3+1 Splitting of the Generalized Harmonic Equations

Σχετικά έγγραφα
Higher Derivative Gravity Theories

Cosmological Space-Times

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Laplace Expansion. Peter McCullagh. WHOA-PSI, St Louis August, Department of Statistics University of Chicago

On geodesic mappings of Riemannian spaces with cyclic Ricci tensor

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

D Alembert s Solution to the Wave Equation

Srednicki Chapter 55

Tutorial problem set 6,

w o = R 1 p. (1) R = p =. = 1

Matrices and Determinants

g-selberg integrals MV Conjecture An A 2 Selberg integral Summary Long Live the King Ole Warnaar Department of Mathematics Long Live the King

2 Composition. Invertible Mappings

ME340B Elasticity of Microscopic Structures Wei Cai Stanford University Winter Midterm Exam. Chris Weinberger and Wei Cai

Section 8.3 Trigonometric Equations

Overview. Transition Semantics. Configurations and the transition relation. Executions and computation

Space-Time Symmetries

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

The Simply Typed Lambda Calculus

derivation of the Laplacian from rectangular to spherical coordinates

( ) 2 and compare to M.

Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O

Numerical Analysis FMN011

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

Forced Pendulum Numerical approach

X g 1990 g PSRB

4.6 Autoregressive Moving Average Model ARMA(1,1)

The ε-pseudospectrum of a Matrix

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

The Jordan Form of Complex Tridiagonal Matrices

ADVANCED STRUCTURAL MECHANICS

( y) Partial Differential Equations

General 2 2 PT -Symmetric Matrices and Jordan Blocks 1

Finite Field Problems: Solutions

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Figure A.2: MPC and MPCP Age Profiles (estimating ρ, ρ = 2, φ = 0.03)..

Appendix A. Curvilinear coordinates. A.1 Lamé coefficients. Consider set of equations. ξ i = ξ i (x 1,x 2,x 3 ), i = 1,2,3

Symmetric Stress-Energy Tensor

Approximation of distance between locations on earth given by latitude and longitude

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

New bounds for spherical two-distance sets and equiangular lines

Abstract Storage Devices

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

The kinetic and potential energies as T = 1 2. (m i η2 i k(η i+1 η i ) 2 ). (3) The Hooke s law F = Y ξ, (6) with a discrete analog

PHYS606: Electrodynamics Feb. 01, Homework 1. A νµ = L ν α L µ β A αβ = L ν α L µ β A βα. = L µ β L ν α A βα = A µν (3)

Homework 8 Model Solution Section

ST5224: Advanced Statistical Theory II

Homework 3 Solutions

Dr. D. Dinev, Department of Structural Mechanics, UACEG

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)

Other Test Constructions: Likelihood Ratio & Bayes Tests

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Inverse trigonometric functions & General Solution of Trigonometric Equations

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems

Solutions to Exercise Sheet 5

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

Second Order RLC Filters

Second Order Partial Differential Equations

Mechanical Behaviour of Materials Chapter 5 Plasticity Theory

Trigonometry 1.TRIGONOMETRIC RATIOS

If we restrict the domain of y = sin x to [ π 2, π 2

Lecture 10 - Representation Theory III: Theory of Weights

Constitutive Relations in Chiral Media


Section 7.6 Double and Half Angle Formulas

Reminders: linear functions

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΗΛΕΚΤΡΙΚΗΣ ΙΣΧΥΟΣ

Concrete Mathematics Exercises from 30 September 2016

Matrices and vectors. Matrix and vector. a 11 a 12 a 1n a 21 a 22 a 2n A = b 1 b 2. b m. R m n, b = = ( a ij. a m1 a m2 a mn. def

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Προς όλα τα μέλη του Συνδέσμου Τεχνική Εγκύκλιος Αρ. 36

Derivation of Optical-Bloch Equations

Every set of first-order formulas is equivalent to an independent set

Distances in Sierpiński Triangle Graphs

Tridiagonal matrices. Gérard MEURANT. October, 2008

[1] P Q. Fig. 3.1

Parallel Transport and Curvature

Review Test 3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

ΚΥΠΡΙΑΚΟΣ ΣΥΝΔΕΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY 21 ος ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ Δεύτερος Γύρος - 30 Μαρτίου 2011

1 String with massive end-points

The wave equation in elastodynamic

Assalamu `alaikum wr. wb.

Lecture 13 - Root Space Decomposition II

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

Spherical Coordinates

Eulerian Simulation of Large Deformations

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Parallel transport and geodesics

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006

CE 530 Molecular Simulation

Transcript:

3+1 Splitting of the Generalized Harmonic Equations David Brown North Carolina State University EGM June 2011

Numerical Relativity Interpret general relativity as an initial value problem: Split spacetime derivatives into time and space derivatives µ t i

Numerical Relativity Interpret general relativity as an initial value problem: Split spacetime derivatives into time and space derivatives µ t i Formulations: ġ K ADM BSSN etc

Numerical Relativity Interpret general relativity as an initial value problem: Split spacetime derivatives into time and space derivatives µ t i Formulations: ġ K ADM BSSN etc Also split tensors g µν α β i g ij

Numerical Relativity Interpret general relativity as an initial value problem: Split spacetime derivatives into time and space derivatives µ t i Formulations: ġ K ADM BSSN etc Also split tensors g µν α β i g ij Generalized Harmonic formulation can be interpreted as an initial value problem without splitting tensor indices.

Einstein Equations R µν = 0 Generalized Harmonic Eqs. R µν = (µ C ν) C µ H µ + Γ µ σρg σρ = 0

Einstein Equations R µν = 0 Generalized Harmonic Eqs. R µν = (µ C ν) C µ H µ + Γ µ σρg σρ = 0 Initial Value Problem t g ij = L β g ij 2αK t K ij = L β K ij + αkk ij + H K 2 K ij K ij + R = 0 M i D j K j i D i K = 0 H = M i = 0 preserved in time if H = M i = 0 initially Generate solution by evolving g ij and K ij with α and β i chosen freely

Einstein Equations R µν = 0 Initial Value Problem t g ij = L β g ij 2αK t K ij = L β K ij + αkk ij + H K 2 K ij K ij + R = 0 M i D j K j i D i K = 0 H = M i = 0 preserved in time if H = M i = 0 initially Generate solution by evolving g ij and K ij with α and β i chosen freely Generalized Harmonic Eqs. R µν = (µ C ν) C µ H µ + Γ µ σρg σρ = 0 Initial Value Problem g µν = 2 (µ H ν) + C µ = C ν (µ C ν) C µ = 0 preserved in time if C µ = 0 and t C µ = 0 (equiv. to H = M i = 0) initially Generate solution by evolving g µν with H µ chosen freely

Goal: Write generalized harmonic (GH) equations with 3+1 splitting of derivatives and tensor indices: t g ij =... t K ij =... t α =... t β i =....

Goal: Write generalized harmonic (GH) equations with 3+1 splitting of derivatives and tensor indices: Motivation: t g ij =... t K ij =... t α =... t β i =... GH is expressed in the same language/notation as ġ K, ADM, BSSN, etc. Comparison and insights..

Goal: Write generalized harmonic (GH) equations with 3+1 splitting of derivatives and tensor indices: Motivation: t g ij =... t K ij =... t α =... t β i =... GH is expressed in the same language/notation as ġ K, ADM, BSSN, etc. Comparison and insights. Result is nice..

3+1 Splitting of GH: technical details Covariant GH equations: where H µ is a vector and R µν = (µ C ν) C µ H µ + Γ µ σρg σρ = 0 Γ µ σρ Γ µ σρ Γ µ σρ = 1 2 g µν ( σ g ρν + ρ g σν ν g σρ )

3+1 Splitting of GH: technical details Covariant GH equations: where H µ is a vector and R µν = (µ C ν) C µ H µ + Γ µ σρg σρ = 0 Γ µ σρ Γ µ σρ Γ µ σρ = 1 2 g µν ( σ g ρν + ρ g σν ν g σρ ) Split R µν, Γ µ σρ, Γ µ σρ, H µ, µ C ν Absorb terms F (g µν, g µν, σ g µν ) into H and H i Define K ij ( t g ij L β g ij )/(2α) π ( t α β i D i α)/α 2 + H ρ i ( t β i β k D k β i )/α 2 + D i α/α H i

GH Equations in 3+1 form ( t L β ) g ij = 2αK ij [ ] K ij = α R ij 2K ik Kj k + KK ij D i D j α αc K ij αd (i C j) α = α 2 π α 2 H t β i = β j D j β i + α 2 ρ i αd i α + α 2 H i π = αk ij K ij + D i D i α + C i D i α ρ i = αd i π πd i α 2K ij D j α + 2αK jk Γ i jk + g kl D k D l β i C π + K C i ρ i + Γ i jk g jk H K 2 K ij K ij + R M i D j K j i D i K

Constraint Evolution C = αkc + αh + C i D i α αd i C i C i = C D i α αd i C 2αM i 2αK ij C j H = 2απH + 2αRC + 2α(K ij Kg ij )D i C j 4M i D i α 2αD i M i M i = HD i α + (Kδ j i K j i )D j(αc ) 1 2 αd ih απm i + D j αd [i C j ] + D i (αd j C j ) 1 2 αr ijc j αd j D j C i

Now What? Direct comparison of GH with ġ K, ADM, BSSN, etc Which terms are responsible for stable evolution? Moving puncture coordinates/evolution in GH? New formulations?

Symmetric Hyperbolicity Conserved energy: [ ] 1 ε = M ijkl 4 g mn m g ij n g kl + (K ij i β j /α)(k kl k β l /α) [ ] 1 +N ij α 2 g kl k β i l β j + (ρ i i α/α)(ρ j j α/α) [ +C ππ + 1 ] α 2 g ij i α j α where M ijkl, N ij and C are positive definite.

GH with Constraint Damping R µν (µ C ν) + κ [ n (µ C ν) g µν n σ C σ /2 ] = 0 = g ij = 2αK ij [ ] K ij = α R ij 2K ik Kj k + KK ij D i D j α αc K ij αd (i C j) 1 2 κg ijc α = α 2 π α 2 H t β i = β j D j β i + α 2 ρ i αd i α + α 2 H i π = αk ij K ij + D i D i α + C i D i α 1 2 καc ρ i = αd i π πd i α 2K ij D j α + 2αK jk Γ i jk +g kl D k D l β i + καc i

GH with Constraint Damping C = αkc + αh + C i D i α αd i C i 2καC C i = C D i α αd i C 2αM i 2αK ij C j καc i H = 2απH + 2αRC + 2α(K ij Kg ij )D i C j 4M i D i α 2αD i M i 2καC M i = HD i α + (Kδ j i K j i )D j(αc ) 1 2 αd ih απm i + D j αd [i C j ] + D i (αd j C j ) 1 2 αr ijc j αd j D j C i + κd i (αc )