Model Description. 1.1 Governing equations. The vertical coordinate (eta) is defined by: p re f. z s p T 0 p T. p p T p s p T. η s

Σχετικά έγγραφα
Appendix A. Curvilinear coordinates. A.1 Lamé coefficients. Consider set of equations. ξ i = ξ i (x 1,x 2,x 3 ), i = 1,2,3

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems

Homework 8 Model Solution Section

1 String with massive end-points

Αρχές Μετεωρολογίας και Κλιματολογίας (Μέρος 2 ο )

Eulerian Simulation of Large Deformations

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C

Higher Derivative Gravity Theories

Example Sheet 3 Solutions

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Second Order Partial Differential Equations

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Geodesic Equations for the Wormhole Metric

Section 9.2 Polar Equations and Graphs

D Alembert s Solution to the Wave Equation

Math 6 SL Probability Distributions Practice Test Mark Scheme

The kinetic and potential energies as T = 1 2. (m i η2 i k(η i+1 η i ) 2 ). (3) The Hooke s law F = Y ξ, (6) with a discrete analog

Discontinuous Hermite Collocation and Diagonally Implicit RK3 for a Brain Tumour Invasion Model

Approximation of distance between locations on earth given by latitude and longitude

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

g-selberg integrals MV Conjecture An A 2 Selberg integral Summary Long Live the King Ole Warnaar Department of Mathematics Long Live the King

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

Spherical Coordinates

Finite difference method for 2-D heat equation

Lifting Entry (continued)

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

Technical Information T-9100 SI. Suva. refrigerants. Thermodynamic Properties of. Suva Refrigerant [R-410A (50/50)]

Lifting Entry 2. Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion MARYLAND U N I V E R S I T Y O F

Ηλεκτρονικοί Υπολογιστές IV

DuPont Suva 95 Refrigerant

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

DuPont Suva 95 Refrigerant

Calculating the propagation delay of coaxial cable

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

MOTROL. COMMISSION OF MOTORIZATION AND ENERGETICS IN AGRICULTURE 2014, Vol. 16, No. 5,

DETERMINATION OF DYNAMIC CHARACTERISTICS OF A 2DOF SYSTEM. by Zoran VARGA, Ms.C.E.

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

P AND P. P : actual probability. P : risk neutral probability. Realtionship: mutual absolute continuity P P. For example:

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

DuPont Suva. DuPont. Thermodynamic Properties of. Refrigerant (R-410A) Technical Information. refrigerants T-410A ENG


Inverse trigonometric functions & General Solution of Trigonometric Equations

Equations. BSU Math 275 sec 002,003 Fall 2018 (Ultman) Final Exam Notes 1. du dv. FTLI : f (B) f (A) = f dr. F dr = Green s Theorem : y da

Homework 3 Solutions

derivation of the Laplacian from rectangular to spherical coordinates

Space-Time Symmetries

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

X-Y COUPLING GENERATION WITH AC/PULSED SKEW QUADRUPOLE AND ITS APPLICATION

Fourier Analysis of Waves

Study on Re-adhesion control by monitoring excessive angular momentum in electric railway traction

Παραμύθια τησ Χαλιμϊσ, τομ. A Σελύδα 1

ST5224: Advanced Statistical Theory II

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Testing for Indeterminacy: An Application to U.S. Monetary Policy. Technical Appendix

Matrices and Determinants

Srednicki Chapter 55

Orbital angular momentum and the spherical harmonics

Navigation Mathematics: Kinematics (Coordinate Frame Transformation) EE 565: Position, Navigation and Timing

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

Overview. Transition Semantics. Configurations and the transition relation. Executions and computation

- 1+x 2 - x 3 + 7x x x x x x 2 - x 3 - -

Ενότητα 3 (μέρος 1 ο )

Section 8.3 Trigonometric Equations

ΚΕΦΑΛΑΙΟ 2. Περιγραφή της Κίνησης. 2.1 Κίνηση στο Επίπεδο

Modelling the Furuta Pendulum

Πίνακας Περιεχομένων. 1. Locals Window & BreakPoints

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Uniform Convergence of Fourier Series Michael Taylor

SPECIAL FUNCTIONS and POLYNOMIALS

Radiation Stress Concerned with the force (or momentum flux) exerted on the right hand side of a plane by water on the left hand side of the plane.

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr

4.6 Autoregressive Moving Average Model ARMA(1,1)

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)

MET 4302 LECTURE 3A 23FEB18

PARTIAL NOTES for 6.1 Trigonometric Identities

The Simply Typed Lambda Calculus

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

Durbin-Levinson recursive method

ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΕΡΙΒΑΛΛΟΝΤΟΣ

Forced Pendulum Numerical approach

Part III - Pricing A Down-And-Out Call Option

Solution to Review Problems for Midterm III

ΕΘΝΙΚΗ ΣΧΟΛΗ ΔΗΜΟΣΙΑΣ ΔΙΟΙΚΗΣΗΣ ΙΓ' ΕΚΠΑΙΔΕΥΤΙΚΗ ΣΕΙΡΑ

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Ordinary Level

Απαντήσεις στο μάθημα Δομημένος Προγραμματισμός ΕΠΑΛ

Computing the Gradient

NonEquilibrium Thermodynamics of Flowing Systems: 2

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is

Differential equations

SMD Power Inductor. - SPRH127 Series. Marking. 1 Marking Outline: 1 Appearance and dimensions (mm)

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

Derivation of Optical-Bloch Equations

Αναερόβια Φυσική Κατάσταση

Transcript:

Model Description. Governing equations The vertical coordinate (eta) is defined by: η p p T p s p T η s ; η s p re f z s p T p re f 0 p T The horizontal equations of motion in the η system may be expressed by dv dt η Φ p ηp f k v F (.) The thermodynamic energy equation (the first law of thermodynamics) dt dt ωα c p Q; ω d p dt (.) The mass continuity equation in the η system is η p t η v η p η η p η 0 (.)

. Model Description. DIVHOA equations and code Subroutine DIVHOA calculates divergence correction DC, divergence DIV and horizontal pressure advection in the thermodynamic equation (horizontal part of omega-alpha). DIV DC η v p (.4) T t α c p v p (.5) The finite-difference equations take the form DC 0 88w x min x 4 t x y Π x Π y where Π P P ; P Φ η p η p η ; P Φ η p η p η η v p x y x u y p x y v x p y u y v x p u y v x p!!-----------------------------------------------------------------------!!--------------preparatory calculations---------------------------------!!----------------------------------------------------------------------- if (sigma) then do j=,jm do i=,im filo(i,j)=fis(i,j) pdsl(i,j)=pd(i,j)

.. DIVHOA equations and code else do j=,jm do i=,im filo(i,j)=0.0 pdsl(i,j)=res(i,j)*pd(i,j) end if do l=,lm do j=,jm do i=,im div(i,j,l)=0.0 omgalf(i,j,l)=0.0 do j=,jm do i=,im adpdx(i,j)=0.0 adpdy(i,j)=0.0!!--------------main vertical integration loop--------------------------- vert_loop: do l=lm,,- p DPDE p DPDE RDPD do j=,jm do i=,im dpde(i,j)=deta(l)*pdsl(i,j) rdpd(i,j)=.0/dpde(i,j) p x DPDE i ivw j j DPDE i ive j j ADPDX i j

4. Model Description do j=,jm do i=+ihe(j),im+ihw(j) adpdx(i,j)=dpde(i+ivw(j),j)+dpde(i+ive(j),j) p y DPDE i j DPDE i j ADPDY i j do j=,jm- do i=,im adpdy(i,j)=dpde(i,j-)+dpde(i,j+) p η APEL p η APEL RTOP Φ η FIM do j=,jm do i=,im apel(i,j)=pt+aeta(l)*pdsl(i,j) rtop(i,j,l)=r*t(i,j,l)*(.0+0.608*q(i,j,l))/apel(i,j) fiupk=filo(i,j)+rtop(i,j,l)*dpde(i,j) fim(i,j)=filo(i,j)+fiupk filo(i,j)=dfl(l)+htm(i,j,l)*(fiupk-dfl(l))!--------------diagonal contributions to pressure gradient force-------- p DPDE i ihe j j DPDE i j ADPDNE i j Φ η FIM FIM i ihe j j FIM i j PNE i j

.. DIVHOA equations and code 5 p η p η RTOP i ihe j j l RTOP i j l APEL i ihe j j APEL i j CNE i j p RT v p η p η ADPDNE i j CNE i j PCNE i j do j=,jm- do i=,im+ivw(j) adpdne(i,j)=dpde(i+ihe(j),j+)+dpde(i,j) pne(i,j)=.0*(fim(i+ihe(j),j+)-fim(i,j)) cne(i,j)=.0*(rtop(i+ihe(j),j+,l)+rtop(i,j,l)) & *(apel(i+ihe(j),j+)-apel(i,j)) pcne(i,j)=cne(i,j)*adpdne(i,j) p DPDE i ihe j j DPDE i j ADPDSE i j Φ η FIM FIM i ihe j j FIM i j PSE i j p η p η RTOP i ihe j j l RTOP i j l APEL i ihe j j APEL i j CSE i j p RT v p η p η ADPDSE i j CSE i j PCSE i j

6. Model Description do j=,jm do i=,im+ivw(j) adpdse(i,j)=dpde(i+ihe(j),j-)+dpde(i,j) pse(i,j)=.0*(fim(i+ihe(j),j-)-fim(i,j)) cse(i,j)=.0*(rtop(i+ihe(j),j-,l)+rtop(i,j,l)) & *(apel(i+ihe(j),j-)-apel(i,j)) pcse(i,j)=cse(i,j)*adpdse(i,j)!--------------continuity equation modification------------------------- Π Φ η p η PNE PCXC p η CNE Φ η p η p η PSE CSE PNE i ivw j j PNE i j CNE i ivw j j CNE i j PSE i ivw j j PSE i j CSE i ivw j j CSE i j do j=,jm- do i=+ihe(j),im- pcxc(i,j)=vbm(i,j)*vtm(i,j,l)*(pne(i+ivw(j),j) & +cne(i+ivw(j),j)+pse(i+ivw(j),j)+cse(i+ivw(j),j) & -pne(i,j-)-cne(i,j-)-pse(i,j+)-cse(i,j+))!----------------------------------------------------------------------- DC 0 88w x min x Π x Π y 4 t x y W PDAR PCXC i ihe j j PCXC i ihw j j PCXC i j PCXC i j

.. DIVHOA equations and code 7 do j=,jm- do i=,im-+ivw(j) div(i,j,l)=deta(l)*wpdar(i,j) & *(pcxc(i+ihe(j),j)-pcxc(i,j+) & +pcxc(i+ihw(j),j)-pcxc(i,j-))!--------------lat & long pressure force components--------------------- do j=,jm- do i=+ihe(j),im+ihw(j) dcnek=cne(i+ivw(j),j)+cne(i,j-) dcsek=cse(i+ivw(j),j)+cse(i,j+) pcew(i,j)=(dcnek+dcsek)*adpdx(i,j) pcns(i,j)=(dcnek-dcsek)*adpdy(i,j)!--------------lat & lon fluxes & omega-alpha components---------------- u y UDY ; v x V DX do j=,jm do i=,im udy(i,j)=dy*u(i,j,l) vdx(i,j)=dx(i,j)*v(i,j,l) u y p x UDY i j ADPDX i j v x p y V DX i j ADPDY i j FEW i j FNS i j

8. Model Description do j=,jm- do i=+ihe(j),im+ihw(j) few(i,j)=udy(i,j)*adpdx(i,j) tew(i,j)=udy(i,j)*pcew(i,j) fns(i,j)=vdx(i,j)*adpdy(i,j) tns(i,j)=vdx(i,j)*pcns(i,j)!--------------diagonal fluxes and diagonally averaged wind------------- u y v x p FNE i j UVD i ihe j j UV D i j ADPDNE i j do j=,jm- do i=,im- pvnek=(udy(i+ihe(j),j)+vdx(i+ihe(j),j))+(udy(i,j+)+vdx(i,j+)) fne(i,j)=pvnek*adpdne(i,j) tne(i,j)=pvnek*pcne(i,j)*.0 u y v x p FSE i j UVD i ihe j j UVD i j ADPDSE i j

.. DIVHOA equations and code 9 do j=,jm- do i=,im- pvsek=(udy(i+ihe(j),j)-vdx(i+ihe(j),j))+(udy(i,j-)-vdx(i,j-)) fse(i,j)=pvsek*adpdse(i,j) tse(i,j)=pvsek*pcse(i,j)*.0 η v p x y x y x y x u y p x y v x p y u y v x p u y v x p x FEW y FNS FNE FSE FEW i ihe j j FEW i ihw j j FNS i j FNS i j FNE i j FNE i ihw j j FSE i j FSE i ihw j j!--------------horizontal part of omega-alpha & divergence-------------- do j=,jm- do i=,im- hm(i,j)=htm(i,j,l)*hbm(i,j) omgalf(i,j,l)=(tew(i+ihe(j),j)+tew(i+ihw(j),j)+tns(i,j+) & +tns(i,j-)+tne(i,j)+tne(i+ihw(j),j-)+tse(i,j) & +tse(i+ihw(j),j+))*rdpd(i,j)*fcp(i,j)*hm(i,j) t(i,j,l)=omgalf(i,j,l)+t(i,j,l) div(i,j,l)=(((few(i+ihe(j),j)+fns(i,j+)+fne(i,j)+fse(i,j)) & -(few(i+ihw(j),j)+fns(i,j-)+fne(i+ihw(j),j-) & +fse(i+ihw(j),j+)))*fdiv(i,j)+div(i,j,l))*hm(i,j) vert_loop end subroutine divhoa

p p 0. Model Description. PGCOR equations and code u t v t Φ p x p x f cv (.6) Φ p y p y f cu (.7) u t PGF x CF x ; v t PGF y CF y where PGF x and CF x are pressure gradient force, and Coriolis force in x direction. For pressure gradient force explicit time scheme is used, while for Coriolis force trapesoidal scheme is used. u τ u τ v τ v τ PGF τ x PGF τ y t f c v τ t f c u τ v τ u τ This set of equations is solved for u τ and v τ. u τ u τ v τ v τ PGF τ x F v τ PGF τ y F u τ v τ u τ u UP τ Fv τ u τ FV P UP F v τ V P Fu τ v τ VP Fu τ where UP u τ PGF τ x Fv τ and VP v τ PGF τ y Fu τ. PGF τ x t x p x p Φ η Φ η p η p η p η p η p Φ η Φ η p η p η p η p η τ

.. PGCOR equations and code PGF τ y t y p y p Φ η Φ η p η p η p RT v p η p η p Φ η Φ η p η p η p RT v p η p η τ p DPDE p DPDE RDPD do j=,jm do i=,im dpde(i,j)=pdsl(i,j)*deta(l) rdpd(i,j)=.0/dpde(i,j) p x DPDE i ivw j j DPDE i ive j j RDPDX ADPDX i j i j p x p y p y DPDE i j DPDE i j ADPDY i j RDPDY i j ADPDY i j ADPDX i j do j=,jm- do i=,im- adpdx(i,j)=dpde(i+ivw(j),j)+dpde(i+ive(j),j) adpdy(i,j)=dpde(i,j-)+dpde(i,j+) rdpdx(i,j)=.0/adpdx(i,j) rdpdy(i,j)=.0/adpdy(i,j)

. Model Description p η APEL p η APEL RTOP Φ η FIM do j=,jm do i=,im apel(i,j)=pt+aeta(l)*pdsl(i,j) rtop(i,j,l)=r*t(i,j,l)*(.0+0.608*q(i,j,l))/apel(i,j) fiupk=filo(i,j)+rtop(i,j,l)*dpde(i,j) fim(i,j)=filo(i,j)+fiupk filo(i,j)=dfl(l)+htm(i,j,l)*(fiupk-dfl(l))!--------------diagonal contributions to pressure gradient force-------- p DPDE i ihe j j DPDE i j ADPDNE i j Φ η FIM p Φ η ADPDNE i j PNE i j PPNE i j FIM i ihe j j FIM i j PNE i j p η p η RTOP i ihe j j l RTOP i j l APEL i ihe j j APEL i j CNE i j p RT v p η p η ADPDNE i j CNE i j PCNE i j

.. PGCOR equations and code do j=,jm- do i=,im+ivw(j) adpdne(i,j)=dpde(i+ihe(j),j+)+dpde(i,j) pne(i,j)=.0*(fim(i+ihe(j),j+)-fim(i,j)) ppne(i,j)=pne(i,j)*adpdne(i,j) cne(i,j)=.0*(rtop(i+ihe(j),j+,l)+rtop(i,j,l)) & *(apel(i+ihe(j),j+)-apel(i,j)) pcne(i,j)=cne(i,j)*adpdne(i,j) p DPDE i ihe j j DPDE i j ADPDSE i j Φ η FIM p Φ η ADPDSE i j PSE i j FIM i ihe j j FIM i j PPSE i j PSE i j p η p η RTOP i ihe j j l RTOP i j l APEL i ihe j j APEL i j CSE i j p RT v p η p η ADPDSE i j CSE i j PCSE i j do j=,jm do i=,im+ivw(j) adpdse(i,j)=dpde(i+ihe(j),j-)+dpde(i,j) pse(i,j)=.0*(fim(i+ihe(j),j-)-fim(i,j)) ppse(i,j)=pse(i,j)*adpdse(i,j) cse(i,j)=.0*(rtop(i+ihe(j),j-,l)+rtop(i,j,l)) & *(apel(i+ihe(j),j-)-apel(i,j)) pcse(i,j)=cse(i,j)*adpdse(i,j)

4. Model Description!--------------lat & long pressure force components--------------------- Φ η PNE PNE i ivw j j PNE i j DPNE Φ η PSE PSE i ivw j j PSE i j DPSE Φ η Φ η DPNE DPSE PEW i j Φ η Φ η DPNE DPSE PNS i j p η p η p η p η CNE CSE CNE i ivw j j CNE i j CSE i ivw j j CSE i j DCNE DCSE p η p η RT v p η p η DCNE DCSE PCEW i j p η p η RT v p η p η DCNE DCSE PCNS i j

.. PGCOR equations and code 5 do j=,jm- do i=,im- dpne=pne(i+ivw(j),j)+pne(i,j-) dpse=pse(i+ivw(j),j)+pse(i,j+) pew(i,j)=dpne+dpse pns(i,j)=dpne-dpse dcne=cne(i+ivw(j),j)+cne(i,j-) dcse=cse(i+ivw(j),j)+cse(i,j+) pcew(i,j)=dcne+dcse pcns(i,j)=dcne-dcse PGF τ x t x p x PPNE PCNE PCEW PCNS PPSE PCSE τ!--------------update u and v (coriolis & pgf)-------------------------- do j=,jm- do i=,im- dpfnek=((ppne(i+ivw(j),j)+ppne(i,j-)) & +(pcne(i+ivw(j),j)+pcne(i,j-)))*.0 dpfsek=((ppse(i+ivw(j),j)+ppse(i,j+)) & +(pcse(i+ivw(j),j)+pcse(i,j+)))*.0 dpfew(i,j)=dpfnek+dpfsek dpfns(i,j)=dpfnek-dpfsek do j=,jm- do i=,im- f0k=u(i,j,l)*curv(i,j)+f(i,j) vm(i,j)=vtm(i,j,l)*vbm(i,j) upk=(dpfew(i,j)*rdpdx(i,j)+pcew(i,j)+pew(i,j))*cpgfu(i,j)+f0k*v(i,j,l)+u(i,j,l) vpk=(dpfns(i,j)*rdpdy(i,j)+pcns(i,j)+pns(i,j))*cpgfv-f0k*u(i,j,l)+v(i,j,l) utk=u(i,j,l)

6. Model Description vtk=v(i,j,l) u(i,j,l)=((f0k*vpk+upk)/(f0k*f0k+.0)-u(i,j,l)) & *vm(i,j)+u(i,j,l) v(i,j,l)=(vpk-f0k*u(i,j,l)-v(i,j,l)) & *vm(i,j)+v(i,j,l)

.4. HZADV equations and code 7.4 HZADV equations and code.4. Temperature T t v T ADT τ T n T τ ADT τ T τ n T τ τ ADT n τ T n T τ n t x y p u y p x x T x v x p y y T y u y v x p T u y v x p T τ T τ n T τ n t x y p u y p x x T x v x p y y T y u y v x p T u y v x p T τ n ADT n t x y p u y p x x T x v x p y y T y u y v x p T u y v x p T p DPDE p DPDE RDPD do j=,jm do i=,im dpde(i,j)=pdsl(i,j)*deta(l) rdpd(i,j)=.0/dpde(i,j)

8. Model Description p x DPDE i ivw j j DPDE i ive j j ADPDX i j do j=,jm do i=+ihe(j),im+ihw(j) adpdx(i,j)=dpde(i+ivw(j),j)+dpde(i+ive(j),j) rdpdx(i,j)=.0/adpdx(i,j) p y DPDE i j DPDE i j ADPDY i j do j=,jm- do i=,im adpdy(i,j)=dpde(i,j-)+dpde(i,j+) rdpdy(i,j)=.0/adpdy(i,j)!--------------mass fluxes and mass points advection components--------- u y UDY v x V DX

.4. HZADV equations and code 9 do j=,jm do i=,im udy(i,j)=ust(i,j)*dy vdx(i,j)=vst(i,j)*dx(i,j) u y p x UDY i j ADPDX i j FEW i j u y p x x T FEW i j TST i ive j j T ST i ivw j j TEW i j do j=,jm do i=+ihe(j),im+ihw(j) few(i,j)=udy(i,j)*adpdx(i,j) tew(i,j)=few(i,j)*(tst(i+ive(j),j)-tst(i+ivw(j),j)) v x p y V DX i j ADPDY i j FNS i j v x p y y T FNS i j TST i j TST i j T NS i j do j=,jm- do i=,im fns(i,j)=vdx(i,j)*adpdy(i,j) tns(i,j)=fns(i,j)*(tst(i,j+)-tst(i,j-))

0. Model Description!--------------diagonal fluxes and diagonally averaged wind------------- u y v x UDY i j VDX i j UV D i j do j=,jm- do i=,im uvd(i,j)=udy(i,j)+vdx(i,j) u y v x p UVD i ihe j j UV D i j DPDE i j DPDE i ihe j j FNE i j u y v x p T FNE i j TST i ihe j j T ST i j TNE i j do j=,jm- do i=,im- fne(i,j)=(uvd(i+ihe(j),j)+uvd(i,j+)) & *(dpde(i,j)+dpde(i+ihe(j),j+)) tne(i,j)=fne(i,j)*(tst(i+ihe(j),j+)-tst(i,j)) u y v x p FSE i j UVD i ihe j j UVD i j DPDE i j DPDE i ihe j j

.4. HZADV equations and code u y v x p T FSE i j TST i ihe j j TST i j TSE i j do j=,jm- do i=,im- fse(i,j)=(temp(i+ihe(j),j)+temp(i,j-))*(dpde(i,j)+dpde(i+ihe(j),j-)) tse(i,j)=fse(i,j)*(tst(i+ihe(j),j-)-tst(i,j)) ADT n t x y p n ADT t x y p TEW x TNS y TNE TSE TEW i ihw j j TEW i ihe j j T NS i j TNS i j TNE i ihw j j TNE i j TSE i j TSE i ihw j j n t x y FAD i j do j=,jm- do i=,im-+ivw(j) adt(i,j)=(tew(i+ihw(j),j)+tew(i+ihe(j),j)+tns(i,j-)+tns(i,j+) & +tne(i+ihw(j),j-)+tne(i,j)+tse(i,j)+tse(i+ihw(j),j+)) & *rdpd(i,j)*fad(i,j).4. Wind (velocity components) u t v u

. Model Description v t v v τ u n u τ n t x y p x u y v x p x u u y p xx x ux y x y v x p y u u y v x p y u τ τ v n v τ n t x y p y u y v x p x v u y p xx x vx y x y v x p y v u y v x p y v τ

.5. PDTE equations and code.5 PDTE equations and code η s p s t η v η p η η η p 0 subroutine pdte() use parmeta use ctlblk use masks use dynam use vrbls use contin integer :: i, j, l real, dimension(:im,:jm) :: pret, rpsl!!!! start subroutine pdte!! p s t 0 η s v η p dη p τ s p τ s t LM l v l p l τ L l v l p l DIV I J L do l=,lm do j=,jm- do i=,im div(i,j,l)=div(i,j,l-)+div(i,j,l)

4. Model Description LM l v l p l DIV I J LM PSDT I J do j=,jm- do i=,im psdt(i,j)=-div(i,j,lm) pret(i,j)=psdt(i,j)*res(i,j) rpsl(i,j)=.0/pdsl(i,j) η η p s p T p s t η s p s p T LM l v l p l!--------------computation of etadt------------------------------------- do l=,lm- do j=,jm- do i=,im etadt(i,j,l)=-(pret(i,j)*eta(l+)+div(i,j,l))*htm(i,j,l+)*rpsl(i,j) T t vertical part of ωα c p α p c p t η p η!--------------kinetic energy generation terms in t equation------------ do j=,jm- do i=,im omgalf(i,j,)=omgalf(i,j,)-div(i,j,)*rtop(i,j,)*ef4t t(i,j,)=t(i,j,)-div(i,j,)*rtop(i,j,)*ef4t do l=,lm-

.5. PDTE equations and code 5 do j=,jm- do i=,im omgalf(i,j,l)=omgalf(i,j,l)-(div(i,j,l-)+div(i,j,l))*rtop(i,j,l)*ef4t t(i,j,l)=t(i,j,l)-(div(i,j,l-)+div(i,j,l))*rtop(i,j,l)*ef4t do j=,jm- do i=,im omgalf(i,j,lm)=omgalf(i,j,lm)+(pret(i,j)-div(i,j,lm-))*rtop(i,j,lm)*ef4t t(i,j,lm)=t(i,j,lm)+(pret(i,j)-div(i,j,lm-))*rtop(i,j,lm)*ef4t do l=lm,,- do j=,jm- do i=,im div(i,j,l)=div(i,j,l)-div(i,j,l-) end subroutine pdte

6. Model Description