύτερη
Διαβάστε περισσότεραΠαράδειγμα για διαχείριση strings
Παράδειγμα για διαχείριση strings Ας υποθέσουμε ότι έχουμε ένα string που αποτελείται από μια γωνία ακολουθούμενη από ένα γράμμα ή d για μοίρες ή r για ακτίνια. Για παράδειγμα μπορεί να είναι ένα string
Διαβάστε περισσότεραΑπαραίτητες αφού 3Δ αντικείμενα απεικονίζονται σε 2Δ συσκευές. Θέση παρατηρητή. 3Δ Μετασχ/σμός Παρατήρησης
Προβολές Προβολές Απαραίτητες αφού 3Δ αντικείμενα απεικονίζονται σε Δ συσκευές. Θέσεις αντικειμένων και φωτεινών πηγών Θέση παρατηρητή 3Δ Μαθηματικά Μοντέλα 3Δ Μετασχ/σμοί Μοντέλου 3Δ Μετασχ/σμός Παρατήρησης
Διαβάστε περισσότεραΓεωμετρικοί μετασχηματιμοί εικόνας
Γεωμετρικοί μετασχηματιμοί εικόνας Μάθημα: Υπολογιστική Οραση 1 Γεωμετρικοί Μετασχηματισμοί Ορισμός σημείου στονευκλείδιοχώρο: p=[x p,y p,z p ] T, όπου x p, y p, z p πραγματικοί αριθμοί. ΕστωΕ 3 τοσύνολοτωνp.
Διαβάστε περισσότεραlim είναι πραγµατικοί αριθµοί, τότε η f είναι συνεχής στο x 0. β) Να εξετάσετε τη συνέχεια της συνάρτησης f (x) =
Ερωτήσεις ανάπτυξης. ** α) Να αποδείξετε ότι αν τα όρια lim - f () - f - είναι πραγµατικοί αριθµοί, τότε η f είναι συνεχής στο. ( ) και β) Να εξετάσετε τη συνέχεια της συνάρτησης f () = lim + στο σηµείο
Διαβάστε περισσότερα